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Coupled channel calculations were carried out for the inelastic scattering of ' C on Mg
using form factors generated in a single folding model. We studied the population probabil-

ity P~ for Mg in the 1.37 MeV 2+ level with
~

m
~

=1 and ' C in its ground state. Using

spin-independent potentials the excitation of various states in "C gave rise to a maximum
P~(6') of 0.2%. This increased to 0.3% when spin-dependence was allowed for in an ap-

proximate manner. At 10' the calculations fell significantly short of the experimental data.
Large polarizations were found when excited states of ' C were populated; these effects are
discussed.

NUCLEAR REACTIONS "C+ Mg inelastic scattering, E =35 MeV;
coupled channel study of

~

m
~

=1 population probability for the Mg
1.37 MeV 2+ level and polarization phenomena.

I. INTRODUCTION

In general the interaction between two nuclei de-

pends upon their separation and on their orientation
relative to each other and to the line connecting
their mass centers. This orientation dependence is
colloquially called "spin dependence, " although its
physical origin is probably more closely associated
with nonsphericity of the nuclear mass density than
with interactions involving the intrinsic spin. In-
direct evidence for orientation-dependent interac-
tions is provided by the study' of nucleon transfer
between heavy ions. In order to understand the ob-
served angular distributions, it is necessary to as-
sume that the optical potentials governing the rela-
tive motion of the nuclei contain a "spin-orbit"
term, I ( I+ s } ( I is the relative orbital angular
momentum and I and s are the nuclear angular
momenta}. More direct evidence for orientation-
dependent interactions was revealed ' in the study
of the reaction Mg(0+)+' C( —, )~ Mg(2+)
+'sC( —, ). Events were identified in which the
component of the ' C angular momentum perpen-
dicular to the reaction plane was reversed as a result
of the collision. Similar "spin-flip" measurements
have been performed for ' C and ' N incident on
' C. Polarized beams of the "light heavy ions" Li
and Li are now available, and vector analyzing
powers have been measured for various targets.

Attempts have been made to calculate the
orientation-dependent part of the interaction by dou-

ble folding the nucleon-nucleon spin-orbit interac-
tion over the spin distributions of the two nuclei.
These double-folding potentials underpredict the
' C, ' N spin-flip data by several orders of magni-
tude. They sometimes account for the observed
vector-analyzing power, but their predictions are
too small for Liincidenton Ni and Hetargets, s'

and the predicted sign of the vector analyzing power
is incorrect for Li on a Ni target. '

The use of the double-folding model implies that
the colliding nuclei remain in their ground states
throughout the collision. We know that this does
not happen. Excited states of both the projectile and
target are populated as the nuclei approach each
other, even in cases where one or both nuclei emerge
in their ground states. This can allow the angular
momentum of the projectile to be flipped, even in
the absence of explicitly spin-dependent interactions,
i.e., this generates an effective potential which is
orientation dependent.

In this paper, we study such effects for the
' C+ Mg system. The low-lying states of Mg
can be described as rotational excitations of a de-
formed intrinsic shape. The optical potential pro-
duced by this deformed mass distribution is non-
spherical. We treat the low-lying states of 'sC in
terms of the spherical shell model. When ' C and

Mg collide, each ' C nucleon feels the nonspherical
Mg optical potential. This results in the ' C and
Mg exerting torques on each other, which leads to

the population of the rotational excitations in Mg,
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FIG. 1. States of "C and Ng which are included in
this calculation. Excitation energies are in MeV. Dia-
gram is not drawn to scale.

and excited shell-model states in ' C illustrated in
Fig. 1. Of course, ' C can emerge in its —, ground
state, but even if it does, there is a possibility that its
angular momentum component perpendicular to the
reaction plane will have been flipped relative to its
initial orientation. In this way we can calculate a
spin-flip probability to compare with the data of
Refs. 3 and 4.

Our calculation proceeds in two stages. We first
calculate the Mg-' C nucleus-nucleus interaction
by folding the deformed Mg optical potential over
the 13 nucleon shell-model states of ' C. The
second stage uses this interaction in a coupled-
channel calculation, with each channel correspond-
ing to a pair of Mg,

' C states. We have also in-
cluded the orientation dependence associated with

FIG. 2. The angles (P,a) are the polar coordinates of
the symmetry axis of the deformed ' Mg nucleus. The
mass center of ' C is located relative to the mass center of
"Mg by the vector R, and q; and r; locate the ith nucleon

of' ' C with respect to the mass centers of "C and Mg,
respectively.

the spin-orbit term in the Mg optical potential, al-
though in this part of the calculation we have not
included the Mg deformation The. formulae are
derived in Sec. II, the results of the calculation are
compared with experimental data in Sec. III, and
our conclusions are given in Sec. IV.

II. THE FORMALISM

A. Spin independent potentials

The Mg target is assumed to be an axially-symmetric deformed nucleus. We are concerned here only with
its orientation degrees of freedom (a,p), and with the K =0 rotational band

' 1/2I 2I~+ l
C'sr, (a p)= Dsr' o(a,p, O)

' 1/2

( —1)"
2Ic+1 mr, a I,i[(I,—M, )!(I,+M, )!j'~2

4~
] „.'(I, +M, —n)!(I,—n)!(n —M, )!

'2I +M —2' '

p
C C

cos—
2

S111—
2

'2n —M
C

The optical potential produced by this nucleus is of the form

U(r, a,p)=
J Op2p ~ ~ ~ p

VJ(r) g DP~ o(a,P,O) Y~(r)

J Op2p ~ ~ ~ p

' 1/2

VJ( )ij
2J+1 g Y'„(P,a ) Y'„(r"),

(2)
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where r is a unit vector in the direction of r.
The states of ' C are assumed to be adequately described by the spherical shell model. Here the degrees of

freedom are the positions, spin, and isospin components of the 13 nucleons,

S S

m 9'm (qlo 1&1 ~ ~ ~ q13&13&i3) y
(3)

(4)

Each of these 13 nucleons feels the Mg optical potential (2). Using this interaction, the matrix elements need-
ed for a coupled-channel analysis of the inelastic scattering in the ' C and Mg system may be written

13

I"„(R)=([C&'(a,p)[Y'(R)p '(qo'r)]']sr
I g U(r;, a,p)

I
[4 '(a,p)[Y'(R)p '(qo'r)]']M)ii . (5)

i=1
Evaluation of this matrix element requires summation and integration over the variables q;, o;, r;, a, p, and R,
while the magnitude R is kept constant.

If we substitute (1), (2), and (3) into (5) and do some straightforward angular momentum recoupling, we get

(21, +1)(2lc +1)(2I,+1)(2I, +1)
4n (2J+1)

( 1)2J c+ c'

&& X, 2i 1 2. 12 „2«I.I.)J(I.J')~l(I.I')JV.J;) 4

where q; locates the ith nucleon relative to the mass center of ' C (see Fig. 2). The vector R locates the mass
center of ' C relative to that of Mg, so that

r;=R+q; (i =1,2, . . . , 13) .

where

)& ((l,s, )J (I, s, j), I
(lc lc )i(scs;), )J ( I, l, 00

I
10)(I,Ic 00

Ij 0)M»J (R), (6a)

13

~»J(R)=y f dRdqi dqi3 [Y'(R)[(( (qor)p'(qadi)]'j'g V(r;)Y'(r";)
0

(6b)

The 9-j recoupling amplitudes are used in an obvious manner in (6a) to rearrange the factors in (5) to enable us
to make use of the well-known theorem

k, „k,„k .k, +k, k(2ki+1)(2-k2+1)
4m 2k+1

(6c)

The evaluation of the integral in (6b) requires us to express the r;-dependent quantities in terms of R and q;.
To this end, we define functions g& (R,q) by

Vj(r) Y~~ (r ) = g g&J (R,q) [Y (R ) Y'(q )]~~,
l, s

where r, R, and q are related by (4). Then R in (6b) can be integrated to yield an R-dependent single-particle
matrix element

' 1/2

~„(R)= J+'
2$ + 1

13

g f dqi dqi3 [P '(qcrr)P '(qcrr)]'gglj(R, q;)Y'(q&) .

0

0

1/2
,+, ,+, (2s, +1)(2j+1)

=( —1) 2$+1
s 13

g g&2(R, q;)[Y'(q;)P '] '

Since we have assumed that the '3C wave functions p ', p
' are shell-model states, the single-particle matrix

element (g) can be evaluated using standard fractional parentage techniques.
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We .'.nclude in our calculation only the I, =0 and 2 states of the Mg E =0 rotational band. Then the only
values of j that contribute to F(R) in (6a) are j=0, 2, and 4. We take for U(r, 0,0) in (2) a Woods-Saxon po-
tential with a quadrupole deformation,

Vo
U(r, 0,0}=

1+exp([r —RpI 1+PYp (8,0) j ]/a }

from which the V»(r) needed in (2) can be calculated by

7r Y»p (5,0)
V»(r) =2m sin@ d8

1+exp([r —Rp[1+PYp (8,0)j]/a)

(9a)

(9b)

If we were to evaluate (9b) using an expansion in p up to first order, then only j=0 and 2 would be nonzero.
In fact, we do not use an expansion in p but we integrate (9b) numerically. However, we neglect the j=4 con-
tribution. This will introduce some error in the calculation of the (I,=2) to (I, =2) reorientation terms, but
this should have little effect on the spin flip probability.

Equation (9a) gives the method of deforming the nuclear part of the optical potential. To obtain a deformed
Coulomb potential, we assume that the charge density p of Mg is constant within a surface given by

R (P,8)=Rp[1+PYp (5,0)]

and equal to

12e/( —,mRp ) .

This yields the following Coulomb potential energy function, to first order in P:

Uc,„&(r,0)=12e —+ —,P Yp (r) r &Rp
7+ p3

2 2
3RO —r, p2

=12e2 + —,P Yp (r) r &Rp,
2RO Ro

which determines Vp(r) and Vz(r) for the Coulomb part of the optical potential.
It only remains to calculate the gi (R,q) defined by (7). For j=0 this is essentially a Slater expansion,

1 1
Vp(r)= Vp(

f
R+q

f
)

4m 4n

=

hagi',

I(R,q)[Y'(R)Y'(q}lp

(10a)

(10b)

g (2l+1}' 'g,', (R,q)P, (R q),
4m

from which we can project g~ I(R,q) by a single integration

(1 la)

g~i(R, q)=[~(2l+ I)]'» J Vp[(R +q +2Rqx)'»~]P»(x)dx . (1 lb)

V»(fR~q f)
VJ(r) Y~~(r) = », S'~~(R+ q) .

f
R+q f'

The solid harmonic can be decomposed using
1/2

[9'«(R)9'» «(q)]»~» (-
)

4n (2j+1)!
p (2»p + 1)!(2[J' I»]+1}!—

which can be derived by applying the binomial expansion to

To get the j&0 terms in (7) we rewrite the left-hand side in terms of a solid harmonic.

(12)

(13a)
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1/2 .

O'JJ(R+q)= .
'

(R„+iR~+q„+iq~}1.( —1}' (2j+1)!
4m

(13b)

The factor

vj( I
R+ q I

)/'
I
R+ q I'

can be expanded as in (11),

= g (2l'+1)'/ fp(R, q)[Y'(R ) Y~ (q)]o,
R+

V [(R +q +2Rqx)' ]
fp(R, q) =2~ ', .

/2 Pr(x)dx,
[R +q +2RqxP/2

so that (12) becomes the double sum

(14a)

(14b)

4m (2j+ 1)!
1/2

f((R,q)R q ~[Y (R}Y (q)]11[Y1'(R)Y ~(q)]0. (15a)

By recoupling the four spherical harmonics and using (6c), this can be rewritten as

VJ (r) YJ (r ) = g [Y (R ) Y'(q )]J i J +'
l, s

X g ( —1}rR~qj rfr(R, q)
p=0, 1, . . . ,jl'

1/2

U(lsp [j p]jl')(lp0—0
I

I'0}(s[j—p]00
I
l'0),(2j)!(2l+ 1)(2s + 1)

(15b)

from which we can extract the g&J (R,q} of (7).
s l,s

For the wave functions P~ of the low-lying states of ' C shown in Fig. 1, we choose simple configurations,
which are nevertheless a reasonable approximation. " We take the configuration

( ls1») (lp3/2) (nlj)'

with nlj = lp1/2 for the ground state, 2s1/2 for the 3.09 MeV level, ids/2 for the 3.85 MeV level, and ld3/2 for
the 8.2 MeV level. We also consider the 3.68 MeV —, level which we take to be

4 7 J=2 TO c[( ls1/2 } [ lp3/2 lp1/2] Ipl/2]m

Using these wave functions it is straightforward to evaluate the angular part of Eq. (8). The radial part was
computed with single-particle wave functions generated in a Woods-Saxon well with radius parameter ro 1.25——
fm and diffuseness a =0.65 fm. As usual the well depth was fitted to the separation energies 11.12, 4.95, 1.09,
and 1.86 MeV for the lp3/2, lp1/2, ld5/2, and 2s1/2 states, respectively. Note that the ld3/2 level is unbound
so we used the same separation energy as in the 1d5/2 case.

In the harmonic oscillator shell model of ' C, the (ls1/2) (lp3/2) Ids/2 configuration has no quanta of
center-of-mass motion. However, the 2s1/2 and ld3/2 states have, respectively, 5.1% and 12.8% of com-
ponents with one quantum of center-of-mass motion. We have not eliminated these spurious components from
our calculation.

B. Spin-dependent potentials

In the previous derivation, the origin of the torque exerted on the ' C was the deformation of the central part
of the Mg optical potential. However, even a spherical optical potential can exert a torque if it has a noncen-

tral part, such as a spin-orbit term U„(r) 1„.s. We now consider the contribution of a spherical spin-orbit
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term to the channel-coupling form factor (5).
Let p„and p~ be the linear momenta of the ith nucleon relative to the mass centers of Mg and '3C,

respectively, and let p a be the total momentum of ' C, relative to the mass center of Mg. Then (4) implies

that

Pr. 13 PR+Pq
l

l-, =r;Xp-, =(R+q;)X(—„pa+pq ) (16)

13 X p R + 13 q; X p R +&Xp-, , +q; X p q I

in which we have neglected center of mass recoil corrections. Then the spin-orbit contribution to the Mg op-

tical potential is

13

g U»(r;)1-, s;= 2 U»(
I R+qi I )[—„RXpa+ &p q;Xp R+RX p-+q;X p- ] s; .

i i

The first term in this sum,

13

—, g U„(
I
R+ q; I

)L-„s;

(17a)

(17b)

has the general structure of a spin-orbit interaction for the relative vector R and can be evaluated in a straight-

forward manner. Thus

F„(R)=([@'(&,P)[Y'(R)4 '(q«)l ']I
I

13

X —„gU»(
I
R+q; I

)La s;
I
[4 '(u, p)[Y'(R)p '(q«)] ']M)

13

=5»,5, ,([Y'(R)p '(q«)]'
I

—„gU»(
I
R+q; I )LR s;

I

[Y'(R)((' '(q«)] '& .
i=1

(18)

The spin-orbit interaction is unable to couple different rotational states of Mg because we have ignored its de-

formation. Next, we perform a Slater expansion on U»,

U, (
I
R+q I

)= g [(2l+1)] hi(R, q)[Y (R)Y(q)]0 ~ (19)
I

If we use (6c) and the reduced matrix element of L-„,

( Y~(R)
I
[L'a Y'(R)]~)= A'5( I [l,(l, +—I)]'~2,

we can show that (18) is equal to

F»(R) = 5r„r,,5

1/2
l, (l, +1)

4m

X gi ' '(2l+1)' '(ll, 00I 1,0)U(ps, lj,;s, lo )U(1 ll l;pl )

l,p

13

X (P ' g h~(R, q;)[[Y'(q;)s']~/ 'I ' ) . (20)

If P
' and P

' are single-particle states beyond a ' C closed core, then the reduced matrix element in (2()) can be
shown to be equal to
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(P ' ' ' ih((R, q)t[Y( )s'P'P '' 'I ' )

&+&, &, (2l+1)(2j~+ I} 1/2

4m(2jl+ I )

y f u„,(,J,(q)u„,I,J,(q)h((R, q)q dq

j2 —(1/2) —I2
( —1) 1 . 1 1

X (pj2 —1
& I JI —

2
)(11o—1

I p —1)—2 (pjz0 —
2 Igi —-»(I 1oo

I
po) (21)

The angular part of this expression can most easily be derived by noting that I [Y (q }s'P'P ' ' '
J ~ and P~' ' '

are proportional, with a proportionality factor independent of q and m ~. This factor can be obtained by calcu-
lating the ratio of these two quantities for q =z and m =——,.

The remaining three terms in Eq. (17a) are difficult to deal with in general. We neglect them except in the
1 — 1+

cases where s, =s, = —, or —, since these are clearly most important for the spin flip probability. In these

cases the third and fourth terms of Eq. (17a) will not lead to spin flip and are neglected. The second term,

however, will produce spin flip and gives a contribution involving L R. This term can be taken into account by

replacing ho(R, q;) in Eq. (20) by

3/i
h o(R,q() + h ( (R,q; )

for the —, case and by

ho(R, q;)+ —h&(R, q;)

1+
for the —, case. This replacement for the —, case produces a significant reduction in the form factor and the

resulting spin flip probability.
It should be noted that (20) and (21) yield an expression for F„(R} which is unsymmetric with respect to ex-

change of c and c'. This asymmetry arises because we have only retained one (non-Hermitian) term (17b) of a
full (Hermitian) expression (17a). If the coupled-channel calculation using F„(R) is to yield a unitary S ma-

trix, then F„(R)must be Hermitian. Thus in the calculation whose result is presented in the next section, we

have replaced (20) and (21) by an expression symmetrized with respect to c and c'. This is equivalent to using

the interaction

13

—,', X lU,.(IR+q I }LR+LaU-(IR+q I)l's (22)

instead of (17b).

III. CALCULATION AND RESULTS

A. Spin-independent potentials

Our main interest here is in the probability P1
that the excitation of the 1.37 MeV 2+ level of Mg
is accompanied by a change in the sign of the com-

ponent of the ' C —, ground state spin perpendicu-

lar to the reaction plane (or equivalently the com-

ponent of the Mg spin is +1).
In this section we shall use spin-independent po-

tenti:ds so that the spin-flip probability P, arises en-

tirely from the inelastic excitation of the levels of

' C shown in Fig. 1. As explained in Sec. II, we

generated form factors for inelastic excitation by the
single folding of a deformed nucleon- Mg potential.
For this purpose we used the Becchetti-Greenlees
potential' listed in Table I; the spin-dependent parts
of this potential are to be ignored for present pur-
poses. One could also use the folded potentials to
describe the elastic scattering in a given state of the
' C+ Mg system. However, in order to minimize
uncertainties we decided to use the form factor from
our previous phenomenological analysis, i.e., the
scalar part of the deformed optical model potential
listed in Table I. We have not included reoricnta-
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TABLE I. Optical model parameters .

V
(MeV) (fm)

ag
(fm)

W„
(MeV) (fm)

a
(fm)

V„
(MeV)

8so~so rc
(fm) (fm) (fm) Pp

Nucleon- Mg
13C 24Mg

50.0
40.0

1.17
1.165

0.75
0.658 19.1 1.165 0.658

6.2 1.01 0.75
1.165

0.40
0.33

tion terms, i.e., nonscalar terms, in the elastic
scattering since the reorientation of Mg was
found to produce a negligible effect on the spin-flip
probability and the reorientation of ' C can only
enter when the spin s is greater than —,. The
strengths of the Coulomb form factors for inelastic
excitation were taken from the electromagnetic
data. "

Using these form factors we have carried out a
series of coupled channel calculations including
various combinations of the levels shown in Fig. 1.
The extraction of P& from the reaction amplitudes
was discussed in Ref. 6. Most of the calculations
were carried out with the code INcH, but we made a
few calculations with the code cHQRK (Ref. 14) and,
after some effort, obtained agreement between the
results for the spin-flip probability.

For brevity we shall use the notation (s„I,) in
which s, denotes the spin of the ' C projectile and I,
the spin of the Mg target. Thus, our calculations
always included the ( —, ,0+) and ( —, ,2+) levels,

i.e., ' C in its ground state with Mg in the ground
and first excited 2+ state. Various additional (s„I,)

combinations were considered which produce a
nonzero spin-flip probability. These additional com-
binations did not significantly affect the cross sec-
tions for ( —, ,0+) elastic scattering and ( —, ,2+)
target inelastic scattering. Our predictions are com-
pared with the data in Fig. 3. Note that we have
scaled the deformation of the potential which was
used to generate the inelastic form factors so that
the magnitude of the ( —, ,2+) cross section is ap-
proximately correct. The predicted shape is reason-
able, in fact a little better than obtained phenomeno-
logically in Ref. 6, although the fit to the ( —, ,0+)
elastic cross section is poorer. The probability Po of
populating the Mg 2+ level with component E'=0
perpendicular to the reaction plane was measured
to be 4.2+5.5% and 32.2+3.5%. Our calculations
give 41.7%, in fair agreement with the latter value.
We have not tried to vary the potentials to maximize
the agreement with the data since this is not expect-
ed to have a significant effect on the spin-flip proba-
bilities.

In Fig. 4 the dashed curve gives the spin-flip
probability P1 obtained by including, in addition to

100

50-
tO

E

C+ Mg

El b=55MeV
4ab

+~ 20—
1

~ ~

0.5—

b

0.1 I I I I

10 20 50' 40' 50'

c.m.

FIG. 3. Comparison of coupled channel cross sections
for elastic scattering and inelastic excitation of the 1.37
MeV 2+ level of 2 Mg with the data of Ref. 3.

the standard (—,0+) and ( —,2+) levels, the
1+ 2 2

( —, ,0+) combination. The dotted curve results
from including the ( —, ,2+) combination instead,
and it is comparable to the dashed curve. The spin-
flip probability is considerably enhanced by
coherently summing the amplitudes for the two
cases as indicated at three angles by the crosses.
However, this procedure underestimates the true re-
sult (full line) obtained by including both the1+ 1+
( —, ,0+ ) and ( —, ,2+ ) in a coupled-channel calcula-
tion. Thus it is important to couple both the 0+ and
2+ states of Mg with the various levels of ' C.
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More interesting, however, is the large magnitude of
the polarizations predicted (the vector polarization
perpendicular to the reaction plane, i.e., in the direc-
tion k; X k&). Similar features were observed for
the other excited states of ' C, whereas when ' C is
left in its —, ground state the polarization is
predicted to be much less than 0.1 in magnitude.
The origin of these large polarizations appears to be
quite general and model independent, as we now dis-
cuss.

First consider the channel coupling matrix ele-
ments of Eq. (6a)

F, , cc(1,100
I
1, 0)U(IjJj;;Ij, )

X((ss~')~ (lie')i, I
(s1)J(s&1 ) )1 (23)

Here we have suppressed phases and simply indi-
cated the dependence on the large angular momenta

l„ I, , j„and j, ; the other angular momenta are
small. In general several tensor combinations I, s,
and j may contribute to the matrix element and will
need to be discussed. Now applying the relations
given in the Appendix for the angular momentum
coupling coefficients, we have

F...~(I,I, [J j,)[j,—J]
I
j[j—; j,])(sl—[j, j,+1,——l, ][1,—1,] j[j; j,])—

X(ss, [j, j,+1,—1, ][1, —j, ] Is, [—1, j, l)d—lio, (24)

The reduced rotation matrix, d, vanishes unless (1+1,—1, ) is even.
In order to appreciate the significance of this result, consider a general reaction amplitude

g (1es.0V I Ice)(I.I%1 I
J[&+1J])ik. ..c c

jc Ic
Jm'

X (1,s, &'p'
Ij, [&'+p'] )(I j,K'[A, '+p']

I

J[E+p])V4ir I, Yi', (8,0)M, , (25)

Here e labels the entrance channel, c labels the exit channel, the quantity M is the transition matrix between
the coupled states, and x =(2x +1)' . The z axis has been chosen in the direction of the entrance channel
wave number k, and they axis in the direction k, X k, . The differential cross section is given by

g I ~K)l, ',xp I

K'p'
Kp,

(26)

Now if we rotate the coordinate system to one in which the z axis is in the direction k, )& k, , i.e., perpendicular
to the reaction plane, the reaction amplitude becomes

~K]'.Kp= ~ D-
IJ P ~ PP

PP
KK'

T

I ~ ~ S t4 ~ + Ic—,—,0 DKK —,—,0 D„',„, —,—,0 DK',K, —,—,0 WK.„-..K„-,
I

(27)

where we follow the phase conventions of Rose. ' Now using the approximate form for the Clebsch-Gordan
coefficients of (25) given in the Appendix and the standard asymptotic expression for the spherical harmonic,
we easily find

2lc
~ir'p', Kp= g

7T Sme
c c
c'lc'
Jn'

1/2 ~Jn
~ ~ ($ $ $ $ /, c+j — —jc —&I[1 +(&/2)]8+(m/4)I

C
c c Jc

&Ic+~c Ic' Jc' & f tlc'+(1/2)]8+(g /4) I ~

(2&)
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FIG. 7. Cross sections and polarizations for the inelas-
tic scattering of ' C on Mg leaving ' C in the 3.09 MeV

1 +
level and Mg in the 0+ ground state or 1.37 MeV 2+

level.
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We first examine the excitation of the ( —, ,0+) pair
so that the transferred angular momenta are
l =s =1 and j=0. Equation (24) has a maximum

1 . 1

magnitude for j,—l, =+ —, and j, —l, =+—, so that

l, —l, =+1. Since the Q value is negative, angular
momentum matching favors l, —l, positive. Thus,

1 . 1

we expect the j,—l, = ——, and j, —l, =+—, com-

ponents of spin to be preferentially populated, as in-

dicated by the simple vector diagram in Fig. 8(a).
This leads to a large negative polarization as shown
in Fig. 7. In this case the asymmetry, or vector
analyzing power, is of opposite sign and the same

1

magnitude. For general (s, ,0+) with s =s, + —,, the

magnitudes are only approximately equal, but the
same qualitative arguments apply. The application
of Eq. (24) to the excitation of (s, ,0+ ) with
s =s, ——, is shown in Fig. 8(b). We see that in this

case both the polarization and asymmetry are nega-
tive. This effect was observed for the excitation of

3 + +the ( —, ,0+) pair. These cases can be contrasted
with the target excitation to the ( —, ,2+) pair for
which s =0 and Eq. (24) does not favor any spin
direction for the projectile. The polarization is
therefore small.

The first term in the braces corresponds to near side
scattering and should dominate. We see that
(l, —j, ) and (j,—J) can be interpreted as the com-
ponents of s, and I, perpendicular to the reaction
plane and similarly for the primed quantities. The
second term corresponds to far side scattering and
will be smaller; in this case the components of s,
and I, reverse sign because the orbital angular
momentum reverses direction between the two sides
of the nucleus. Polarizations obtained with a simple
model for M have been discussed in Ref. 16.

With this interpretation of Eq. (28) we can use

Eq. (24) for V, , to get some idea of the favored
components of the spins (perpendicular to the re-

action plane). For this purpose we consider a one-

step inelastic excitation so that (s„I,)=(—, ,0+).

~c'

s )( cS ~iS I

c

(c)
FIG. 8. Schematic vector diagrams indicating, in vari-

ous cases, the preferred directions of the entrance and exit
channel angular momenta and the transferred angular
momenta. The z axis is in the direction k;)( k~, i.e., per-
pendicular to the reaction plane.
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1+
( —, ,2+) case. Here the transferred angular mo-

menta l, s, and j may be 1, 1 and 2 or 3, 1 and 2.
The latter should be favored since the Q value
prefers an angular momentum transfer of 3 units.
In this case Eq. (24) favors the orientation given in
Fig. 8(c). We thus find a large negative polarization
as shown in Fig. 7 and a large positive asymmetry
(not illustrated). Figure 7 shows that the polariza-
tion of the residual nucleus is predominantly nega-
tive as expected, although it is found to change sign
at 35'. The population of the 2+ level with z com-
ponent +1 is not favored by the simple model of
Fig. 8(c). The probability Pi is predicted to have a
peak value of 44%%uo and 8' and to fall to less than
10% beyond 15'. Note that in this case Bohr's
theorem indicates that the —, projectile and —,

17 1— 1 +

ejectile have the same spin component perpendicular
to the reaction plane. The same result is given by
Eq. (24).

Inelastic scattering does play a role of some signi-
ficance in generating the orientation dependence in
heavy ion reactions, but, at least in the present case,
this does not appear to be the whole story.
Stripping-pickup processes' ' can also contribute
and we hope to study this effect as well as an im-
proved treatment of the spin-dependent potential at
a later date. Any augmentation of the meager data
for ' C+ Mg would be highly desirable, as would
data bearing on the polarization phenomena we have
discussed.
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IV. CONCLUSIONS

We have studied the inelastic scattering of ' C on
Mg, allowing for the excitation of simple shell-

model configurations in ' C as well as the rotational
2+ in Mg (see Fig. 1). Our main aim was to calcu-
late the probability P] that Mg emerges in the 2+
state with component +1 along an axis perpendicu-
lar to the reaction plane (and ' C remains in its
ground state). Bohr's theorem' then ensures that
the ' C spin component has flipped sign.

The experiments of Refs. 3 and 4 gave
Pi ——1.67+0.52 and 1.0+0.5%, respectively, at 10'.
These can be compared with our calculated result
which was =0.1% regardless of whether spin
dependent potentials were included or not. This
value is not negligible in comparison to the data, but
it is too small. It should also be pointed out that
there are uncertainties in the calculation. Particu-
larly troublesome is the (unavoidable) procedure of
adding amplitudes from separate calculations and
the approximations with the spin-dependent poten-
tials.

It is worth noting that there is some recent work
in a similar vein. Nishioka et al. ' have studied
asymmetries for Li and Li incident on Ni. By al-
lowing inelastic excitation of the first excited level
in the lithium projectile, they were able to obtain
agreement with the data. Imanishi and von
Oertzen' have studied the ' C+' C system at very
low energy, allowing both inelastic excitation of ' C
and the transfer of a neutron between the nuclei.
They deduce an approximate spin-orbit potential for
the entrance channel which is of the same order as
required by the data.

APPENDIX: ASYMPTOTIC FORMS
FOR ANGULAR MOMENTUM RECOUPLING

COEFFICIENTS

Brussaard and Tolhoek and Edmonds ' have
given an approximate expression for Clebsch-
Gordan coefficients:

(Lsmt m,
~

Jmz)=d' z r (A 1)

U(abCD;eF) =(ab [F C][D F]
~
e [D —C—])—

(A2)

and

U(aBCd;EF) =5e+c,F+F . (A3)

Equation (A2) agrees with the result given by Alder
et al. within a factor of X/I; where
a =(2a+1)'~ and X and F form a triangle with a
small angular momentum z. Thus X/Y is of order

where d is a reduced rotation matrix and we use the
definition of Rose. ' The approximate equality
holds when L and J are large, but s is small; also the
z component mz must be small in comparison to J
in order that the argument of the reduced rotation
matrix can be approximated by ir /2

One can derive approximate relations for Racah
coefficients by expanding in terms of Clebsch-
Gordan coefficients, using Eq. (Al) and the stand-
ard properties of rotation matrices. The notation
throughout is that upper case letters refer to large
angular momenta and lower case letters refer to
small angular momenta. We obtain for unitary Ra-
cah coefficients
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unity. To similar accuracy Eq. (A3) may be ob-
tained from Eq. (A2.2) of Edmonds ' (or the
equivalent formula of Alder et al. ) by setting his J
small in comparison to his J~ and J2.

Equation (A3) also follows from Eq. (2.11) of
Ponzano and Regge, where it is seen that there is a
factor of (2R) ~

+ ~, R being of the order of
one of the large angular momenta. Thus in Eq. (A3)
we have selected only the leading order case. Ponza-
no and Regge have discussed a geometrical interpre-
tation of a Racah coefficient in terms of a tetrahed-

ron. The condition here that 8+C =E+I' is the
condition that the tetrahedron does not become "hy-

perflat, " i.e., have an imaginary volume, in which

case the magnitude of the Racah coefficient is di-

minished.
Now for unitary 9-j symbols we have expanded in

terms of 6-j symbols, used Eqs. (A2) and (A3), and
obtained the following results:

((~b) (dE)F
~
(~d)g(bE)H )I

=(ad [H I +F—E][E F—] ~ g [H——I])
&&(ab [H I+F E][E—H—] ~

c[F——I])
(A4)

and

((aB)c(De)F ( (aD) G (Be)H );

~C+G, B+D~C+G,F+H .

Depending on how the 9-j symbol is expanded,
Eq. (A4) may be derived by using Eq. (A2) twice to-
gether with either Eq. (A3) or the standard proper-
ties of Racah and Clebsch-Gordan coefficients.
Similarly Eq. (A5) may be derived either by using
Eq. (A3) three times or by using Eq. (A2) twice and
Eq. (A3) once. Thus the approximations (A2)—(A5)
are consistent, which is reasonable since they are all
based on Eq. (Al).

In the derivation of Eqs. (A2)—(A5) we have as-
sumed that all the triangle conditions are obeyed,
otherwise the Racah coefficient or 9-j symbol van-
ishes. %e have considered those well-known sym-
metry relations which interchange small angular

TABLE II. Comparison of exact and approximate
values for 9-j symbols.

Exact value Approximate value

23
22
23
21
22
23

((ii),(222),2l(12)„1122)r)p4
0.296

—0.0416
—0.690

0.00237
0.0627
0.657

0.316
0

—0.707
0
0
0.632

23
23
24
23
24
25

((120)2((24 2)221 (1 24) r(202)22)„
1.000

—0.994
0.0657
0.985

—0.103
0.00410

1

—1

0
1

0
0

momenta among themselves and large angular mo-
menta among themselves in Eqs. (A2}—(A5). We
find that the symmetry relations are obeyed by our
approximate expressions either exactly or to within a
factor or factors of the type X/Y, where X and Y
form a triangle with a small angular momentum z.
Sum rules are also obeyed to similar accuracy pro-
vided that the angular momentum summed cannot
take both large and small values. Again the same
level of accuracy is obtained if one sets one (two) of
the sma11 angular momenta to zero in our approxi-
mate expressions for Racah coefficients (9-j sym-
bols}. Finally we note that the 9-j symbol of Eq.
(A4) vanishes if d =g, E =H, F=I, and
( —1)'+ + = —1; this condition is embodied in the
second Clebsch-Gordan coefficient of our approxi-
mate expression.

In order to give some indication of the accuracy
of these formulae, we compare in Table II the exact
values for some arbitrarily chosen unitary 9-j sym-
bols with the approximate results of Eq. (A4) or
(A5). It is clear that the accuracy is sufficient for
qualitative and semiquantitative discussion.
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