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The Chandler-Gibson S-body scattering formalism is shown to be related to the one of
Baer, Kouri, Levin, and Tobocman in that both are the result of selecting a set of
Lippmann-Schwinger equations to serve as a set of simultaneous coupled integral equations

for all the elements in a row or column of the transition operator matrix. The Sacr, Kouri,
Levin, and Tobocman choice has the advantage that the equations decouple on iteration to
give a set of uncoupled connected kernel equations whereas the Chandler-Gibson choice has

the advantage of coupling the partitions in a symmetrical manner. This might cause the

Chandler-Gibson formalism to be less sensitive than the Baer, Kouri, Levin, and Tobocman

formalism to truncations on the spectrum of allowed intermediate virtual states. The
Chandler-Gibson formalism is shown to be consistent with unitarity provided the coupling

scheme includes all open channels. An alternative method for introducing projectors into

the Chandler-Gibson formalism is suggested as a method for generating connected kernel

equations. The Chandler-Gibson wave function equations are derived and compared to the

coupled reaction channels equations. Finally, we show that like the Baer, Kouri, Levin, and

Tobocman equations, the Chandler-Gibson equations decouple and, in fact, reduce to a sin-

gle wave operator equation of particularly simple form.

NUCLEAR REACTIONS Chandler-Gibson N-body formalism-
unitarity, kernel connectivity, introduction of projection operators, wave

function equations, decoupling, comparison with CRC and BKLT for-
malism s.

I. INTRODUCTION

The Chandler-Gibson (CG) formalism' for N-

body scattering has the attractive property that it
couples channels belonging to different partitions in
a symmetric manner that appears very physical.
The Baer, Kouri, Levin, and Tobocman (BKLT)
N-body scattering formalism, on the other hand, has
a sequential partition coupling scheme which seems
most unphysical. This suggests that the CG equa-
tions might respond better than the BKLT equa-
tions to an approximate treatment employing a trun-
cated set of basis states.

En contrast to the BKLT equations, the CG in-
tegral equations are not of the connected kernel

type, and this has discouraged interest in the CG
equations. However, there have been some recent
developments that suggest that kernel connectivity is
after all not crucial to the usefulness of a set of cou-
pled integral equations. Therefore, we believe
renewed interest in the CG formalism is warranted.
This has motivated the present reexamination of the
CG formalism.

Connectivity is a necessary condition for com-
pactness, and compactness is sufficient for the valid-

ity of the Fredholm alternative. Validity of the
Fredholm alternative would guarantee the conver-

gence of a discrete basis expansion that converts the
set of linear integral equations into a set of linear

algebraic equations.
In a recent publication Kuruoglu and Levin test-

ed the accuracy of an I. discretization approxima-
tion for solving dynamical integral equation sets for
the scattering of a symmetric three-body system.
They found that the (nonconnected kernel) coupled
reaction channel (CRC) equations worked better
than any of the several connected kernel formalisms
that were tested. The CRC formalism does not gen-
eralize in a simp/e way to a formally exact set of in-

tegral equations for the general N-body system.
However, the CG formalism is a formally exact set
of N-body equations which embody a symmetric
coupling scheme similar to that of the CRC treat-
ment.

The method of Kuruoglu and Levin could be ap-
plied directly to the CG equations. However, there
is another method which may prove to be more
powerful. That is the method which Byre and Os-
born tested with good results on a three-body sys-
tem. Although they used the connected kernel
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Karlsson-Zeiger equations, the fact that the method
worked very well at a very low level of approxima-
tion seems to suggest that the kernel connectivity
was not a significant factor. This method uses a
Feshbach projection method to introduce a cluster
expansion to force the equations into connected
form. In addition, there is a set of nonconnected
kernel equations for the effective interactions. How-
ever, these latter equations prove to be amenable to
solution by a few terms of the Neumann series.

%e show how the Feshbach projection operator
scheme used by Eyre and Osborn can be applied to
the CG coupling scheme to get a modified form of
the CG equations. This set of equations would then
provide a basis for extending the Eyre and Osborn
scheme to the general X-body problem.

We also discuss the question uf decoupling the
CG equations so that one is required to solve only a
single integral equation rather than, rV coupled
equations, where M is the number of partitions.
This can be of great practical importance in numeri-
cal calculations. In a discrete basis treatment it
reduces the dimension of the matrices to be inverted

by a factor of M. Ordinarily, the decoupling is
achieved by iterating the coupled equations. Thus,
when the BKLT equations are decoupled, the kernel
of the resulting equation is the product of the ker-
nels of all the original coupled equations. This is a
reflection of the sequential coupling scheme that is
characteristic of the BKLT formalism. On the oth-
er hand, the CG equations can be decoupled without
resorting to iteration. The kernel of the resulting
single equation is simply the sum of the kernels of
the ~ original equations. This reflects the sym-
metric coupling of the CG formalism.

In Sec. II we show how the CG equations are de-
rived from an appropriate coupling scheme. Verifi-
cation of consistency with the unitarity constraint is
done in Sec. III, and in Sec. IV we discuss the re-
striction of dynamical development to truncated
channel subspaces in the CG formalism. Section V
is devoted to the application of the Feshbach projec-
tion operator formalism to the special case CG
equations. In Sec. VI the CG wave function equa-
tions are derived and compared to the coupled reac-
tion channels equations. The CG equations are
decoupled and reduced to a single dynamical equa-
tion in Sec. VII. A summary and a discussion of the
results are given in Sec. VIII.

II. COUPI. ING SCHEME FOR THE
CHANDLER-GIBSON (CG) EQUATIONS

%e consider a system of X distinguishable parti-
cles interacting with each other via short range po-
tentials. Let the lower case Greek letters label the

Gp= lim (E+ie Hp)—
a~0

is the partition P Green's function operator.
The relationship used to get Eq. (4), namely,

Gp
' ——8 '+ Vp,

is the equivalent of the resolvent relation

3' =Gp +Gp Vp Ã =Gp+ 9' Vp Gp .

The Lippmann-Schwinger (LS) N-particle equations
result from combining Eqs. (2) and (4).

Tp = V~+ VpGrGr '9'V~

=V +VpGyTy~ . (g)

A coupling scheme is defined by the representa-
tion of the residual interaction as a partition sum.

Vp= gvpr (9)

The associated set of dynamical equations is the re-
sult of combining Eqs. (9), (4), and (2).

Tp = V + g vprGrGr '8 V
y

= V + gvp&G&T& (10)

different ways of partitioning these particles into
two groups or clusters. Then associated with each
such partition a is a division of the Hamiltonian for
the system into two terms.

H=H +V~.
Here H, the kinetic energy plus the intracluster in-
teraction potentials, is called the partition Hamil-
tonian for partition a. The term V, the partition a
residual interaction, is the sum of the intercluster in-
teraction potentials for partition a.

The elements of the prior form of the transition
operator matrix are

Tp, ——V~ + Vp 9V~, (2)

where

9'= lim (E+ie H)—
e—+0

and E is the energy of the system. 9 is the system
Green's function operator. Alternatively, this ex-
pression may be written

'rp~ ——(1+Vp 9 ) V~ = ( 9 '+ Vp )9V~

=Gp '9' V~, (4)

where
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To get the BKLT equations one uses the coupling
scheme

Vp ——g Vp5r p~),
y

with the result

Banach space, then the inverse of M must be de-
fined on that part of the Banach space which is
spanned by M. The resulting set of equations must
then be regarded as approximate, since Eq. (17) is
not rigorously satisfied.

Tp ——V~+ VpGp+)Tp+)~ . (12)
III. UNITARITY OF THE

CHANDLER-GIBSON EQUATIONS
This is seen to be just the set of LS equations which
sequentially couple the elements of a given column
of the transition operator matrix.

We use an approach to the CG equations which is
due to Polyzou. The coupling scheme that pro-
duces one version of the CG equations is just

Vp=~ 'g Vp,
y

(13)

Vp
——VpM 'QPr,

r
(16)

or equivalently from the following resolution of the
identity,

(17)

where P' is just the number of two-cluster parti-
tions. Combining Eqs. (13), (4), and (2) gives

Tp =V~+VpM 'QGrGr '9'V~
y

= V~ + Vp M ' g Gr Tr~ .
r

We will call these the special Chandler-Gibson
(SCG) equations. This equation can be derived from
Eq. (8) by summing both sides on y and dividing by
M. Thus these CG equations are simply a selection
of LS equations, as are the BKLT equations, but in
each case the selection is different. The BKLT
equations have the advantage that they decouple
upon iteration to yield connected kernel integral
equations for each element of the transition operator
matrix. The SCG equations have the advantage that
they couple the channels in a symmetric manner.

The above version of the CG equations is a special
case of the following set of equations:

Tp = V~ + Vp M ' g Pr Gr Tr~ . (1S)
y

These result from the coupling scheme

Tp ——Vp+ Vp8' V~ = Vp/G~

= Vp —V~+Gp '9 V~ . (19)

This is then combined with the partition coupling
scheme of Eq. (16)

Tp ——VpM 'QPrGr I Gr '+Gr '9 V~ I
r

= Vp
m-' Q P„Gr I 6„'+V V, + T, )—

= VpM ' QPrGr I G~ '+Tr~j . (20)

Equation (20) is related to Eq. (15) the same way as
the post Kouri-Levin BKLT equation is related to
the prior Baer-Kouri BKLT equation.

Next we define the auxiliary transition operator
matrix t.

P

tp = VpM 'P~+ VpM 'QPrGrtr~ .
r

(21)

This is related to the transition operator matrix T by

We next address the question of whether the solu-
tion of the CG equations is constrained to fulfill the
requirement that the collision matrix be unitary.
This is not an empty exercise since Benoist-Gueutal
has given an example of an LS equation which is not
consistent with that constraint. The consistency of
the solution of the BKLT equations with unitarity
has been established by Kouri and Levin and by
Benoist-Gueutal. ' Our discussion will be similar to
theirs except that it will be simplified by making a
unique assignment of each channel to a particular
partition Green's function operator.

Our first step will be the introduction of an alter-
native form of the CG equations more suitable to
our purpose. We start with the post form of the
transition operator matrix

y

Here Py is a projection operator, and evidently,
Tp g tpr Gr G ~

y

(22)

y

(18) For convenience we introduce (partition space) ma-
trix notation.

The special case represented by Eq. (14) corresponds
to replacing each projector Pr by the identity. If the
sum on the right of Eq. (18) does not span the entire

t = VUM-'P+ VU&i'-'PGt,

T =tGUG

(21a)

(22a)
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where P, G, and V are diagonal matrices, M ' is a
scalar, and U is the units matrix.

[U]ap ——1 (all a,P) . (23)

The complex conjugate of the auxiliary T-matrix
operator is the solution of

t*=VUM 'P + VUM 'PG~t*

conclude that the CG equations do satisfy unitarity.
The above conclusion requires one qualification.

One must remember that the projector P~ is implicit
as a final factor in the definition of tpa. Thus the
sum in Eq. (29) includes only those channels which
are contained in the projectors {PrI. Therefore the
unitarity sum will be complete only if the set of pro-
jectors {P&I contains all the open channels.

=(1+t'G')VUM 'P .

Now combine Eqs. (21a) and (24).

(24)
IV. ROLE OF THE

PROJECTION OPERATORS

t =(1+t*G')VUM 'P(1+Gt) —t'G*t

=t'+t*(G —G')t . (25)

Matrix elements of the elements of t with respect to
asymptotic states are then

&6» Itp. —tp. Ik..&

= g (ppb I tpr(Gr Gr*)tr —
I pa, ), (26)

y

where the Latin subscripts are channel indices and

What sets the CG N-particle scattering formalism
apart from all others is the manner in which the
projectors are introduced. In principle, the projec-
tors Pz that appear in Eqs. (15)—(18) are arbitrary.
The explicit construction of the inverse of M (called
JJa by Chandler and Gibson) might be done in the
following way: by introducing a convenient discrete
basis I I

m)] for the Banach space. These states
might be products of single particle harmonic oscil-

(No)lator states. Then we can form the matrix M
with elements

(E H)$, =—0 . (27)

The partition Green's function operators have the
property

Gr —Gz —— 2mi5 (E— H. r)—
~ „'=g(m IP, In)

=[M ' ] „(m,n &No) . (33)

=-2 X'I~,.&&~,.l,
c6y

(28) The dimension of this matrix is labeled No. Then
we have

where the prime on the sum over channels c indi-
cates that orily open channels are to be included.
Combining Eqs. (26) and (28) then gives

lim M (No)

No —+ oo

(34a)

M ba
—M b = 27ri g g—M b A

y cEy

where

~ ba —(NP» I tPa I 4aa & ~

(29)

(30)

m=1 n=1

and, accordingly,

lim M
No —+ ao

(34b)

(35a)

and we have used the fact that the channel state
wave functions ppb can be chosen real.

Observe next that by virtue of the Lippmann
identity

~ b. = &4P» I X tPrGrG

=&~p»I T~I~..&, (31)

P'=1 2miw, — (32)

when the symmetry of a is taken into account. We

so that a is the transition matrix. Thus Eq. (29)
just expresses the unitarity of the collision matrix

o No=g g Im)[~ ' ]„(nI.
m =1n=1

(35b)

(No) —1

(36)

Next let us consider the sort of projectors one
would want to use. Consider the resolution of the
identity in terms of the partition asymptotic states,

In practice, we expect that if M does not span the
entire Banach space, then there will be an upper lim-

it Np for Np above which M ' does not exist.
Then one would have to be content with the approx-
imation
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that is to say, in terms of the eigenstates of Hr.

1= X I 4r & &0r. I
.

C6y
(37)

The sum on c is understood to include an integral on
energy. There will be additional integrals for the re-
lative motion kinetic energies in those channels c
describing three or more clusters, i.e., the breakup
channels.

In any practical calculation for a complex system
a reasonable approximation would be to neglect
transitions to virtual intermediate states Pr, which
are far from the energy shell or which have a very
different structure from that in the incident channel.
Thus in the dynamical equations one would replace
the partition Green's function operators Gr by
Py Gy, where

(38)
cGy

and where the double prime indicates that the sum
on channels has been truncated in some suitable
way.

This represents an approximation. However, the
CG coupling scheme permits the introduction of the
normahzation operator M ' which mitigates to a
certain extent the harm caused by the introduction
of the projection operators. Indeed, if the projection
operators span the Banach space, then the presence
of M ' compensates entirely for the intermediate
state contributions suppressed by the projection
operators.

Thus it appears that the CG formalism is less
sensitive to truncations of the spectrum of allowed
intermediate virtual states than is the BKLT scatter-
ing formalism. The cost paid for this, dynamical in-
tegral equations with disconnected kernels, is very
high. Some hope in this regard is provided by a
connected kernel formalism by Polyzou, Gibson,
and Chandler" which is a modification of the CG
formalism.

An alternative method for compensating for the
deletions caused by the introduction of projection
operators is provided by the Feshbach projection
operator method. This will be discussed in the next
section.

V. APPLICATION OF THE
FESHBACH PROJECTION OPERATOR METHOD

TO THE COUPLED EQUATIONS FORMALISM

The Feshbach projection operator method has
been applied to the BKLT formalism by Goldflam
and Tobocman. ' We will now consider the applica-
tion of this method to the SCG equations to produce
a formally exact alternative to the CG equations.
We expect that these alternative Chandler-Gibson

(ACG) equations will provide a practical basis for
calculations.

The SCG equations displayed in Eqs. (14) and (20)
(with M and Pr set equal to ~ and 1, respectively)
can be written in the form

Tp Mp——,+ g Vp WprGr Tr~ . (39)

Let us use matrix notation and write this equation as

T =M + VS'GT, (40)

where V and G are diagonal matrices in partition
space. In Eq. (40) the elements of the matrix W are

W~ p=M ' (SCG) .

By changing to

W~p=5~ p ) (BKLT),

(41)

(42)

and making the appropriate change in the definition
of M, we can convert Eq. (40) from SCG to BKLT.

To apply the Feshbach projection operator for-
malism we introduce the complementary projection
operator matrices P and Q.

P+Q=1,
P=P, Q=Q,
Q p=~ pQp

These are then inserted into Eq. (40).

T=M + VWG (P +Q) T

=L +F8'GPT,

where

L =(1—VWGQ) 'M

=M+ VWGQL

and

F=(1—VWGQ) ' V

= V+ VWGQE .

(43a)

(43b)

(43c)

(44)

(45)

(46)

Equations (44)—(46) constitute what we will call
the alternative Chandler-Gibson formalism. They
are formally exact. By making the projectors Pr
sufficiently restrictive we can force the kernel of Eq.
(44) to be connected. Then Eq. (44) can be solved
for T by conventional methods.

Of course, Eqs. (45) and (46) must be solved to
provide the input for Eq. (44), and these equations
do not have connected kernels. However, it should
be possible to endow Py with sufficient strength so
that Qr Vr is a relatively weak interaction. Then in-
stead of solving Eqs. (45) and (46) we can get ade-
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quate representations of the solutions from the first
few terms of the iteration series.

VI. WAVE FUNCTION EQUATIONS
FOR THE CHANDLER-GIBSON FORMALISM

Hahn, Kouri, and Levin' have shown how the
BKLT equations may be transformed into a set of
coupled equations for the components of the scatter-
ing wave function. We will do the same for the CG
equations. Our purpose is to compare these equa-
tions with those of the coupled reaction channels
(CRC) formalism. The two should be closely related
because both have a symmetric partition coupling
scheme.

We start with Eq. (20) written in matrix notation

T = VS'GUG '+ V8'GT, (49a)

W =m-'UP .

Next the wave functions are defined by

T@b= WV4!b

l@b]a 8apkpb ~

(49b)

(soa)

(50b)

L =M+ VWGQM+ VWGQVWGQM+
(47)

F= V+ VWGQV+ VWGQVWGQV+
(48}

Thus the ACG formalism appears to be a basis
for practical few-body scattering calculations which
has the advantage of coupling the partitions in a
symmetrical manner.

A comparison of the CG formalism and the Fesh-
bach formalism has been given by Chandler and
Gibson. ' The Feshbach formalism discussed there
is the standard one that results from applying the
Feshbach projection operator method to the
Lippmann-Schwinger equations. The ACG formal-
ism introduced here is produced by applying the
Feshbach projection operator method to the SCG
equations. Thus these two formalisms are based on
different coupling schemes.

In contrast to the BKLT case where the coupling is
sequential, the coupling here is symmetric. For the
special case CG equations where M =M and Pz ——1,
Eq. (51) is recognized as the Lippmann-Schwinger
N-body equations for the scattering wave function

i+bi a Cab ~ (52a)

Pb Cab itPb Pyb (52b)

= Va + Q Tay Gy Py M '
Vp .

y

In matrix notation this is

T = VU+ TGS'V,

8 =PUm-'.

(53}

(54a)

(54b)

We now substitute the formal solution of Eq. (54a)
into Eq. (50a).

VW%'b = VU(1 —GWV)

= VPUM '%'b .

Finally, let us define

U:-b ——PUM

Then from Eq. (55) we will have

-b = (1 GWV) —4b

=4b+GS'V:-b .

In component form this reads

(55)

(56)

(57a}

Cab 8aPNPb+Ga Pa ~ P Vykyb ~ (57b)

Thus we have not found anything very novel, but we
have confirmed the identity of the scattering wave
function vector %b

To proceed further we introduce an alternative
version of the CG equations.

Tap = V + Va 9' Vp = Va 9' G p

=V.+ g V. uG, -'G„P„~-'Vp
y=1

where %b is the scattering wave function vector and
4b is the asymptotic state corresponding to incident
flux in channel b belonging to partition P. Then
substitution of Eq. (50) into Eq. (49) gives

By virtue of Eqs. (50a), (55), and (56) one finds

TC'b = VU=b (58a)

%b ——GUG '4b+ GVS'4'b .
In component notation this is just

(5 la) or

~aPNPb = Va g kyb (58b)

gab GaGP PPb+—G—aVaM ' g Pygyb .
y=i

(51b)

Equations (57) and (58) constitute the CG wave
function formalism. Let us examine the special case
where M =M and P& ——1.
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Pab =5aPNPb+Ga M g Vykyb .

The associated integrodifferential equation is

(E H—}g b M—— ' g Vygyb .
y=1

Summing both sides of Eq. (60) on a produces

0= g (E Ha ——Va)gab
a=1

=(E H) g—gab,
a=1

(59}

(60)

(61)

equations. Start with the BKLT equation (12) and
iterate it once. The result is

Tpa ——Va + VpGp+1Va

+ VpGp+1 Vp+1Gp+2Tp+2, a . (65)

Suppose there are M two-cluster partitions possible
for the system. Then partition P+~ will again be
partition P. Thus by iterating Eq. (12)~—1 times
we will succeed in finding a decoupled equation for
Tpa o

Tpa ——Mpa +Np Gp Tpa, (66a)

Mpa =(1+VpGp+i+ VpGp+i Vp+iGp+2+

(E Ha}gg—yb
——Va g gyb

r y

by just recombining terms.

(62)

(E Ha )gab =—Q ( Va —(1—5ay)(E Ha ) I gyb .—
r

(63)

Comparing Eqs. (60) and (63) shows that

i g Vy gyb Q I V ——(1 5y )(E—H— ) j gyb .—

We see that the CRC nonorthogonality terms
(1—5 y)(E H) are abse—nt from the SCG equa-
tions. We also see that the coupling is different with

Vy in place of Va. Evidently, the reduction in cou-
pling strength caused by the factor M ' is in some
way equivalent to the subtraction of strength due to
the nonorthogonality terms.

VII. DECOUPLING OF CG
COUPLED EQUATIONS

The BKLT N body equation-s for the transition
operators have the remarkable property that they be-
come decoupled upon iteration. The result is an in-
tegral equation for each element of the transition
operator matrix. We will show that the CG equa-
tions can be also decoupled. This property can be of
great practical importance as it reduces the difficul-
ty of numerical solution. This is because one needs
only solve a single integral equation instead of a set
of coupled integral equations.

Let us first review the decoupling of the BKLT

which demonstrates that gg b is equal to the
scattering wave function. This could have been
found directly from Eq. (56) in the special case of
m=M and Pr =1.

Now let us compare our result with the coupled
reaction channels (CRC) equations. These are de-
rived directly from the Schrodinger equation

+ VpGp+1Vp+i Gp —2Vp —2Gp —1}Va

Np ——VpGp+1Vp+1. Gp 2Vp 2Gp 1Vp

(66b)

(66c)

It has been pointed out by Bencze' that any cou-
pled equations scattering formalism can be decou-
pled with the help of the LS N-body equations. Let
us use his method to decouple the CG equations
shown in Eq. (15). In that equation we substitute
for each transition operator Tya that appears in
the sum the expression for Tya in terms of Tp pro-
vided by the LS X-body equations.

Tya ——Va+ VyGpTpa . (67)

The result is a decoupled CG equation for Tp .

Tpa ——Mp, +NpGp Tp (68a)

Mp = 1+VpM 'QPyGy Va,
y

(68b)

Np = Vp M ' g Py Gy Vy .
y

This result can be put in simpler form by setting

Tp ——ZpVa .

(68c)

(69a)

Then Zp is the solution of

Zp ——Rp+/p GpZp,

where

Rp ——1+Vp M ' Q Py Gy .
y

(69b)

(69c)

Thus one integral equation needs to be solved for
each row of the transition operator matrix.

We will now present an alternative method for
decoupling the CG equations. The resulting integral
equation will have a simpler kernel than the one just
derived. In addition, the solution can be used direct-
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ly to calculate every element of the transition opera-
tor matrix.

We start again with the CG equations shown in
Eq. (15). Define the auxiliary quantity r~~ as the
solution of

Now introduce the Feshbach projectors

0=1+K(P+Q)Q
=Qg+ QgKPQ, (78a)

vp =VpM '+V@M 'QPrGrrr, .
y

In matrix notation, Eqs. (15) and (70) read

T= UV+ Vm-'UPGT,

7 = VM 'U+ VM 'UPG~

= Vm-'U+~PGVm-'U .

Now combine Eqs. (71) and (72) as follows:

T=(1+rPG)( UV+ VM 'UPGT) rPGT—

= UV+~PGUV .

(70)

(71)

(72)

(73)

where

Ag ——(1—KQ)

=1+KQQg . (78b)

Q~ =1+KQ+(KQ)'+ ~ ~ (79)

is rapidly convergent.
A convenient expression for evaluating the wave

operator Q is provided by

The idea is to choose the projector P so that it is res-
trictive enough so that the kernel KP is a connected
operator and yet inclusive enough so that KQ is suf-
ficiently weak so that the power series for Q&,

Thus T can be expressed in terms of r.
From Eq. (70) we can see that r has the form

zp ——Vp M 'Q,

where

(74a)

0 =Lg +Np +Lg QKPNp+NpPKQLg

+Lg QKPNpPKQLg

where

(80a)

II =1+g Pr Gr V„M '0
y and

Np ——(1 PKP PK—QLg Q—KP) 'P (80b)

1 —gPGV M
y

(74b)

Combining Eqs. (73) and (74) gives

Tp ——V~+ VpM '0QPrGr &~ .
y

(75)

This gives all the transition operators in terms of the
single wave operator Q. Alternatively, we can write

Tp ——V + VpQM 'QPrGr V~,
y

where

0=1+KQ=(1—K) '

and

(76a)

(76b)

K =M ' g Pr Gr Vy . (76c)
y

Equation (76) is the alternative decoupled dynam-
ical equation for the CG X-body formalism. Thus
we have done more than decouple the CG equations;
we have reduced them to just a single equation.
This equation can be easily transformed into the ver-
sion corresponding to the ACG formalism intro-
duced in Sec. V. For the case where all the Py's are
equal to the identity, Eq. (76c) becomes

K=m 'QG„V, . -
y

Lg ——(1—QKQ) 'Q . (80c)

Here we would have a presumably connected kernel
integral equation for Np to solve in P space and a
power series for L~ to sum in Q space.

The fact that only a single dynamical equation
needs to be solved in the CG formalism does not
really distinguish it very much from the BKLT
scattering formalism. Once any element of a given
row of the transition operator matrix has been calcu-
lated, any other element of that row can be calculat-
ed by quadrature by means of the Lippmann-
Schwinger X-body equations. Then using the ele-
ments of that row the elements in all other rows can
be calculated from the Lippmann-Schwinger equa-
tions by quadrature.

VIII. SUMMARY AND DISCUSSION
Using the conventional single Hilbert space for-

mulation of scattering theory we have shown how
the Chandler-Gibson (CG) many-body scattering
theory and the Baer, Kouri, Levin, and Tobocman
(BKLT) scattering theory are related to each other.
The dynamical equations of the two formalisms
have the same structure, differing only in the parti-
tion coupling scheme used. Thus the consistency of
the CG equations with the unitarity constraint could
be demonstrated by the same analysis that had been
used for the BKLT equations.
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T~p = V~ SGp '= V~ g p, (81)

Eq. (20) can be written to read

g p
——M 'QPrGr[Gp '+ Vrg pj . (82)

y

Thus the kernel is M 'g PrG&Vr. For the case
where all the P&'s are two-cluster projectors this will
be a connected operator.

It is not unreasonable to expect that connected
operators of this type would be representable by a
discrete basis. As a matter of fact, discrete basis
BKLT calculations using projection operators of
this sort have had some success. '

We believe that the symmetric partition coupling
scheme of the CG formalism may prove to be of
great calculational importance. Recent numerical
tests of the BKLT equations on a three body system
by Tobocman' and by Kuruoglu and Levin have
found that the discrete basis method is poorly con-
verging for scattering states. On the other hand,
Kuruoglu and Levin have found that this method
converges much more rapidly when applied to the
coupled reaction channels (CRC) equations.

Like the CG equations, the CRC equations have
symmetric partition coupling. This may be the key
to the success of Kuruoglu and Levin's CRC calcu-
lation and would therefore augur well for discrete
basis calculations using the CG equations. It seems
likely that in the dynamical development of the
symmetric three-body system considered by Kuruo-
glu and Levin, intermediate state transitions should
follow a symmetric pattern that would be more easi-

ly reproduced by equations that make this explicit.
We have discussed the introduction of projection

operators into the SCG equations to get the CG
equations and the role of the normalization operator

' in compensating for the resultant deletions.
We have indicated how the operator M ' mould be
constructed in a discrete basis calculation.

The use of a discrete basis transforms the Banach
space into a Hilbert space. One might well question
the efficacy of such a basis for representing the non-
compact operators appearing in the CG equations.
However, the sort of projection operators
P~,Pp, . . . , one would want to use would most like-
ly be ones that restrict the wave function to particu-
lar two-cluster configurations of the partition in
question. Now consider the consequences of this
fact for CG equations of the type shown in Eq. (20).
By virtue of the fact that

In discussing their many-body scattering formal-
ism, Chandler and Gibson have attached special sig-
nificance to the role played by the projection opera-
tors in restricting the region of Banach space in
which the transition operators must be determined.
We agree that the restriction thus imposed on inter-
mediate state propagation ean be very helpful in
practical calculations, but we observe that the nor-
malization operator M ' may not be able to com-
pensate for these deletions if they are too severe.

The Feshbach projection operator method has
been suggested here as an alternative to the normali-
zation operator as a way to compensate for the in-
troduction of projection operators into the formally
exact SCG equations. The advantage of the Fesh-
bach method is that the corrections to the driving
term, L —M in Eq. (44), and the corrections to the
kernel interaction factor, F V in E—q. (44), carry
contributions from the regions of Banach space ex-
cluded by the projectors P,Pp, . . . . Such contribu-
tions cannot be picked up by the CG normalization
operator M ' if they are excluded by all the projec-
tors.

The CG wave function equations are derived and
compared to the CRC wave function equations.
Like the BKLT equations, the CG equations have
no nonorthogonality terms. Like the CRC equa-
tions, they have a symmetric partition coupling
scheme.

Finally, we have compared the decoupling of the
CG equations with that of the BKLT equations.
That is, we have shown how the set of coupled in-

tegral equations can be replaced by a single integral
equation. The resultant BKLT integral equation has
a connected kernel while the CG one does not. We
have pointed out how projection operators can be
used to overcome this difficulty for the CG equa-
tions.

The decoupled BKLT equation results from itera-
tion of the BKLT equations. On the other hand, no
iterations are required to get the decoupled CG
equation. This fact suggests that it may be possible
to show that the solution of this equation is unique
and free of the possibility of spurious solutions that
exists for the decoupled BKLT equation. '
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