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A formalism developed earlier for the effect on nuclear beta decay of an intense plane-

wave electromagnetic field is applied to three examples of forbidden beta transitions. The
examples represent cases where the nuclear "fragment" contains one, two, and three nu-

cleons; where the nuclear fragment is defined to be that smallest sub-unit of the nucleus

containing the nucleon which undergoes beta decay pius any other nucleons directly
angular-momentum coupled to it in initial or final states. The single-nucleon-fragment ex-

ample is "Cd, which has a fourth-forbidden transition. The two-nucleon-fragment exam-

ple is Sr, which is first-forbidden. The three-nucleon-fragment example is 7Rb, which is

third-forbidden. An algebraic closed-form transition probability is found in each case. At
low external-field intensity, the transition probability is proportional to z~, where z is the
figld intensity parameter and L is the degree of forbiddenness. At intermediate intensities,

the transition probability behaves as z " '. At higher intensities, the transition probabili-

ty contains the z " ' factor, a declining exponential factor, and an alternating polynomial

in z. This high-intensity transition probability possesses a maximum value, which is found

for each of the examples. A general rule, z =q2(2L —1), where q is the number of particles
in the fragment, is found for giving an upper limit on the intensity at which the maximum

transition probability occurs. Field-induced beta decay half-lives for all the examples are

dramatically reduced from natural half-lives when evaluated at the optimum field intensity.

Relative half-life reduction is greater the higher the degree of forbiddenness.

RADIOACTIVITY s~Rb, ~Sr, '"Cd intense-field-induced P decay

minimum half-lives, half-life reduction forbiddenness dependence.

I. INTRODUCTION

Reference I (hereafter designated as I) gave the
basic theory of the interaction of intense plane-wave
electromagnetic fields with nuclear beta decay.
When the applied electromagnetic field is very in-
tense, processes of high order in that field can occur
with substantial probability. Thus it is possible for
the field to intercede in the beta decay in terms, for
example, of modifying the conservation conditions
associated with the beta decay. Of particular in-

terest in the present paper is the case of field-
induced forbidden beta decay. Each photon of the
applied field carries with it one unit of angular
momentum, and an intrinsic negative parity. If a
field-free beta transition is a forbidden transition of
order L, then the net participation of L photons
from the applied field can remove that forbidden-

ness, independently of the energy of each photon.
With sufficient field intensity, the penalty in transi-
tion probability paid for the extra field interaction
can be far less than the penalty paid for forbidden-
ness. This tends to be the case for high orders of
forbiddenness more than for low orders. However,
there is a limit to how much transition probability
enhancement can be achieved by increasing the field
intensity. '

The theory presented in I exhibits field depen-
dence in terms of two intensity parameters, one aris-
ing from interaction of the field with the nucleus,
and the other stemming from the field interaction
with the beta particle. The field-nucleus intensity
parameter is

z =(eaRo) (I)

where e is the proton charge, a is the amplitude of
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the electromagnetic plane-wave vector potential in
Coulomb gauge, and Ro is the nuclear radius.
"Natural" units, with A=c =1, are used. The field-
electron intensity parameter is

zf = —,(ea/m) (2)

where m is the electron mass. This is the intensity
parameter which always appears in intense-field in-
teractions with a free, charged particle. It is related
to the bound-state intensity parameter of Eq. (1) in

1

that (apart from the factor —,), one need only replace
the bound-state radius Ro in Eq. (1) by the electron
Compton wavelength in order to obtain Eq. (2).
Equations (1) and (2) are expressed in Coulomb
gauge, and they appear to be gauge dependent.
When expressed in terms of four-dimensional vector
potentials, however, they are easily shown to be
both gauge invariant and Lorentz invariant. Anoth-
er way to express the intensity parameter in a
gauge-invariant way is to write it in terms of field
quantities. For instance, Eq. (1) is

z =(e
~

E
~
Ro/co) =(e

~

B
~
Ro/co)

when written in terms of the electric field amplitude

~E~ or the amplitude of the magnetic induction

~

B
~

. The inverse squared dependence on field fre-
quency ~ in these expressioris demonstrates the im-
portant fact that the intensity parameter (for a given
energy density of the field) increases as the square of
the wavelength. Large intensity parameters are
easier to achieve at low frequencies. For example, if
Ro is taken to be 5 X 10 ' cm, and a field frequen-
cy of 1 MHz is selected, then a value of unity for
the intensity parameter is associated with an electric
field strength of 8X10 V/m and a magnetic induc-

tion of 3X10 T. These are reasonable values at-
tainable in a transmission line with conventional
radio-frequency (rf) field sources.

In Sec. II, the appropriate results from I are
reproduced, and specialized to the particular condi-
tions needed here. Specifically, the examples to be
calculated are forbidden transitions whose field-
enhanced transition probabilities are to be expressed
in an intensity domain encompassing the field inten-

sity for optimum transition probability. This means
that results pertaining to the intense-field, low-
frequency case are employed. Furthermore, all the
examples given involve a change in isospin, so only
the Gamow-Teller terms are retained.

The first example, "Cd, is treated in Sec. III.
This example has a single-particle "fragment. "
Coupling of the field to the nucleus is determined by
a separation of the nucleus into a "core" and a
"fragment. " The fragment is that smallest portion
of the nucleus which contains the nucleon (or nu-

The results stated in Sec. IV of I are to be em-
ployed here. These results are derived from the
most general form of the theory by considering the
case where zf » 1. Since zf and z are related by

zf ——, (mRO) z—(3X 10')z, (3)

the value of z need not be large even when zf »1.
The final result for transition probability per unit

time when zf »1 is given in Eqs. (125), (133), and
(138) of I in the form

6'm'
~ioi = foot I

M.d I

'
2~3

(4)

cleons) which is a candidate for beta decay, plus any
other nucleons angular-momentum coupled to it in
initial or final states, as determined in the single-
particle shell model. The core is the remnant nu-
cleus of spin and parity 0+. "Cd has a fourth-
forbidden beta decay (L =4) under no-field condi-
tions.

Section IV is devoted to OSr, an example of a nu-
cleus with a two-nucleon fragment. This entails ex-
tra complexity in the calculation beyond the single-
nucleon fragment. Sr is first-forbidden (L =1).

Rb is treated in Sec. V. This has a three-nucleon
fragment, with an additional measure of complexity
beyond the two-nucleon case. Rb has L =3.

The final results for transition probability per unit
time found in Secs. III—V are analyzed in Sec. VI in
the case z «1, and are analyzed also for general
algebraic behavior for arbitrary z. The z « 1 case is
not strictly a low-intensity limit, since the results
used here require zf »1 always. This is because the
analytical results from I employ an asymptotic form
for the generalized Bessel functions that occur there.
Transition probability in the z «1 case behaves as
z " '. For arbitrary z, the transition probability
contains the small-z factor, times an exponential
which decays with increasing z, times a polynomial
in z. This implies the existence of a maximum in
transition probability as a function of z. These max-
ima are found for the three examples treated. The
existence of a maximum transition probability is a
feature of intense-field theories. ' It means that
beyond that maximum, an increase in field intensity
parameter causes a decrease in transition probability,
a rather counter-intuitive result. A simple, general
algebraic result is derived which gives an upper lim-
it, as a function of degree of forbiddenness and size
of the fragment, on the location of the maximum
transition probability. The actual maxima found for
the three examples are then translated into the corre-
sponding minimum field-enhanced half-lives in Sec.
VII.

II. BASIC THEORETICAL RESULTS
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where 6 is the beta-decay coupling constant, f„, is
the total spectral integral for field-induced beta de-

cay, and M~„s is the field-dependent transition ma-
trix element. The total spectral integral is the sum
of three parts

f1.t =fi+f2+f2 (5)

~ COS

(2j;+1)

~ sin

Mfl ——

2 1/2

Xg g Qf, cos QkcoSHk O'Q;

m,. mf

1

(2j;+1)

(7)

arising from direct interactions of the beta particle
with the field, from spin interactions with the field,
and from an interference between these terms,
respectivdy. The necessary expressions are given in
Eqs. (127}, (128), (134), (135), (139), and (140) of I.
The squared transition matrix element normally
contains both Fermi and Gamow- Teller terms.
However, none of the examples treated here obey the
isospin selection rule b,T=0 (Ref. 6) for Fermi tran-
sitions, so only Gamow-Teller terms are retained.

From I, the squared transition matrix element is

K
IM1na I'=,/, ( IMfc I'+ IMfi I'»

4m.(2zf }'

(6)

where

nal angular momentum.
In practice, only one of the two terms in Eq. (6)

will be nonzero. When Pf and P; have the same
parity, only Mf; contributes, and when they have
opposite parity, only Mf; contributes.

One additional result needed below has to do with
inner products in spinor space. The product

~1/2 +~I /2 (11)

O' =O'~ —l O'y

op=oz ~

(12)

will be used. Since the components of cr determine
the components of Mf; or Mf;, this means that
(M+ )f, (M )f;, and (Mo }f;will be calculated, rath-
er than rectangular components. Transformation of
M+, M, and Mp back to rectangular components
is accomplished by

M„=—,(M+ +M ),

Mr ———.(M+ —M ),1

2l

M, =Mp .

(13)

occurs, where the p1/z are two-component Pauli spi-
nors. It will be convenient to deal with the com-
ponents of o in terms of raising and lowering opera-
tors rather than in terms of rectangular components.
That is, the components

O'+ =O ~ +l O'y,

1/2

Xgg yf, sin
m; mf

Qkcosek 67'; (8)

If the three components +,—,0 are identified by an
index A, taking the values A, =+1,—1,0, then the
inner product in spinor space stated in Eq. (11) is

In Eq. (6), a is the ratio of the strength of the axial
vector coupling to the vector coupling in beta decay.
It has the experimental value

K=1.23+0.01 .

28@,1/28m, , —( 1/2) t

m,
1/2o ~+1/2 ~ 2~@, —(1/2)~m, , 1/2~

A, =O.
(14)

In Eqs. (7}and (8), j; is the total angular momentum
of the initial state, m; and mf are the polar-axis pro-
jections of the initial and final total angular momen-
ta, q is the number of nucleons in the fragment, the
index k specifies which of the q particles in the frag-
ment undergoes beta decay, uk is the dimensionless
radial coordinate

Equation (14) implies the constraint

Ps ~s=~ .

III. "3Cd EXAMPLE

(15)

uk =rk/Ro, (10)

8k is the polar-angle coordinate of particle k, and o.
is the vector Pauli spin operator. The factor
(2j;+1) ' times the sum over m; is an average over
orientations of the initial angular momentum, and
the sum over mf is a sum over orientations of the fi-

The simplest possible single-particle shell model
approach is used here to establish ground-state wave
functions. By this approach, 48 Cd65 has a single-
nucleon fragment. The core nucleus, 48 Cd~, is a
stable nuclide with spin and parity of 0+. The odd
neutron in "Cd has a shell-model assignment of
s1/2, which determines the total nuclear spin and
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parity to be (—,)+. Upon beta decay, the si/2 neut-

ron becomes a g9~2 proton, which contributes the
observed ( —, ) spin and parity of the final 49 In~
nucleus.

The coordinates in which the wave functions are
expressed are relative coordinates between the nu-
clear fragment and the nuclear core. The nuclear
state in general is

=R«(r) X (1sj
I mrm, m)Yi '(8,$)&s',

mIm

R20(r) g (o-, —, 10m, m. }YoXi/2
m,

0 m
=R2o(r) Ypyi/i (17)

since the CG coefficient is simply 5 .. For the fi-

nal state, Eq. (16) gives

is a spherical harmonic, and X, ' is a spin wave
function defined in a spinor space. For the initial
state, Eq. (16}is

(16) 0f =Rp4«} g (4 2 i I 1sipsmf }Y4 ~1/2 (18)

where R«(r) is the radial wave function, the CG
(Clebsch-Gordan} coefficient (lsj

I mmmm, m) shows
how the orbital angular momentum vector 1 (com-
ponents mi) and spin angular momentum vector s
(components m, ) couple together to form the total

mI
angular momentum vector j (components m), Yi

where the CG coefficient gives the constraint

Pl mf —Ps

For "Cd, only Mf; will contribute. Equation (7)
with Eqs. (17) and (18) is

Mf; ——Rp u uR04uR2pu 2 4z 2 ~f—p JM ~f
m;mfa,

&& fd Q Y4/ ' cos(z' u cos8}YoXi/2o ~1/2 &
(19)

where the radial integral is written in terms of u =r/Rp, which is the form taken by Eq. (10) f«a»ngle-
nucleon fragment. The solid-angle integral reduces to

fdQ Y4/ ' cos(g cos8) Yp —,5 ——
& f dx P4(x)cos(gx),

where Pi(x) is the Legendre polynomial, and the definition

(20)

g =z'~'u

has been introduced. Since

(21)

P4(x}=—,(35x —30x +3),
then Eq. (20) can be evaluated explicitly as

dQ Y4 cos(g cos8) Yp =485
& g

mf —p

k=O "+
Equation (19) is now

Mf; =24z gg (4—, 2 I
Op, ,p, )Rp fdu u Rp4(u)R2p(u)

m jtl

)kzku2k (k+4)~ t m

(2k+9)! k!

(22)

(23)

Evaluation of Eq. (23) will be done in terms of the components (Mk")f;, where A, = + 1,—1,0. The only two
CG coefficients required for Eq. (23) are

3

The components of Mf; are, from Eqs. (14), (23), and (24):

(24)
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(M p )f (I )f ( 6 5R p p g ( J I(II II Rp p ( Ip eR p p (p )

(Mo )f; ——0.
(25)

2(n)!R„i(u)=
R,'I'(n +1+ , )— (26)

where L„+' '(u ) is a Laguerre polynomial. s The particular Laguerre polynomials required for Eq. (25) are

Lo (u )=1 L2 (u )=—(4u —20u +15) .

The radial integral is
1/2

duu + R04R20= due "u "+' (4u —20u +15)
4 2 1 ~ z

' 1/2
2 1 (2k+9)!!(k+4)(k+3)

Ro 2k+245
J

The radial integral will now be evaluated. This requires the choice of a model potential for the nuclear
force. However, the value obtained for the radial integral is not sensitive to the model selected, and so, as is
commonly done, harmonic oscillator wave functions will be used because of their analytical tractability. These
radial wave functions are real, and are given by

1/2
ule —(i/2)u2Li+(i/2)(u 2)

n

(M"')f;=(M' )f;
' 1/2

S Z'"
14 90 k=o

k
z (k+4)(k+3)
4 k!

so the matrix element components are

XZ 4 Z

8

Z

24

M;„2= + 2 —i/2e(Dd I

4 (~ )i/2

2

(29)

(27)

The sum over k in Eq. (27) can be accomplished in
terms of exponentials to give the closed-form result

(M+ )f; =(M' )f;
1/2

1 2 ij4 2 Z Z
e ' z 1 ——+

3 5 7 6 192

(2&)
~ COS

From Eq. (13), rectangular components of Mf; are

(M„' )fj —(M+ )fj,
(My' )fi ——0,
(Mcos) 0

The squared induced matrix element is, from Eqs.
(6) and (28),

This, when inserted into Eq. (4), gives the induced
transition probability per unit time.

IV. ~Sr EXAMPLE

Sr has a two-nucleon fragment (q=2) with
L =1. The core nucleus of ssSrs2 is ssSrso. The two
ds/2 neutrons in Sr beyond the magic number of
50 constitute the fragment. They must be con-
sidered as a pair because initially they are angular-
momentum coupled to 0+, and it is impossible to
say which of the two will decay. After decay, the
remaining d5/2 neutron will couple to the newly
formed pi/2 proton to give the 2 state of the 39Ysi
daughter nucleus.

A properly antisymmetrized initial state wave
function is

g ( ——,o
I ~i~20)[fs/2, m, (1Ãs/2, m (2) Ps/2, m (2W'5/2, m (1)t

Nl (,mp

(30)

where each of the 1((s/2 m states is of the type given in Eq. (16). Quite arbitrarily, it will be supposed that the
neutron labeled (1) will be the one to undergo beta decay, so the final state will have a proton labeled (1) as well
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as the "spectator" neutron carrying the label (2). The antisymmetrized wave function, Eq. (30), ensures that
the contributions of both neutrons to the beta decay are considered. A basic property of the CG coefficients
gives

( —,—,0
~
mim20) =—( —,—,0

~
m2miO} .

Then if the summation indices m i,m2 are interchanged in the second (exchange) term in Eq. (30), this gives an
additive contribution identical to the first (direct) term. This is physically obvious because the two neutrons are
in every way identical. Thus there is no need to treat the exchange term separately. It will simply be dropped,
and the direct term doubled to compensate for it. Thus, Eq. (30) becomes

4=2'" g (-, —,oImim20)45/2, m (1W'5/2, m (2)

]. (1/2) —Nl )
„2g( —) '45/2, m, (18'5/2, -m, (2» (31)

when the CG coefficient value of

( —,—,0
~

m im20) = ( —) '(2 3 } " 2'5~

is used. The final state is simply

4f g ( —,—,2
I pip2mf 5'i/2, pi(1)1('5/2, y2(2) (32)

Only Mf; will contribute in this case, since initial and final parities are opposite. From Eqs. (8), (31},(32),
and the knowledge that j;=m; =0, the transition matrix ejement is

Mf; =
i/2 g g g( —,—,2 ~p, ip2mf)( )

mf p&,

@ZAN,

1/2

X fi/2„, (1),sin uicosei of5/2~, (1) ($5/2„,(2),$5/2 ~, (2)) . (33)

Orthonormality as used with nucleon (2) gives

( P5/2, p (2} P5/2, — (2}) ~p, —

and the CG coefficient in Eq. (33) gives

Pg ——mf —P1.
Equations (34) and (3S) together yield

mf ——P1—Nl1

The inner product for nucleon (1) is

(gi/2»sin(gicos8i)ops/2~, )=Ro fdttiui Rii(tti)Ri2(ui)

X g g (1—,—,
~ ptp, pi)(2 —, —,

~
mtm, m i }

(34)

(3S}

(36)

0] 1 1 sin g]cos01 rg 1 1/go'y1/P, (37)

in which Eq. (16) has been used for the wave functions, and where the definition

g1= ~Z Q1
1/2

has been introduced. The CG coefficients in Eq. (37}yield

(38)
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PI=91—IJs ~

m1 —fl1 Ps+ms .

The solid angle integral in Eq. (37) can be written in the form

JdQ]F&' sin(g]cosa]) Y2' ——,(3 5)' C„,5„,~, ,

where
1/2

(1 p])—! (2—p])!C„= dx P]'(x)P2'(x)s]ng]x,
1+p,( ! 2+p] ! —1

and the P„'(x) in Eq. (42) are associated Legendre functions. 9 The C& have the property

C~, —C ~, .

(39)

(40}

(41)

(42)

(43)

The result of the index constraints from Eqs. (34)—(36), (39), (40), and the integral in Eq. (41), is that Eq. (33)
becomes

~ sin 5
~fj Rp J du]u] R]](u ] )R]2(u] )

2

(]/2) —p]+p, —

p,
&

p, m

1 5 1 1

X(2 22Ip] p]+p, —m, p, —m—, )(12 2 Ip] pgp, p])—

1 5 mx (2 2 2 I p] p. m.—p] p, +m—,}c(„, z ]g,&20 1']&2 . (44)

From the A, =+1 component of Eq. (44), Eq. (14) specifies the values of p, and m„so only one sum
remains. The expression is

' 1/2
2(M ~")yg = ] 2 Rp du]u] R]](u] )R]2(u])

Xg(2 —, 2 I
1 —p] —p]+1)(—,—p])' ( —, p])' C»—(]n)

P~

With the aid of Eq. (43), the expansion of the p] sum in Eq. (45} gives

(M'+")f;= , Rp Jd—u]u] R]](u])R]2(u])(3 Cp+4C]) .

(45)

(46)

When the sine function in the integrand in Eq. (42) for the C» is expanded, the integral is elementary, yielding

( )k 2k+1(k + 1)
Co ——4

p (2k + 1)!(2k+3)(2k +5)
'

( )k 2k+1

C =23'"&
p (2k + 1)!(2k+3)(2k +5)

'

(}kg2k+1(k+3}
k~p (2k +1)!(2k+3)(2k +5)

Equation (47), substituted in Eq. (46}, leads to

(M'+"
)f& =]y2 & 2k'

2 ]g2 ( —2) (k+3)
Rp du]u] R]1(u])R]2(u] )u ]

3 2 2k+1
3'~

k (12 "(2k+1)!(2k+3)(2k+5)

when the definition (38) is used.

(47)
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To evaluate the radial integral in Eq. (48}, the radial wave functions in Eq. (26) are employed, with the
Laguerre polynomials

L3/2( 2)
5 2 L 5/2( 2) 7 2—
2
—Q 1 Q —

2
—Q

The final result for the radial integral is

2k+3 1 (2k +5)!!(2k +4k +7)
d~ ~ ~ ~

~

~ R u ~~
O

0
11' ll 1 ]2 1

R 3 3.5(2.7)l/22k

This integral, when substituted in Eq. (48), gives
1/2

, /, + ( —z)k(k+3)(2k'+4k+7)
k=0 24kk t

~sm(M+ )f =
3.5 3.7

31 1

24.37 2437

The sum in Eq. (50) can be accomplished in closed form to give
' 1/2

(M"") =— e ' 'z' 1— 1 Z3
2"3 7

(49)

(50)

(51)

For the A, = —1 component, it is easily shown that

(Msitl ) (Mslll )

Equations (33) and (14) lead to the A, =O component of the matrix element

1/2

(MO ~fi Ro fdulu] R]1(u1)R]2(u1 )
2

(52)

Xgg( —)
"' '( —, —,2I]M] —p]0)

I 1 1 5+(1 2 2 II 1 ms ms( 1)(2 2 2 IP] ~s ~sP]}C(is]—m ] ~ (53)

Both sums in Eq. (53) are to be expanded, and the value of the CG coefficients inserted. The property (43)
then leads to the form

(M )f = — R0 fdu]u] R]]( u]) R] z( u])( 3 CQ+2C]) (54)

With the help of Eq. (47), one has

( —)"gl +'(k +2)
k~0 (2k +1)!(2k+3)(2k + 5)

(55)

Equations (54). and (55), when combined, give rise to a radial integral exactly the same as the one evaluated in
Eq, (49). The A, =O component is then

]/2+ ( —z) (k+2)(2k +4k+7)
3.5.71/2 ~ 24kk ]

in series form, or

1/2 2

(M0 )f; ——— e z 1— z+ —z — zsin 2'7 —z/16 1/2 5 1 2 1 3

35

in closed form.
From Eqs. (6), (13), (51), (52), and (56},the squared induced matrix element is

(56)
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K 2 7 —z/8
2

llld I 4 (2 )i/2

X [1——,z+ (1.6786 X 10 )z —(7.3408 X 10 )z

+(1.7106X10-')z'—(1.9203' 10-')z'+(8. 1095y10-")z'] . (57)

The coefficients rendered decimally in Eq. (57) are all available as rational numbers, but their rational expres-
sions are too complicated to be useful.

V. 87Rb EXAMPLE

s7Rb has a three-nucleon fragment (q =3) with L =3. The odd proton in 37Rbqo must be part of the frag-
ment because initially this p3/2 particle accounts for the entire Rb spin and parity of (—, ) . The beta decay
itself involves a neutron, not the odd proton, and since the beta decay neutron is initially paired with another to
give 0+, then both of these neutrons must also be assigned to the fragment. In the final state, the g9/2 neutron
which beta decays to a p3/2 proton will couple to 0 with the initial odd proton, while the remaining g9/2 neut-
ron accounts for the ( —,)+ spin and parity of the 3sSr49 daughter nucleus.

The initial state of the Rb fragment has two g9/2 neutrons coupled together to give zero angular momen-
tum, and the odd p3/2 proton in Rb is coupled to the paired neutrons to give an overall angular momentum of
—,. The neutron part of the initial state is

g; „,„,(1,2)= g ( —,—,0
I mim20)[$9/2 rrt (1)$9/2 rrt2(2) I/9/2 rrt (2)f9/2 rrt2(1)],

1 9 9

m)18p

with the further coupling to the proton given by

A =g(02 2 10m3mi)fi, neut(1 2W'3/2, m (3) ~

As in the Sr example, there are direct and exchange terms because of the antisymmetrization of the identical
particles. As in the Sr case, the contributions of the two neutrons are identical and additive. With that
knowledge, and with

(1/2)+rrr&

( —,—,0~ mim20)=, 5~
( )i/2 rrt t, —rrt2

(0—,—,
~

Om 2 mt ) =5~ ~,
the initial state is

1 (1/2)+m&~X( ) 49/2, — ( 1 W'9/2, (2W'9/2,
mp

(58)

It is convenient in a three-nucleon fragment problem to assign the index 2 to the coordinates of the beta de-

cay particle. Other possibilities are, of course, accounted for by antisymmetrization of identical particles. Irl

the final state, the identical particles are p3/2 protons coupled together to zero angular momentum, or

ef prot(2~3) y ( 2 2
0 Iitt2itt20)[A/2 it (2)A/2 it (3) 03/2 it (3%3/2 it (2)l '

it2~iti

This pair then couples to the remnant g9/2 neutron to give the —, final state,

~f=X~ 2 o 2 I I iomf 8'9/2, it (1%'f, mtp(2 3)
P&

Again, the direct and exchange terms give equal and additive contributions, and the CG coefficients can be ob-

tained directly as
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(3/2) —p, 2
( —)(, , 0 IP2P20) —

2 5», —» ~

( —,0—,
I p iOrnf }=5„,

The final state is then

1 (3/2) —p2ff= ~ g( —) '$9/2 m (1)it'2/2~ (2)$2/2»(3) . (59)

Initial and final parities in s7Rb decay are opposite, so only Mf; will contribute. From Eqs. (8), (58), (59),
and with j;= —,, the transition matrix element is

f~ XXXX( } ( ) (49/2, m (1)~ P9/2, —m2(1))
4(2 5}'/

2 1/2

P3/2 & (2),sin u2cos82 crg9/2 m (2) {gz/2»(3)A/2 m (3)) (60)

Orthonormality applied to nucleons (1) and (3) gives

(Q9/2, (1),$9/2, — (1))=5

(P3/2, —»(3) g3/2, .(3))=5

The inner product for nucleon (2) is

(!{3/2» sin(g2cos82) ~r1(9/2, m2 } RO fdu2u2 R i i(u2 )R04(u2 )

(61)

(62)

g (1—,—, II4su, p2)(4 —,—, Imam, rn2)
PIrP mI, mg

mI Pt m
X fdQ2Yi Sili(g2cos82)Y4 Xi/20Xi/2, (63)

in which Eq. (16) has been used for the wave functions, and where the definition

g2= —,Z u2
1/2

(64)

has been introduced. The CG coefficients in Eq. (63) yield

82=Pl+PS 9

Pl2 =mI+P7l

The solid angle integral in Eq. (63) is

(66)

PI+ mIdQ2Yi' sin(g2cos82) Y4' —— C„',5„.

where, in analogy with Eq. (42), the definition is introduced that

(67)

1/2
(1—p, i)! (4—mr)! i p, p,

C&,
— — dx Pi'(x)P4'(x}sing2x .

1+pi ! 4+mr ! (68)

The C&, have the same evenness property expressed in Eq. (43). The result of Eqs. (64)—(67) is that Eq. (63}

becomes
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~ sin 3 ~ + (3/2) —)s (1/2)+ms
Mf( =

(27.5)i/2 ~
I I»s ms

XRO u2u2 ~11 u2 ~04 u2

1 3 1 9 m,x(12 2 II 1(M pl+8 )( 2 2 I((41 in, pi+ni, )c&,&i/2+~)/2 ~ (69)

When the A, =+1 component of Eq. (69} is stated with the help of Eq. (14), the two CG coefficients can be
evaluated immediately, and the outcome is

(My }fi 5 1/2 ~0 fdi42u2 ~11(142)~04(142)+(2+(Ml} ( 14l) C)s(
(25.5 )

1/2 (70)

The sum over pI is

g(2+p )1/2(5 p ))/2( (2.5)1/2C +(2+21/2)31/2C
It

(71)

when the property in Eq. (43) is employed. The C& can be evaluated straightforwardly when the sine function

is expanded, to give the results

( —)"g,'"+'k(k +1)'(k +2)(k +3)

»2 ( —) g2 +'k(k+1)(k+2)(k+3)

( —)"g "+ (k+4)1(2' k+2 +3' +6' }
(2.5)1/2C~ +(2+21/2)31/2C~ 26.51/2 g (2k +9)!k!

In the evaluation of C'1, a value for the associated Legendre function P4'(x) is required, which is not to be
found in most brief tabulations of that function. The required function is

P4'(x)= ——,(1—x )'/x(7x —3) .

Equation (71) puts Eq. (70) into the form

(~»n) z g (21/2k+23/2+31/2+61/2)g 5fdu u 2g (u )g (u )u + (72)
27/2 "

( —z)k(k +4)1
3' 3' (2k +9)!k! 0 2 2 11 2 04 2 2

when the definition (64} is used.
The radial integral in Eq. (72} is evaluated by using the radial wave functions stated in Eq. (26}. The re-

quired Laguerre polynolmals are

L i (u2) = —,—u, L() (u2)=1 .

The radial integral is

2k+5 1 (2k +9)!!(k+3)
0

du2u2 ~ll(u2)~04(u2) 5 2 1/2 k
RO 3 57 2+

Equations (72) and (73) yield the result

(Msin } 3/2
ao

( z)k(k +3)(21/2k+25/2+ 31/2+ 61/2)
+ ~~ 23/2. 35.5 71/2 + 22k32kk!k=0

The series in Eq. (74) can be summed to give the closed form
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(~sin) (4+2 3 +6 ) —z/36 3/2
1/2 1/2

+ f 22.34.5.71/2
12+2 3 /+6/ 1 1 1

4+2.31/2+61/2 22.33 (4+2.31/2+61/2) 23.35
z+ z'

(75)

The A, = —1 component can be shown to be

(~Sill ) (Mslll )

The combination of Eqs. (14) and (69) gives the A, =O component
' 1/2

(~0~ )fi 7 g g( —) 'Rp J du2u2 Rii(u2)Roe(u2)
P,l m

(76)

X(l z 2 II I ~ I I+~, )(42 2 II 1 ~.Pl+I )Cp,

When the two terms in the sum over m, are written explicitly, the CG coefficients can be evaluated to put the
matrix element in the form

(Mp )fi = 1 Rp Jduzu2 R 11(u2)R04(u2)
(27.5 )

1/2

X g[(2+@1 )'/'(5+@1 )'/' (2 P—l )'/'—(5 Pl )' '—]&„', .
P~

(77)

In the ill sum in Eq. (77), the square bracket is antisymmetric under a change of sign in iul, whereas C& isPI
symmetric. This means that

(MP'")f; =0 .

Equations (6), (13), (75), (76), and (78) give the squared matrix element as

i2 ( + + ) —z/183
md

~

477(2z )
/ 2 3 .52 7

e z
f

r

(78)

X 1— 12+2 3' +6' 1 (35+2 +12 3' +6 /
)

4+2 31/2+6 / 2 3 (4+2 31/2+61/2)2 2335
z+ z'

(12+23/+6/) 1 1

. z'+ z4
(4+2.31/2+ 61/2)2 24.38 (4+2.31/2+ 61/2)2 26.310 (79)

VI. LIMITS AND EXTREMA
OF THE TRANSITION PROBABILITY

A. Low intensity behavior

An investigation of the z «1 case using the gen-
eral results presented in I gives the simple result that
the transition probability is proportional to z . The
z «1 case can also be explored in simple fashion
from the results presented here, but it must be kept
in mind that z «1 does not mean z —+0. The reason
is that the results given in this paper make use of an
analytical approximation developed in I in which it

z ))6)& 10 (80)

With this restriction, z «1 can be regarded as cov-
ering a range between about z = 10 and z = 10

Equation (4) shows that the intensity dependence
of the total transition probability per unit time is

I

was required that zf »1. In view of Eq. (3), this
does not eliminate the possibility of examining
z «1, but it does set a lower limit on z. An exam-
ination of the validity conditions for the use in I of
an asymptotic expansion of the generalized Bessel
function leads to the general restriction that

1

—,zf »1. From Eq. (3), this converts to
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given by the squared transition matrix element,

~
M&„d

~

2. The z &&1 limit of Eq. (29) for "iCd, Eq.
(57) for Sr, and Eq. (79) for Rb all are of the

W«, ~z /zf1/2

or

pr L —(1/2)
tot

when the connection between z and zf given in Eq.
(3) is accounted for. In other words, the true z~
limit

The z dependence of JY«, for "Cd is given by

f(z)=e ' z ~ (1—z/8)2(1 —z/24)2 (83)

from Eq. (29). Setting f'(z) =0 requires the solution
of

z'~'(z —8}(z—24}(z'—47z+544z —1344)=0 .

(84)

The cubic factor in Eq. (84) has roots at z=3.3939,
12.8942, and 30.7119. These are all maxima, with
the absolute maximum at

L
Wtot ~z (82) z=3.3939 . (85)

predicted by the complete results in I, is modified in
the z «1, zf »1 domain from Eq. (82) to Eq. (81).
Equation (81) should really be termed an
intermediate-intensity behavior rather than a true
low-intensity behavior.

B. Extrema in the transition prabability

The transition probability per unit time expressed
with the help of Eq. (29) is a positive-definite quan-
tity which approaches zero as z~O because of the
z ~ factor, and approaches zero as z —+ ao because of
the e ' factor. That means that there must be at
least one maximum for physical (positive) values of
z. The existence of a maximum transition probabili-
ty in the presence of intense fields has been noted be-
fore. ' In fact, some transitions can exhibit more
than one maximum.

The minima of Eq. (84) are at z=0, 8 and 24. The
solution at z =0, while it is physically reasonable, is
not truly meaningful here since it falls outside the
inequality stated in Eq. (80). All the other roots of
Eq. (84) are physical. However, only the maximum
at z=3.3939 is of any significance. Equation (83)
has both a zero and a minimum at z=8 and 24.
The other maxima which occur at larger values of z
have very small amplitudes as compared to the abso-
lute maximum at z= 3.3939, and they are thus of lit-
tle physical consequence.

2. gr

Finding the extrema of Eq. (57) for Sr requires
finding the roots of a power of z times a seventh de-
gree polynomial (septic). The zero root from the
power-of-z factor can be ignored since it does not
satisfy Eq. (80). The septic is

z —(2.8880X10 )z +(3.1514X10 )z —(1.6646X10 )z +(4.6046X10 )z

—(6.6062X10 )z +(4.1926X10 )z —(4.9325X10 ) =0 . (86)

Equation (86) has two complex roots and five real roots indicating maxima in Eq. (57) at z=1.4931, 40.868,
and 104.87, and minima at z=22.512 and 81.385. Of these extrema, only the maximum at

z = 1.4931 (87)

has any physical importance. Relative to this maximum in the transition probability for Sr, the other extre-
ma have amplitudes much too small to be of consequence.

3. 8'zs

A solution for the extrema in the transition probability for Rb as it follows from Eq. (79) requires a solu-
tion for the roots of the quintic

z —(7.6189X10 )z +(2.0636X10 )z —(2.3972X107)z +(1.1544X10 )z —1.6713X IOi0=0. (88)
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Equation (88) has five real roots predicting maxima
in the transition probability at z=24.666, 118.78,
and 296.00, and minima at z=79.243 and 243.20.
Of these, only the first maximum at

z =24.666

is of any importance.

(89)

C. General algebraic behavior

It is clear that there are strong algebraic similari-
ties in Eqs. (29), (57), and (79) for the squared in-

duced transition matrix elements for the three exam-
ples treated. It is also evident that there are major
differences in the locations of the maxima of the
three different transition probabilities, as can be seen
from Eqs. (85), (87), and (89). The goal posed here
is to ascertain a general form for the squared transi-
tion matrix element as a function of forbiddenness,
L, and number of particles in the fragment, q; and
then to see if some estimate can be made for the lo-
cation of the maximum.

The algebraic form of the transition probability is

VII. HALF-LIVES

The total induced transition probability per unit
time is given in Eq. (4). It is related to the half-life
for induced beta decay by

t;„s——ln2/W, o, . (93)

alternating quality of the polynomial, the first ex-
tremum will actually occur at a smaller value than
predicted by Eq. (92). For larger z values, higher-
degree terms in the polynomial become increasingly
important, and so other extrema at larger z values
can occur.

The general conclusion is that Eq. (91) is the gen-
eral form for the transition probability. This form
exhibits a first maximum at a value less than that
given in Eq. (92), possibly followed by other extre-
ma. For example, a comparison of Eqs. (85) and
(92) for " Cd (3.39 vs 7), Eqs. (87) and (92) for Sr
(1.49 vs 4), and Eqs. (89) and (92) for ' Rb (24.67 vs
45), show the general validity as well as the limita-
tions of the conclusions on the first maximum.

L —1/2 —z/a

&& (alternating polynomial in z), (90)

The analog of Eq. (4) for allowed beta decay is

6 m~o= fo IMo
I

'
~

27T3
(94)

where the "alternating polynomial in z" in Eq. (90)
starts with the zeroth-degree term and proceeds up-
ward in powers of z. The problem is to ascertain the
appropriate value of a in Eq. (90). The value of a is
found from the coefficient attached to powers of z
in the sum over the index k as it occurs in Eq. (27),
(50), or (74). The factor that oes with z follows
from the combination g

" (or g ~ or gz ). From Eqs.
(21), (38), and (64), g is of the form z'~ u/q. The
factor (z'~ /q)" leads directly to z/q . The u

factor, after integration over the u variable, yields a
further factor of (1/2 "). Altogether, z appears in
the k sum in the form (z/4q )", which accounts for
the final exponential which arises from summing the
k series as exp( —z/4q ). This factor in the matrix
element, when squared, gives exp( —z/2q ) in the
transition probability. Equation (90) is thus more
explicitly stated as

pr L —( 1/2) —z/2q 2

Equation (94) gives the half-life expression

6.19)& 10 10t=
fo I ~o

I

' fo I
~o

I

' (95)

105.35

2f~.t I K.d I

' (96)

when the experimental values' for the universal
weak interaction coupling constant and the Cabibbo
angle are used to evaluate G. If an expression like
Eq. (95) were used to evaluate induced half-lives, an
unrealistically short lifetime would be predicted.
The reason is that the simple shell-model wave func-
tions used here would, were no angular momentum
and/or parity forbiddenness present, give wave func-
tion overlaps more characteristic of superallowed
than of ordinary allowed transitions. An empirical
remedy for this problem is to use for induced transi-
tions in even-A nuclides

X(alternating polynomial in z) . (91) and for odd-A nuclides

Were the polynomial in z in Eq. (91) replaced by a
constant, 8'would have a maximum at

105.18

tlnd =
ft.t I

~.d I

' (97)

z,„=q (2L —1) . (92)

For values of z given by Eq. (92), the constant term
in the alternating polynomial in z is, in fact, the
dominant term in the polynomial. Because of the

where the exponents in Eqs. (96) and (97) come from
average logft values" for allowed transitions in
even-A and odd-A nuclides.

Evaluation of f„, as required for Eqs. (96) and
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TABLE I. Summary of results for the nuclides calculated as examples. The f„values are spectral integrals.
squared induced transition matrix element and the induced half-life are calculated for the field intensity which maximizes
the transition probability.

Nuclide q L

113Cd

9PSr

Rb

Ep

1.581
2.068
1.535

9.90x 10-'
1.399
6.97x 10-'

3.09x10 2

0.700
2.03x 10

—6.4X 10-' 0.124
—0.144 1.95
—4.2 X 10 8.58 X 10

3.08 x 10-'
3.50x 10
4.77 X 10-'

tend

(years)

1.3x 10'
10.4
1.2x10'

(97) can be accomplished if the value of ep=Eplm
is known, where Eo ——m+To, and To is the max-
imum kinetic energy (or Q value) available to the
electron in beta decay. These eo values are listed in
Table I for the three examples cited here. This table
also lists f~, f2, and f3 values as calculated from
Eqs. (127), (128), (134), (135), (139), and (140) of I.
Also listed is f«„ the sum of the separate spectral
integrals, as shown in Eq. (5). The squared induced
transition matrix elements given in Table I are
found from Eqs. (29), (57), and (79) when evaluated
at their respective maxima, stated in Eqs. (85), (87),
and (89). The value of tc is given in Eq. (9), and zf is
related to z as in Eq. (3), with mRp ——„.

The shortest induced half-life shown in Table I

for Sr, a first-forbidden beta decay, is somewhat
faster than the natural decay channel. When com-
bined with the 28.6 year' natural decay, the result-
ing half-life would be 7.6 years. By contrast, the
third-forbidden s7Rb natural half-life of 4.80)&10'p
years' stands in striking comparison with the shor-
test induced half-life of 1.2&&10 years. Even. more
spectacular is the case of fourth-forbidden "Cd,
where a natural half-life of 9.3X10's years' and a
shortest induced half-life of 1.3&(10 years are to be
compared. In general, the higher the degree of for-
biddenness, the more striking is the possible relative
reduction in half-life due to decay induced by exter-
nal fields.

H. R. Reiss, Phys. Rev. C 27, 1199 (1983).
~H. R. Reiss, Phys. Rev. Lett. 25, 1149 (1970).
3H. R. Reiss, Phys. Rev. A 22, 1786 (1980).
4J. H. Eberly, in Progress in Optics, edited by E. Wolf

(North-Holland, Amsterdam, 1967), Vol. 7, p. 361.
5H. R. Reiss, Phys. Rev. A 19, 1140 (1979).
E. D. Commins, Weak Interactions {McGraw-Hill, New

York, 1973), p. 106.
7E. D. Commins, see Ref. 6, pages 115 and 184.
The L@guerre polynomials are used with the definition

and normalization as employed by I. S. Gradshteyn and
L M. Ryzhik, Table of Integrals, Series and Products,
4th ed. (Academic, New York, 1965), Sec. 8.97. Cer-

tain widely-used quantum mechanics texts employ dif-
ferent conventions.

For definitions and normalization see, for example, D.
Park, Introduction to the Quantum Theory, 2nd ed.
(McGraw-Hill, New York, 1974), Appendix 4.
E. D. Commins, see Ref. 6, pages 45 and 115.

t~E. J. Konopinski, The Theory ofBeta Radioactivity (Ox-
ford, London, 1966), Tables 5.2 and 5.5.

2D. Kocher, Nucl. Data Sbeets 16, 55 (1975).
3P. Luksch and J. W. Tepel, Nucl. Data Sheets 27, 389

(1979).
S. Raman and H. J. Kim, Nucl. Data Sheets B5, 181
(1971).


