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A detailed analysis of the extension of the Barshay-Temmer theorem to reaction product
pairs that are members of the same SU(4) multiplet (Wigner supermultiplet) is presented.
Nonzero values of the total orbital angular momentum within fragments in the presence of
residual spin orbit splitting is shown to destroy symmetry of the reaction products around
90° except in a sum rule sense. Departures from reaction symmetry are related to the SU(4)
breaking parameter in the effective nucleon-nucleon potential and it is shown that the asym-
metry should decrease with increasing 4. A comparison of the *He(p,?H)2p and °Be(°H,
®He)’Li angular distributions illustrates this point. Finally, a prediction is made for the ra-
tio of analyzing powers for the *He+°Li and *He+ SLi*(3.56) final states.

NUCLEAR REACTIONS Antisymmetric scattering theory. Symmetry
around 90° of o(8) for a(b,c)c’ reactions derived for SU(4) invariant po-
tentials. Angular symmetry breakdown related to size of SU(4) breaking

potential through DWBA.

Discussion of Help,d)2p,

9Be(t,5He)®Li(°Li*), and *Be( t,°He)®Li(°Li*) reactions.

I. INTRODUCTION

The differential cross section for producing a pair
of identical particles in a reaction must be sym-
metric around 90° because the particles are indistin-
guishable. Even in the reaction b(a,c)c’, where ¢
and ¢’ are not identical but are members of the same
isospin multiplet, Barshay and Temmer' proved that
symmetry around 90° of the final fragments is to be
expected provided that isospin is conserved by nu-
clear forces and that a unique value of isospin is
present in the initial channel. Examples of such re-
actions where a high degree of symmetry around 90°
has been observed are *He(*H,’H)’He (Ref. 2) and
Be(*H,*He)’Li* (3.56) (Ref. 3). Using arguments
similar to those of Barshay and Temmer, Simonius*
- showed that in the latter reaction one should expect
an analyzing power that is antisymmetric around
90°. Experiment’ is in accord with this expectation.

Robson and Richter® generalized the arguments
further and pointed out that cross sections sym-

27

metric around 90° are to be expected whenever the
final fragments ¢ and ¢’ are related by raising and
lowering operators constructed from generators of a
group which commutes with the nuclear Hamiltoni-
an. The group SU(4) for light nuclei was suggested
by them to be a possible candidate. In fact, the
cross section for “Be(*H,®He)Li has been observed®
to be nearly symmetric around 90° and is nearly of
an identical shape as the *Be(*H,®He)Li* cross sec-
tion. A priori one could argue that ®He and °Li are
members of the same Wigner supermultiplet (in
spectroscopic notation designated as 'S, and ’S,,
respectively, where we use the notation 27 +125+1x)
and, assuming the same degree of SU(4) symmetry
in the initial °Be and *H nuclei, a unique 12 nucleon
product representation of SU(4) is present in the ini-
tial channel. What is so surprising is that the
isospin-spin, the tensor, and the spin-orbit com-
ponents of the nucleon-nucleon force are so ineffec-
tual in mixing other 12 nucleon SU(4) representa-
tions into the final channel.
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In contrast, in the simpler 4 =4 system symmetry
of reaction products around 90° is very far from be-
ing obtained in an analogous reaction. The reaction
3He(p,?H)2p, with the two protons recoiling in a
318, state, is identical, with respect to supermultipli-
cities, to *Be(*H,®Li)’He. The experimental dif-
ferential cross section’ displays only a residual trace
of symmetry around 90°.

In the next section an antisymmetrized reaction
theory is used to study in detail the relation of reac-
tion symmetry around 90° to SU(4) invariance. The
important role of internal orbital angular momen-
tum in the final fragments is stressed and it is
shown that, in general, symmetry around 90° is not
obtained except as a sum rule over all fragments
with the same L and S but different J. The conse-
quences of the assumption of perfect SU(4) symme-
try for the °Be(*H,°He)°Li reaction are presented for
both polarized and unpolarized triton beams. In
particular, the analyzing power is related to that ob-
served for *Be(*H,*He)°Li*(3.56).

Finally, the magnitude of the departure from re-
action symmetry in the A =4 system is related to
the strength of the SU(4) breaking part of the
nucleon-nucleon potential. A parameter which
characterizes the magnitude of this term in the nu-
clear Hamiltonian is®

|

Voo, — U1 nWy(n' 41+ 2m)e' i

ab > ®

a= VHeisenberg / VMajorana
2(3Vc+—1Vc+ )/(3Vc+ +1Vc+)
=0.4—-0.5.

Our analysis reveals that the ratio of the forward
and backward differential cross section for
3He(p,?H)2p should be

(1+a/2)*/(1—a/2)?,

which is in good agreement with the experimental
value.” We present arguments that the relevant
parameter characterizing SU(4) breaking for the 12
nucleon system is not a/2 but a/8, so that the
greater reaction symmetry in the latter case is under-
standable.

II. SCATTERING AMPLITUDES
INCLUDING EXCHANGE SYMMETRY

A. Complete SU(4) invariance

Throughout this paper we deal with scattering
amplitudes which parametrize reactions of the gen-
eral form b(a,c)c’, where the final two fragments ¢
and ¢’ contain the same number of nucleons, n. De-
fine a solution of the 2n body time independent
Schrédinger equation which for large fragment
separation satisfies the asymptotic condition

i"Rap +outgoing waves , (1)

where ¥, and i), are the antisymmetric wave functions for the separated fragments, ﬁab is the relative dis-
placement vector of the two fragments, and k; is the initial relative momentum of the fragments. In a similar
way, a noninteracting two cluster wave function for the final channel can be introduced;

T =
lkf-Rcc,

Yoo =1 n)p(n+1---2nle , 2

where 9. and ¢, are the antisymmetric fragment wave functions, ﬁw; is the relative displacement vector, and
k is the final relative momentum vector. Then the transition amplitude for scattering from the physical
channel ab to the physical channel cc’ is®

1/2a71/2
7c’c,ba= ba Nc’c ‘I/c’c’ 2
i<nk>n+1

where N, =(2n)!/(n!n!), Ny, =(2n)!/(ny!n,!), and
A =1/Nyy 3 (=1)°Pp,,

Vik M‘I’ba ’ (3)

where Py, is a general interfragment permutation operator and the parity of the permutation is o(P). For con-
venience, channel couplings have been suppressed for the moment.

We next introduce the permutation operator P, which is distinct from the permutation operator defined
above in that it induces the exchange of particle 1 with n +1, 2 with n +2, . . ., k with n +k. Then the tran-
sition amplitude can be written as

1
Teesa=NeCT [P Wee, S Vit Yiq | N

=N [+ (= VP e, 3 Vil Wag [N, @
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where use has been made of the fact that P, commutes with the channel coupling potential >, ¥;; and that the
ket is antisymmetric with respect to pair exchanges

PV, =(—1)" Yy, . (5)
If the nucleon-nucleon potential were a simple isospin and spin independent central potential, any bound nu-
clear state could be characterized by definite values of T, L, the orbital angular momentum, and S. The
scattering amplitude would describe the transitions from an initial set of magnetic quantum numbers to a final

set,
[tptaMpM,spse 1= (1t MM e ]

Through an obvious transformation these amplitudes can be related to amplitudes in a representation in which
the orbital and spin angular momenta of the fragment pairs are separately coupled to orbital and spin “channel
spins.” These amplitudes can be expanded in partial wave expansions in which T-matrix elements allowing the
transfer of orbital angular momentum appear,

Apagssimsskp)=iVa/k;, S QI+ 1D)YALMIO| LMYL'M'I'M —M' | £ M)
T.ZSI'l

X(Tty T,t, | Tt Tyty T,t, | Tt)
X Tpru(TLOYH M (ky) 6)

where quantities conserved during the interaction are written within the parentheses of the T-matrix elements.
The total orbital angular momentum .# comes from the coupling of the orbital channel spin to the angular
momentum of the fragment relative motion.

We must examine the SU(4) character of the wave function which describes the bound state of any fragment.
The generators of the group are the isospin and spin operators 7, 03, 7,04, @,b =1,2,3, so that the basis states
for any SU(4) representation are N-body isospin-spin functions. These basis states are simultaneously basis
states for the symmetry group Sy which consists of all the possible permutations of the isospin and spin coor-
dinates of the N nucleons. Thus a representation of SU(4) can be designated by the partition [f], and the Pauli
principle requires that the total wave function for the fragment be a sum of products of isospin-spin partners'’
in the Sy representation and space wave functions which are partners in the adjoint Sy representation, [f].
Thus, the energies of nuclear states are split because the expectation values of the kinetic energy and potential
operators depend on the number of symmetric space pairs present in the wave function. A completely an-
tisymmetric wave function is then written as'!

VS =1/(n[f D2 o ([FIr 1 NXE([fIr1--- N), (7)

where n[f ] is the dimensionality of the matrices representing the N! permutations, [f ]r refers to the basis
state in the rth row of the representation [f ], and [f]r is the corresponding basis state in the adjoint represen-
tation.

The partial wave T-matrix elements in Eq. (6) can be written in the form of the right-hand side (rhs) of Eq.
(4) by taking appropriate projections onto states of definite T, .£, and S. Since the antisymmetrizing operators
for 2n particles is acting on ¥,,, it can be expanded in terms of completely antisymmetric states of fixed T.£'S
but, in general, varying spatial symmetry,

AL Vo= 3, coeff([RDW([[Ly X Ly IXL1LM, [ fo1X [fo1][7]
k]

[TbsbXTaSa]TtSS’[fb]X[fa]“:h]) . (8)

The representation [4] which occur are those contained in the outer direct product of [f,] and [f,]. The orbi-
tal angular momentum of fragments b and a are coupled to the orbital channel spin L, which, in turn, is cou-
pled to the angular momentum of relative motion / to form a state of total orbital angular momentum .#. The
isospins and spins are coupled in an obvious way.

The final channel wave function must be treated in a more detailed way. We recall that the wave function
for each fragment, ¢’ or ¢, is according to Eq. (7) written as the sum over the row indices of the same represen-
tation [/ ]. This summation can be formally dropped by introducing the antisymmetrizer for the n particles in
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each fragment,'”
Yo=n([f D2l A (P11 mXEs ([ 11 ), ©
where

,ezc=;1—'2(_1)0‘”1>c.

Since both 7, and &/, commute with the coupling potential and since the fragment antisymmetrizers normal-
ized as above satisfy &/ . o/ =, the partial wave T matrix can be written as

Top i TLS)=K | {14+(=1"Poe } ([ $1 ([Fls, 1+ - )@Yy ([Flsn+1+-2n)]p:
8 ji(kyRee) YR 1%
X[Xr s [f 11 m)&Xp s ([f lsn+1-- 215},

X 3 Vi S coeff([h)W(LM[RY;TiSs [h]) | (10)
ik [A]

where the constant K, depending on the channel reduced masses and relative momenta, is
K=NG2Npd*n(f Dimememymgkiky /(me+me)my +mg)1'%' =172 .

In Eq. (10) we have succeeded in representing each of the final fragments as a simple product of a space and an
isospin-spin wave function, analogous to writing a member of an isospin multiplet as a simple product of a
wave function for space and spin and an isospin wave function.

Just as in the proof for the usual Barshay-Temmer theorem we must examine the action of the permutation
operator P, on the terms representing ¥, in the expression for the partial wave T-matrix element. Since the
orbital wave functions of fragments ¢’ and c are identical, the action of P, on the orbital part of ¥, is
equivalent to an exchange of the orbital angular momentum coupling order; in addition, P, R,..=—R,. Asa

result, P, operating on the orbital product wave function is equivalent to multiplication by (—1 yret oA
detailed examination of the action of P, on the isospin-spin product wave function of ¥ . has not been re-
ported in the earlier papers, so it will be presented below.

The product of the pair of isospin-spin functions can be expanded in terms of functions belonging to repre-
sentations of S,, by means of fractional parentage coefficients!! (which implicitly depend on T, S,, etc.).

(Xr s [f 11 n)@Xr s ([fIn 41 2n)lgs= 3 (Lf Ir[f Ir | [glw)XTs([glw,1- - - 2n) . (1
[glw

The product isospin-spin function on the left can be expanded in terms of two independent functions of 2n
coordinates, one even under P, the other odd. Under the operation of any of the (2n)! permutation operators
of S,, an even function is transformed into another function that is even under the exchange of the coordinates
of the two clusters (now with different labels, of course) and likewise for the original odd function. It follows
that the even and odd functions are partners or linear combinations of partners in two distinct representations
(which may be reducible) and the sum over the partners, denoted by the sum over w in the rhs of Eq. (11) will
either be even or odd under P, for a given [g]. We can, therefore, write

Pl Xr 5,8 X1 s 18s= 3 (—1PEY ([ f1r[f Ir | [glw)XFs([glw, 1+ - 2n) , (12)
le] w

where B([g]) is an even or odd integer.

The sufficient condition for the symmetry around 90° of the reaction cross section is now apparent; the ma-
trix element of Eq. (10) must vanish for all but one [g] in the summation of the rhs of Eq. (12). This will
occur if (1) the outer direct product of the isospin-spin functions of fragments b and a contain one and only
one representation in common with the outer direct product of fragments ¢’ and ¢ and (2) the generators of
SU(4) commute with the nucleon-nucleon potential. Assuming the conditions are satisfied and denoting the
one representation in common by [g], all the phase factors arising from P, can be combined to give

Tpp(TLS[gD)=[1+ (=1 +I+L+BUEV) 2T 0 (T LS [g]) - (13)
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For a given L’ either odd or even values of !’ vanish
from the partial wave sum for

Apprss,Lmss(Kg)

given in Eqg. (6) so that the reaction cross section
which is a weighted sum over the squares of the
channel spin amplitudes,

| Appss,omss(ke) |2

is symmetric around 90°.
At this point it may be useful to specialize to the

9Be(*H, *He)°Li*(0+,T =1)
and
°Be(*H, °He)°Li(1t,T =0)

reactions. The *He nucleus and the excited lithium
state are assumed to be pure 3!S, states while the
lithium ground state is assumed to be a pure 1S,
state. The group theoretic considerations are shown
in Fig. 1(a), where on the left the identical SU(4)
representations of the two final fragments are sym-
bolically multiplied and on the right the 12 nucleon
product representations are shown. The standard
Young tables have been introduced and the isospin-
spin multiplicities of the fragments as well as the
multiplicities of the product representations are
shown below the tables. Finally, the value of (— 1)8
to be inserted into Eq. (13) is also given on the right
of the figure. The sign of (—1)? is obtained from
the consideration of the product of fragment multi-
plets with T, =T, and S, =S, e.g.,

(3, D)X (3,D)=(1,1)+(3,1)+(5,1) . (14)

Then our knowledge of the symmetry of the SU(2)
Clebsch-Gordan coefficients tells us that the super-
multiplet of which (3,1) is a member is characterized
by an odd value of (—1)?, while the supermultiplets
which contain (1,1) and (5,1) are even under the ac-
tion of P.. This result is in disagreement with Eq.
(23) of Ref. 3 which uses the factor (—1)5*7 in
place of our factor (—1)P&] so that the fragment
exchange symmetry varies within a supermultiplet,
in violation of our result above.

The direct product of the isospin functions of *Be
and *H is expanded in terms of SU(4) representa-
tions of 12 particles in Fig. 1(b). Since T=1 only
the multiplets (3,1) and (3,3) occur, so the unique
product representation is [4332]. From the direct
product of ®He and SLi*(3.56) one can form only one
multiplet in common with the initial channel, (3,1),
and this multiplet belongs uniquely to the [4332]
representation. From the direct product of the
isospin-spin functions of ®He and °Li one can form
only the (3,3) multiplet which does not belong

A=12
(a)
[2211] [2211) [3333] [4332] [4422]
] 11
3,1)+0.3) G+ (13 a1 B+ @GN BN+ (15

+03) +G3+ 0,1

(b)
(3222]  [111]) [3333] [4332]
] 1
—— X = +
©2) 22 SR)) (33) +(31)
+(1,3)

FIG. 1(a). The SU(4) representations assigned to *He
and Li(°Li*) are shown on the left and the 12 nucleon
outer direct product representations are shown on the
right. The standard labels for the Young tables appear
above them and the (27 41,25 +1) associated multiplets
are shown below each table. Note that (3,3) appears in
two distinct representations. The + signs denote the ex-
change symmetry of the final channel wave function
under cluster exchange when the clusters are coupled to
the representation in question. (b) The SU(4) representa-
tions assigned to Be and *H are shown on the left and the
direct product of these representations are shown on the
right. The representation labels and the iospin-spin multi-
plicities associated with each representation are indicated.

uniquely to an SU(4) representation. Only odd
values of the relative orbital angular momentum are
allowed for two final fragments in the [4332] repre-
sentation, according to Eq. (13) and Fig. 1(a). A re-
laxation of SU(4) invariance permits an admixture
of the [4422] representation to appear in the final
state of the ®He-+SLi, which has even values of the
orbital angular momentum associated with it. This
admixture would be reflected in an asymmetry
around 90° of the cross section which would other-
wise be the same shape as the Be(*H,°He)’Li*. In
the limit of SU(4) invariance other observables such
as the vector analyzing power should have the same
symmetry in both reactions.

B. Spin-orbit splitting within supermultiplets

It is the case in °Li, and perhaps other nuclei, spin
orbit splitting separates members of the supermul-
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tiplet as to J but does not change the symmetry of tential does not mix SU(4) representations. When
the isospin-spin functions. The *D; , ; states of °Li the J degeneracy is removed it is convenient to
illustrate this point. However, in the present work switch to the standard channel spin representation.
we find that this departure from degeneracy in the The transformation between this representation and
final fragments with respect to J is sufficient to des- the one of Eq. (6) is

troy symmetry around 90° even if the coupling po-
|

Ly Sejo| |Ly So Js

Aj'm’,;m 2 c.]c./b.]afL S L S .]c La Sa ja
LE, L' s jllL s j

X Z (L'm’—sSs | j'm')(Lm —sSs | jm VAL m’ —ss5,Lm —sSs(ic\f) ’ (15)
s
where the total spin S is still a conserved quantity. The degeneracy which has been removed is that with
respect to the values of j. and j,- which are allowed by the coupling of L. and S, and L. and S, respectively.
This prevents us from taking a sum over j. and j, in evaluating |4;, jm(kf)l whlch in turn, prevents us
from making use of the orthogonality relation

o~ o~ Lc’ Sc’ jc' Lc’ Sc' jc'
2 jc’zjch,L’SS L. S, Je Lc Sc Je =8E',L'6§,S (16)
]c’-’c' LI S jl L—, § j,

to obtain an incoherent sum with respect to L' of the squares of the amplitudes on the rhs of Eq. (15). In gen-
eral, cross terms between even and odd L’ will destroy symmetry around 90°.

It is hard to find real examples where the above “sum rule” symmetry around 90° should be obtained. As a
hypothetical case, suppose *He*(2+) were a pure 3!D, state. Then the reaction *Be(*H,°He(2))®Li(3%) would
not be expected to be symmetric around 90°, but if one were to add the cross sections for production of SLi(2t)
and SLi(17) which complete the °D; multiplet, symmetry would be restored. When the final fragments have
L.=L,=0 no such problem arises. Under this condition the final channel spin is identical to the intrinsic
spin and the amplitude transformation is

Ly, Sy Jjb
Ags, jm kf)—ZijaLS L, S; j, {(Lm—sSs | jm)Aoss,Lm Sss(kf) (17)
L S j

The multiplicative factor in Eq. (13) reduces to (1+4(—1))"*#+! and either even or odd I’ alone contributes.
C. Relation between the analyzing power of *Be(*H, °He)°Li* and of *Be(*H, *He)®Li

Since SU(4) invariance is being assumed, the starting point for our calculation is the expression for the reac-
tion amplitude in the TLS representation of Eq. (6). We are making the ansatz I, =1.=1,,=0, [, =1, L =1,
L'=0, so that M —M'=M =+1. Parity and angular momentum considerations thus limit / to /=/['+1, and
&L =I'. It then turns out that there are but two independent sets of amplitudes, and from Eq. (6) we get

172 172
Asore155(kp)=iVa/k; (Tote Tyt | Tt) S, I+1 Ty p_(TI'S)+ 7 Ty p o (TI'S) | Y ()
I’ odd
~ A (18)
Asgiossthkp)=iVT/ki (ToteTot, | TO S [VI Ty o ((TIS)—VT F 1Ty p o (TUS)]YP (K
I’ odd

Note that in consequence of our arguments in the previous section, only odd orbital angular momenta appear
and that the T matrices are independent of T and S within a given supermultiplet.

In order to calculate the analyzing powers in the two reactions of interest it is convenient to introduce the
scattering amplitude in space of the spin states of each of the reactants,

Amcymc,mbma(f(\f)= 2 (jc’mc'jcmc !j'm’)(jbmbjama I]m )Aj’m’,jm(kf) . (19)
i’



27 SUPERMULTIPLET SYMMETRY IN NUCLEAR REACTIONS:. .. 1381

These amplitudes are related to the two independent
amplitudes in Eq. (18) through Eq. (15) [more
specifically, Eq. (17)]. Conservation of the z projec-
tion of angular momentum means that

M-M=m—-—m'=my+m;—my,—m,

and this relation simplifies to M =m,+m, —s be-
cause the subscript ¢ refers to the ’He nucleus in
both cases. The analyzing power'? is defined as the
difference between the ¢ =0 differential cross sec-
tions for tritons polarized along the +y and —y

|

4,(0Mdo/d0=7 3 Im[A; m, +1245m, ~1/2] =3

s,my,

=coeff Im[4  ,(0)45(6)] .

A, and A refer in an obvious way to the ampli-
tudes in Eq. (18). The property

4,1(6,0)=—4_,(6,0)

was used in the development above. It is clear that
the angular parts of the interference terms in Eq.
(21) are of the form

Ju(8)=P,; (cosO)P;(cos) 1,I’ odd (22)
with the property
JII'(’)T—O): "JII'(O) ’

so that the analyzing power is indeed antisymmetric
around 6=m/2 as proved earlier in Refs. 4 and 5.
However, our derivation allows us to relate the
analyzing powers for the two reactions. Including
both the isospin Clebsch-Gordan coefficients and
the SU4) coefficients [see Eqgs. (11) and (12)] the
differential cross sections and analyzing powers are

*He+SLi* :

do/dQ=5[2|A,; %+ |40]%,
Aydo/dQ=—5V2Im[4 ,45], (23)
*He+°Li :

do/dQ=++[2|A4 | >+ |40%],

A, do/dQ=+V2Im[d, A}] .

We can thus make the prediction that the cross sec-
tion and analyzing power ratios between the °Li*
and SLi channels are

do/dQ(°Li)=3do/d Q(°Li*) ,

(24)
A,(°Li)=— 74, (°Li*) .

directions, respectively, divided by the sum of the
two cross sections. The product of the analyzing
power and the differential cross section is then given
by

A, (0)do/dQ=tr[A 180, 4], (20)
where 1 refers to the initial density matrix for the
unpolarized °Be and o, is in the spin space of the

triton. In terms of the amplitude elements this
yields

> Im[Asm, 11245m,~1/2]

my+1/2—5=+1

21

In the following discussion and comparison of the
above relations with experimental data we will refer
to the final channels as the °Li and °Li* channels,
respectively. The most complete and accurate mea-
surements of the differential cross sections for the
two channels appear in Ref. 3, where the incoming
triton energy was 23.5 MeV. A comparison of the
two angular distributions shows that both cross sec-
tions are nearly symmetric around 90° although the
forward cross section for SHe is definitely larger
than the backward in the °Li channel. The maxima
and minima occur at the same angles, although the
minima are deeper in the °Li* channel, but the
shapes are not identical: At the positions of the
most forward and backward maxima the °Li:°Li* ra-
tio is about 8:1, which drops to about 4.4:1 for the
three central maxima. The ratio of the integrated
cross section is also quoted as 4.4. The theoretical
ratio of 3 obtained in Eq. (24) omits phase space
differences in the final channels, the °Li phase space
being larger by a factor of 1.19 at the energy in
question. At a lower incident triton energy of 21.5
MeV the data for the SLi* channel are very incom-
plete,® especially at back angles, but it appears that
the two cross sections are of a similar symmetric
shape with the °Li:®Li* ratio being of the order of
7:1. At this energy the phase space ratio is 1.23:1.

The analyzing power measurements were made at
E,=17 MeV and are reported in Ref. 5. The dif-
ferential cross section for the SLi channel is now
only roughly symmetric around 90°; it appears as if
a symmetric cross section were shifted by about 10°
toward backward angles so there is a definite admix-
ture of even partial waves in the cross section. The
cross section for the Li* channel is not published,
but the analyzing power for this channel is plotted
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and, while incomplete as to angle, a strong tendency
toward an antisymmetric 4,(0) is revealed. The
analyzing power data for the 6L1 channel offer a big
surprise since they are decidedly symmetric around
90°. This is particularly puzzling because the
predicted ratio of analyzing powers, — 7, is in good
agreement with the data in the forward hemisphere.

It is to be expected that the analyzing powers are
a more stringent test of SU(4) invariance than are
the reaction cross sections. For example, a detailed
study of the 3 X8 amplitude matrix for the reaction
producing °Li reveals that under our assumption
only the m, =0 spin state of the °Li ion contributes
to the analyzing power. This happens because par-
ticular matrix elements are identically zero. If the
difference in the cross sections for spin up and down
tritons were large in the m,=*1 states due to con-
tributions from tensor and spin orbit forces, the ef-
fect could possibly “swamp” the antisymmetric con-
tribution from the m, =0 substrate. Further investi-
gations, both experimental and theoretical, are
necessary to resolve the problem of symmetrical
do/dQ and A,(6) for the °Li channel.

III. SYMMETRY BREAKING

A. *He(p,d)2p

The reaction He(p,d)2p is analogous to the
°Be(*H,°Li)’He reaction when the three body phase
space is restricted so that the pair of protons is in a
318, state. In a kinematically complete experiment
it is possible to separate out those scattering events
where the protons recoil with little relative energy so
that the condition is satisfied and one can measure a
differential cross section as if a two body final state
were present. Wielinga et al. have performed pre-
cisely this experiment.” If the simplifying assump-
tion is made that all fragments are describable by S-
state wave functions, the SU(4) relations are
straightforward. In Fig. 2 the four particle SU(4)
representations that are contained in the direct prod-
ucts of the initial fragment and final fragment
isospin-spin functions, respectively, are displayed.
The isospin and spin multiplicities of the separated
fragments and of the four body states are shown
below the Young graphs symbolizing the representa-
tions. Note that the (3,3) multiplet characterizing
the final d +2p isospin-spin state occurs in a single
representation, the [211], contained in the initial
fragment spinor product, but in two representations,
the [211] and the [22], that occur in the final frag-
ment spinor product. The admixing of the [22] rep-
resentation during the collision process is respon-
sible for the marked departure from symmetry
around 90° of the measured’ cross section.

BBE@UEE

@ 1)41,3%3,14(1,3)
(1,1 (33)+(3,1) (51)4+(1,5) +
+(1,3)  (33)4(1,1)

(b)
[l [ [1m] [2n]

ERE

(22)
1,10 (33)+@G1)
+(1,3)
FIG. 2(a). Same as Fig. 1(a) with SHe—’H,

SLi—2p(*Sy). (b) Same as Fig. 1(b) with *Be—’He,
SHop.

In this section we wish to relate the degree of
asymmetry of the cross section around 90° to the
SU@4) breaking term in the effective central
nucleon-nucleon potential. Consistent with the no-
tation of Sec. II A the initial and final channel wave
functions are introduced,

¥, =1/V33 ¢([31]r,1234)

X X1, ([211]r,1234) ,
(25)
VW, =¢(12,34)[ X1o([11]a,12)

®Xp([11]a,34)] .

The spatial four body wave functions are obtained
by operating with a Young operator for the specified
symmetry on the initial channel product wave func-
tion 9,(123,4) that is completely symmetric with
respect to the coordinates of the first three nucleons
which are bound in 3He. The final channel spatial
wave function is not given a special symmetry with
respect to S, but, as the notation suggests, is sym-
metric under the space exchange operators P, and
P;,. The letter a inside the two particle spinors in-
dicates that they are antisymmetric with respect to
exchange of their arguments.

In order to expand the product of the two particle
spinors in terms of representations of S, the frac-
tional parentage expansion of the four particle
states!! in terms of 22 is inverted. One finds that
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[X108 X0 ]=—1/V2[ X,,([211]aa,1234)
+X11([22]aa,1234)] .

(26a)

The operator P, is equivalent to the two successive
pair exchanges P;3P,,. The result of its operation
on the particular partners in the two distinct repre-

—K

sentation is
P13P24X,1([211]aa)=—X“([2ll]aa) ,

(26b)
P13P24X11([22]aa)= +X11([22]aa) .

Following the notation of Eq. (10), the partial wave
T matrix for the A =4 case becomes

Too 1112111 =7 $(12,38){ [1— (= 11X 5 ([211]aa)

6

+[1+(= DX ([22]aa)}, (Vi34 Vig+ Vs + Vag)

X X ([31]r,1234)X 5([211]r,1234) | . 27

The effective central potential is written as
Vij=v(rj)[ W+MP,(ij)+ BP;(ij)
+HP,(ij)] . (28)

The SU(4) breaking parameter a defined in the In-
troduction is expressed in terms of the potential
strengths through

a=(B—H)/(W+M) .

Evaluation of Eq. (27) for the T-matrix elements
yields

K !
= —(=DHQew +2M
T, 2\/3{[(1 (—DH2W +2M)
+(14+(=1))B —H),(])
+[(1=(=1D)H2W —2M +2B +2H)

—(+(=1NB=HNI,) . (29

The first integral, I,(1), is of the form of a stripping
approximation matrix element evaluated in the
“post” form!?

I,()= [1111(12,34),(v(r13)+v(r23))1/11(123,4)] :
(30)
while the second integral, 7,(/),
()= [¢1(12,34),(v(r14)+v(r24))¢,(123,4)] :
(30b)

arises because of complete antisymmetrization.
Note that the potentials are acting between pairs,

I

and one member of each pair, particle 4, is not in
the original *He cluster.

Consideration of our simplified model for 4 =4
has allowed us to derive Eq. (29) for the T-matrix
element. The expression reveals (1) that in the case
a=0 the vanishing of the elements for even [ is
clearly exhibited and (2) if only the stripping type
integral is retained the even partial waves have a
strength relative to the odd particle waves of a/2.
The size of a can be estimated directly from the re-
action data. The analysis by van Oers!* of the
3H(p,d)d reaction suggets that except for very low
partial waves, the T-matrix elements vary slowly
with /, which in turn implies that the stripping in-
tegral varies slowly with /. Owing to the difference
in sign of the odd and even Legendre polynomials at
180° the forward and backward amplitudes for
SHe(p,d)2p are related by

| 4151500 14a/2
| A151,(180°) | — 1—a/2

=1.5-1.7. (31

The experimental center of mass (c.m.) cross sec-
tion’ has a forward minimum at 35°, near the
minimum in He(n,d)d at about the same relative
energy,'* and a deep minimum at 100°. With perfect
SU4) symmetry there would be a zero at 90°. A
tendency toward a minimum at 150° appears also.
Extrapolating the cross sections to 0° and 180° for
the cross section measured when the relative energy
of the recoiling proton pair, Tp,, is restricted to be
less than 1.5 MeV, we find the forward backward
ratio to be 3.4/1.2=2.8, in good agreement with
Eq. (31). In Ref. 7 the data were analyzed in terms
of real, incoherent neutron and proton amplitudes.
We suggest a new attempt to fit the data with com-
plex, coherent amplitudes as outlined above so as to
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obtain a measurement of the effective SU(4) mixing
parameter.

B. Symmetry breaking
in the stripping approximation

A nuclear rearrangement of the type b(a,c)c’ is
often conceived of as occurring through the ex-
change of a cluster of nucleons, call it x, between b
and a. This means that ¢’ and x can be coupled to a
system with the same quantum numbers as b and
that a and x can be coupled to a system with the
same quantum numbers as ¢. The perturbing poten-
tial in the post representation can be written'’

V= Vc’x(rc’x )+ Vc'a(rc'a ) — Vc'c(Rc’c) ) (32)

and the transition matrix element is evaluated be-
tween states that are positive energy solutions to the
Schrodinger equation with complex optical poten-
tials. It is generally assumed that the optical poten-
tial in Eq. (32) largely cancels out the second term,
Vo4, so that the first term alone is retained as the
coupling potential between the initial and final
channels.

The DWBA stripping approximation predicts a
strong forward peaking of the production cross sec-
tion for ¢, but in the typical light ion reaction, back-
ward peaking is also a prominent feature. This situ-
ation is also consistent with the stripping approxi-
mation, provided there exists a cluster of nucleons x’
that can be coupled to fragment ¢ to form a system
with the same quantum numbers as b and that x'
and a can be coupled to form a systern with the
same quantum numbers as ¢’. Imposing the require-
ment of overall antisymmetry on the 2n nucleon
wave function necessitates the adding of the two dis-
tinct stripping matrix elements coherently. If the
potentials V.., and V. are identical because of a
symmetry property of the nucleon-nucleon force, ei-

ther the odd or even parity partial waves can vanish
and symmetry around 90° of the reaction cross sec-
tion is obtained.

This approach was adopted by von Oertzen and
Flynn® to explain their *Be(*H,°He)®Li experiment.
Since exchange of either a H cluster or a *He clus-
ter between the target *Be and the incoming *H both
forward and backward peaking of the production
cross section for *He is understood in terms of the
coherent addition of the two amplitudes. It is a
powerful method because exisiting DWBA codes
can be used to separately calculate the interfering
amplitudes. The 3C(*N,'*C)*N reaction, a reac-
tion where the '4C(0*) and the *N(1%) are a priori
not members of the same SU(4) multiplet, also
displays near symmetry around 90°. This reaction
has been analyzed'® by taking the coherent sum of
diagrams for either n or p exchange. In this analysis
the n-'*N and p-!*C potentials were obtained from a
microscopic structure calculation of the nuclei in
question. Thus, a prediction was made as to the
departure of the cross section from 90° symmetry
that was quite successful. In this section we are
pointing out that in systems exhibiting approximate
SU(4) symmetry the microscopic calculation can be
carried out and the difference in the two amplitudes
can be related linearly to the size of the symmetry
breaking parameter a.

Chwieroth et al.'® have stressed that the various
particle exchanges possible in a rearrangement col-
lision are derived naturally if one starts with a 7-
matrix expression which incorporates antisymmetry.
An example of such an expression is Eq. (3) in the
present paper. Introducing a DWBA approxima-
tion'” for the initial and final channel wave func-
tions, the initial state is restricted to the Hilbert
space ba and the plane wave factor in Eq. (2) is re-
placed by a distorted wave with incoming boundary
conditions. Then the T matrix is

. 12 (=D)7PPy,
T ee=Net™ |Yere, z th—17§——— ba (33)
i<n Nba
j2n+1
For A =4, n, =3, and n, =1, it is trivial to show that
(1—=Py4—Pyy—P3y) ,

S Vy - —(14P13Py) 3 Vy=(14Pe) 3, ¥y . (34)
i<2 i<2 i<2

j23 j23 j=3

If the unity term represents a neutron exchange in *He(p,d)2p, the final cluster exchange term represents pro-
ton exchange. When there is more than one nucleon in cluster a, the result cannot be written as the coherent
sum of exchange terms representing the exchange of a single fragment. For example, in the 4 =12 case the
analog of Eq. (34) is
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172
(_])G(P)P 20
SViS——m | | 1+Pe) 2 Vyl1=5Pio) - 35)
i<e P Ni 6 :
i27 iz

The permutation operator Py can be interpreted as
generating the exchange of a particle-hole pair in ad-
dition to the exchange of a three body fragment be-
tween the target °Be and the incoming *H. Follow-
ing the convention of von Oertzen and Flynn® the
unity term represents *H exchange and the P, term
3He exchange.

A DWBA approximation of the type already em-
ployed by the authors cited®!® to describe light ion
reactions is obtained by dropping permutation
operators to the right of the potentials in Eq. (35)
and by dropping the potentials between nucleons if
j>ny. At this point the cluster wave function
|

Ty (TS)[(1+4a) +(1—Ada)(—1)

where the terms proportional to a come from the
SU(4) breaking part of the nucleon-nucleon poten-
tial. The two terms have opposite signs because of
the relation

P(ij)= — P (ij)P.(ij) = — P,(ij) ,

forces in negative parity states being neglected, and
the fact that the products ¥, V¥, (¥ ¥, ) differ only
by the interchange of the isospin and spin quantum
numbers.

The rigorous calculation of the coefficient 4 will
be described in a future publication. Here we
present a simplified way of estimating its size. Let
us presume that the amplitude for forward (back-
ward) peaks becomes quite small in the backward
(forward) direction. Then the ratio of the height of
the first cross section peak at or after 0° to the
height of the last peak at or before 180° should be
determined by the ratio of the strengths of the po-
tentials of the two exchange terms,

A4(0°) Ve

YT (36)

The potentials describe the interaction of a pair of
fragments which are initially bound inside nucleus b
whose wave function, like the wave functions of the
final fragments, contains a spatial wave function
which belongs to a particular partition of the per-
mutation group. Following the methods outlined in
Blatt and Weisskopf,'® the number of even parity
pairs in the clusters b, c, ¢’, x, and x’ are calculated
for the appropriate partitions of the spatial wave

n+l'+S,+S,—~S+T,+T,—T+B

Y (¥, ) is decomposed into products of cluster wave
functions such as ¥, ¥,(¥,¥,), and the fragment
wave function ¥, (¥,-) is coupled to the other final
fragment wave function ¥,..(¥, ) to form a state with
the same quantum numbers as initial cluster b. The
final step is to decompose the wave function for ini-
tial fragment b into products such as V¥, (V. ¥,.).
The terms in parentheses correspond to the P, part
of Eq. (35). It is the fractional parentage coefficient
from the last decomposition which can contribute a
phase (— 1) into the partial wave T matrix which is
also written as the coherent sum of two terms,

]TIV’LI(DWBA) ,

functions. All “filled rows,” i.e., those containing
two protons and two neutrons, contribute to the
internal energy of each cluster term proportional to
V*. A single unfilled row with either one (e.g., *Be)
or three nucleons (*H,’He) also contributes terms
proportional to ¥ *. A single unfilled row with a
pair of nucleons (e.g., d, 2p, 6He, Li) contributes a
term with a dependence since the pair is either in a
spin triplet or singlet state, '

By+t=(1+a)V*W=(1—a)V*t. (37

Our ansatz is that the strength of the intercluster po-
tential is proportional to the difference in the num-
ber of even space pairs in the initial bound system
and in the final fragments,

Ver (Nt —NF—-NHta
ch’ - (N;—Nf—Nﬁ)?a ’

(38)

where the choice of sign for the a term depends on
the identification of ¢’ and c¢. In the cases of interest
we find that for 4 =4, with ¢=d, ¢'=2p, and
_3
= He,

Vex _(3—1-0)+a _1+a/2
Voo (B3—1-0)—a 1—a/2’

(39a)

and the coefficient 4 = + %, in complete agreement
with the coefficient of I,(/) in Eq. (29). For 4 =12,
with ¢ =%He, ¢’=°Li, and b =°Be, the ratio is

Vex  (21-10-3)—a 1—a/8
Voo (21—10-3)4+a 1+4a/8’°

(39b)
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and the coefficient 4 = — . We conclude that with
increasing nucleon number the departures from
symmetry of the reaction cross section around 90°
should decrease, which is in qualitative agreement
with the data.”® Unfortunately, at an incoming tri-
ton energy of 23.5 MeV the data of *Be(*H,*He)°Li
seem to favor 4 = +%. However, one should redo
the DWBA calculations of von Oertzen and Flynn®
with differing strengths for the two interfering am-
plitudes to properly take into account the summa-
tion of complex amplitudes. Likewise, the 4 =4 re-
action amplitude cross section should be analyzed in
terms of interfering complex amplitudes of differing
strength to obtain an experimental value for 4. Fi-
nally, it should be noted that similar but numerically
different values of 4 can be derived from using the

light ion stripping approximation in the “pre”’form
so that further experiments and analysis may pro-
vide insight into the differences in the two approxi-
mations when consistent potentials and optical
parameters are used.
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