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A basic formalism is developed for the theory of the effect on nuclear beta decay of an in-

tense, plane-wave electromagnetic field. Interactions of the field with both the nuclear par-
ticles and the decay electron are included. The formalism is developed from first principles,
including a derivation of transition probabilities between explicitly time-dependent asymp-
totic states. Interaction of the field with the nucleus is analyzed in terms of separation of
the nucleus into an inert core and a fragment. The field interacts with the fragment, con-

sisting of the nucleons which are candidates for beta decay, plus any other nucleons
angular-momentum coupled to them in initial or final states. A separation of variables in
the dynamical equations for the nucleus into center-of-mass and relative coordinates for the
core and fragment shows direct charge coupling even for a fragment consisting entirely of
neutrons. The transition formalism involves specific intense-field wave functions both for
the nucleus and for the beta particle. Complete results are presented for total transition

probability per unit time for intense-field-coupled nuclear beta decay. A much simplified
formalism is given for the special case of very high field intensity at very low frequency.

The results then bear a formal resemblance to ordinary beta decay theory, but they contain
specific field effects in the beta particle spectral function, and in the nuclear interaction ma-

trix elements. This is the first of a series of papers on this subject.

RADIOACTIVITY Intense-field-induced P decay. P decay forbidden-

ness removal.

I. INTRODUCTION

A. The physical problem

It is conventional to presume that photons will in-
teract with atomic nuclei only via first-order in-
teractions, in which the photons possess an energy
typical of nuclear transition energies. By contrast,
the processes considered here involve specific
intense-field electromagnetic interactions, in which
nuclear transitions can be affected or effected by
very low frequency, but very intense electromagnetic
fields. The implication of the phrase "intense-field
electromagnetic interactions" is that virtual process-
es of all orders in the externally applied field are
summed over. Thus, whether net absorption or
emission of photons is of low order or of high order,
the overall interaction implicitly is of arbitrarily
high order because of the summed virtual processes.

The nuclear process treated in this paper is beta
decay. A major reason for this choice is that forbid-

den beta decays can show dramatic increases in tran-
sition probability when subjected to intense fields.
This is easily explained in terms of the photon as a
pseudovector particle. ' Nuclear beta decay is for-
bidden (i.e., strongly suppressed) if the difference be-
tween initial and final nuclear angular momentum
exceeds one unit, and/or if nuclear parity changes in
the decay. When external photons intercede in the
decay, however, an additional angular momentum of
up to the net number of photons absorbed or
emitted is made available; and an additional parity
change or no change is introduced, depending on
whether the net photon number is odd or even.
Thus, forbidden decays can be modified to allowed
decays, albeit at the expense of an electromagnetic
field interaction in addition to the weak interaction.
With sufficiently high field intensity, the penalty in
transition probability paid for this additional in-
teraction is not nearly as great as that paid for for-
biddenness in the beta decay. This can lead to major
increases in transition probability. This is especially
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true for high-order forbidden decays, since intense
field phenomena have the property that high-order
interactions can be competitive with, and even dom-
inate the lowest-order interaction. '

There are several mechanisms for enhancement of
beta decay transition probabilities by intense-field
effects, although the removal of forbiddenness is
generally the most spectacular. Apart from the
forbiddenness-changing mechanism, enhancement
can occur in both allowed and forbidden decays
through a change in nuclear wave function overlap
as a result of the opening up of extra angular
momentum channels due to the field. Also, electron
spectral integrals experience an increase due to
intense-field interactions. This can be viewed as an
enlargement of the phase space available to the lep-
tons as a result of electromagnetic field interactions.
Yet another mechanism for beta decay alteration is
available in energy conditions. A decay that is ener-
getically forbidden can become accessible by energy
contributions from the field. This last mechanism is
less important than the others when very low ap-
plied field frequencies [such as radiofrequency (rf)]
are considered. By contrast, the removal of angular
momentum and/or parity forbiddenness by field in-
teraction requires only a negligible energy contribu-
tion from the field. The spin and parity of each
photon is 1 irrespective of the energy of the pho-
ton.

B. Background

There is little history of work on causing changes
in the rates of beta radioactivity. The common
understanding is that it is an immutable natural pro-
cess. Somewhat more research has been done on
rate alterations in the closely related process of elec-
tron capture in nuclei, and on the more distantly
connected process of internal conversion. Electron
capture and internal conversion have the common
feature that they involve interaction between the nu-
cleus and the surrounding atomic electrons. These
processes are thus affected by changes in the distri-
bution of atomic electrons brought about by chemi-
cal or other external means. Considerable theoreti-
cal and experimental work has been done on this
subject. Changes in the chemical environment lead
typically to changes in the decay rate of a few parts
in 10, although effects as much as ten times larger
have been observed in special cases. Developments
in high pressure technology using diamond-anvil
presses have led to the observation of increases as
large as six parts in 10 in the decay constant of an
electron capture reaction due to pressure effects.

The cases of electron capture and internal conver-

sion just discussed involved direct participation of
atomic electrons in a nuclear process. However,
even ordinary P and P+ decays are influenced to
some degree by the Coulomb field experienced by
the beta particle as it departs from the nucleus. This
suggests the possibility that the distribution of
atomic electrons can also affect such decays. It has
been estimated theoretically that chemical effects
might lead to changes of the order of a few parts in
10 in beta decay rates.

The work reviewed above is somewhat peripheral
to the present subject, which is the modification of
beta decay rates by externally applied fields. There
are two theoretical treatments of the influence on
beta decay of extremely intense constant magnetic
fields. These studies conclude that there would be
essentially no effects for fields up to about 10' G,
but above about 10' G beta decay rates would be in-
creased noticeably. The problem is that the largest
field that can be produced in the laboratory at
present is about 10 G.

The work just cited is of interest in an astrophysi-
cal context. Another astrophysical treatment of beta
decay modification treats photon effects on beta de-
cay in a stellar interior. The mechanism is one in
which the photon produces a virtual electron-
positron pair, with the positron being absorbed by
the nucleus in lieu of beta-particle emission. The
process can become of importance at temperatures
of the order of 10 K.

Specific intense-field effects on free neutron decay
have been calculated, ' following earlier work on
field effects on other elementary particles. "

The earliest work treating intense-field modifica-
tion of beta decay as it occurs in nuclei was done by
this author. ' These results are, at least in part,
reproduced below. Included in this work was a
treatment of the field interaction with the nuclear
particles as well as with the beta particle. The prin-
cipal thrust of this investigation was the case of for-
bidden beta decay. An application of the general re-
sults of Ref. 14 to allowed decays has been described
briefly. ' Recently, Becker et al. ' considered laser
effects on beta decay, confining themselves to the al-
lowed case, treating only effects on the decay elec-
tron, and only for the algebraically simple case of
circular polarization of the applied field. In
response to criticism' that calculated results were
overstated, Becker et al. at first defended' the ini-
tial results. They then decided' ' that circular po-
larization indeed gave small effects, but that linear
polarization, under some conditions, appeared to be
much more promising. Criticisms' ' ' about the ob-
servability of laser enhancement of beta decay as
proposed by Becker et al. ' will be discussed in a
later paper.
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C. Plan of the paper

The basic formalism employed is stated in Sec. II.
To ascertain the effect of an externally applied elec-
tromagnetic field on the internal coordinates of a
nucleus, the nucleus is considered to consist of two
parts: a "core" and a "fragment. " The core is a
stable subnucleus of zero total angular momentum,
and the fragment contains the nucleon (or nucleons)
which is a candidate for beta decay, plus any other
nucleons which are angular momentum coupled to it
in initial or final states. The equation of motion is
then separated into center-of-mass (c.m. ) and rela-
tive coordinate equations giving, respectively, the
dynamical. equations for the motion of the center of
mass of the entire nucleus and the relative motion of
the fragment with respect to the core. It is this
latter equation which must be solved.

The theory of induced beta decay involves a cou-
pling of the nuclear fragment both to the external
electromagnetic field and to the weak (beta decay)
interaction. The coupling constant of the weak in-
teraction is very small. On the other hand, the cou-
pling constant to the electromagnetic field is very
much larger, particularly in view of the relatively
large intensity of the applied field. Furthermore,
the field can be regarded as being on for a time ap-
proaching infinity before and after the beta decay
occurs. Therefore, the weak interaction is treated as
a perturbation which causes a transition of the
nucleus-plus-field system from one state to another.
Since the combined nuclear-electromagnetic field
system is explicitly time dependent, the standard
derivation of the perturbation formalism of beta de-

cay (based on stationary nuclear states) is not ap-
propriate. That is, the Fermi Golden Rule is not
valid. A derivation is presented which is applicable
in the presence of explicit time dependence. The re-
sult has the standard form.

The perturbation theory just described requires a
knowledge of the state vector for the nuclear frag-
ment in the presence of the field. The interacting
nuclear wave function employed is the momentum
translation approximation.

The electron emitted in the beta decay does not
appear until the decay has occurred, and so its in-
teraction with the field might be thought to be of no
consequence. However, the field intensity parameter
associated with induced beta decay is so large (and
the mass of the electron sufficiently small) that the
onset of effective interaction of the electron with the
field occurs on a shorter time scale than the Heisen-

berg uncertainty time of the beta decay interaction.
The onset of field-electron interaction is also much
faster than the transit time of the newly created beta
particle across the nucleus. The electron is therefore

represented by a Volkov wave function, which is an
exact solution for a free charged particle in the pres-
ence of an electromagnetic field.

In Sec. III, a general expression for the transition
probability for induced beta decay is developed.
Coupling of the electromagnetic field to the beta
particle causes the transition probability to split into
three parts corresponding to the following: direct
interaction of the field with the electron charge, in-
teraction of the field with the spin of the electron,
and an interference between the direct and spin
terms. For the field intensities of interest here, the
direct term and the spin term are of approximately
equal importance for the more energetic beta decays,
although the direct term dominates for low energy
decays.

The final form for the transition probability per
unit time, or equivalently, for the half-life for in-

duced beta decay, is written for any order of forbid-
denness which is to be overcome by the inducing
field, and for any number of nucleons in the frag-
merit.

The formalism developed in Sec. III is quite gen-

eral. In Sec. IV, a much simplified theory is
developed for the special case of very high intensity
and very low frequency. The field intensity domain
considered is one in which the order of magnitude of
the intensity parameter describing field-nucleus in-

teraction is in the neighborhood of unity. The alge-
braic form of the results for transition probability
resemble conventional beta decay theory, but they
differ in that the electron spectral integral contains
effects of the applied field, and the interaction ma-

trix elements also contain field effects. These ma-

trix elements are generalizations of the usual Fermi
and Gamow- Teller matrix elements.

D. Companion papers

The present paper is the first of a series of papers
based largely on the physics developed in Ref. 14.
The next paper in the series will present several ex-
plicit calculational examples showing how the for-
malism given in this first paper is applied. Each of
the examples has a different degree of forbiddenness,
ranging up to fourth forbidden. Another paper in
the series will be confined to the case of allowed beta
decay. There will also be a paper dedicated to some
of the novel fundamental features introduced by the
problem of low-frequency intense-field induced nu-

clear beta decay. Because this problem involves

nontypical values for physical parameters like field

frequency and intensity, several rules of thumb re-

garded as reliable in nuclear physics, atomic physics,
and field theory are shown to be misleading when

applied to the present problem. Considerations such
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as gauge transformations and invariance, Lorentz
invariance, low frequency limits, and convergence of
perturbation theory will be discussed. There will
also be papers on unusual aspects of experiments in-
volving induced beta decay, as well as some early ex-
perimental results.

II. BASIC FORMALISM

A. Separation of variables

In the cases of interest here, one can consider the
initial nucleus to consist of a stable, relatively tight-
ly bound core, plus a fragment of one or several nu-
cleons outside the core. This fragment contains the
nucleon which is a candidate for beta decay, plus
any other nucleons which couple with it to provide
the observed total angular momentum and parity of
the nucleus. The core will always be such as to have
spin and parity 0+. For example, consider Sr,
which has 38 protons, 52 neutrons, and a total spin
of zero and positive intrinsic parity (J =0+). The
core nucleus can be considered to be Sr, which has
50 neutrons, J =0+, and is the principal stable iso-
tope of strontium. Sr is particularly stable since
the neutron number of 50 is a magic number, and
the proton number of 38 corresponds to completed

p3/2 and f»2 shells beyond the magic number of 28.
The fragment constituents of two neutrons in Sr
outside the Sr core are both d5~z neutrons, coupled
together to give an overall 0+ state. One of these
two neutrons will decay to a p~&z proton, which will
couple with the remaining d5/z neutron to form a
2 state in the daughter Y nucleus.

The problem posed here is first to write a nonrela-
tivistic Schrodinger equation for the nucleus in
terms of the coordinates of core and fragment; then
to introduce coordinates for the center of mass of
the entire nucleus, and for the relative coordinate be-
tween the core and fragment portions; and finally to
see if the Schrodinger equation can be separated into
independent c.m. and relative coordinate equations.

Assign the subscript 1 to quantities (mass, charge,
position vector} associated with the nuclear frag-
ment, and subscript 2 to core quantities. The
Schrodinger equation in ri, rz coordinates, expressed
in Coulomb gauge, is

iB,Q(r&, r, ) = ( i V ~ e~A}— —
2m'

+ ( i V 2 e2A)— —
2mz

+ v(
I ri -r2 I ) $(1 1 r2) (1)

where, for simplicity, a central potential has been as-
sumed to represent the binding between fragment
and core. This equation is written in so-called
"natural" units (A=c= 1} in the Gaussian system.
The electromagnetic field occurs in the equation
through a vector potential A(t), presumed to be
sinusoidal in time. The vector potential has the
same form as a plane wave treated in long-
wavelength approximation.

The transformation to the relative coordinates r
and center-of-mass (c.m. ) coordinates R is accom-
plished by

I =I ) —rz

(m, +m2)R=m~ r~+m2rp,

which has the inverse

iB,gx — ( i Vz e,—A(t)) fx-,
2mg

(2)

iB,Q„= ( i V„—eA(t)} +—V(r) P„, (3)
2m'

where m, and e, are the total mass and total charge

m, =m) +mz, e, =ei+ez

and m, and e are the reduced mass and reduced
charge

mimz eimz —ezm]
mr= e-:

m)+mz mi+mz

The Schrodinger equation for c.m. motion, Eq.
(2}, is exactly what one would expect for a system of
mass m„charge e, subjected to the potentials A.
The dynamical equation for the internal nuclear
motion, Eq. (3), is less obvious. The mass is the usu-
al reduced mass m„but the charge is the less fami-
liar e. Were this separation of variables done for a
single-electron atomic problem, then e~ ———e, ez ——e,
and so e = —e as usual. For the present nuclear
problem, let g and v be the number of protons and
of neutrons, respectively, in the nuclear fragment,
and let Z and N be the same numbers for the entire
nucleus. Then

mz
ri ——R+ r

m&+mz

m~
rz ——R— r

m&+mz

Substitution of these quantities in Eq. (1) gives an
equation which can be separated upon introduction
of the product wave function g=g„(r)g„(R) to
give
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(gN v—z)
A

(6)
eluding the perturbation V is

(ia, —H, —V)1(=O.
where A =Z +N is the total nuclear mass number.

The implication of Eq. (6) is that the fragment
behaves as if it has a positive charge when there is a
preponderance of protons in the fragment, a nega-
tive charge when neutrons predominate, .and a near-
zero charge when equal numbers of protons and
neutrons exist in the nuclear fragment. Note, in
particular, that a fragment consisting of two neu-

trons (an important special case) has an effective
charge of approximately —e. That is, the coupling
of the relative motion of the nuclear fragment to the
electromagnetic field has about the magnitude asso-
ciated with a full proton charge even though the
fragment consists entirely of neutral nucleons.

B. S-matrix formalism

In the derivation to be presented below of the beta
decay transition probability as induced by an applied
electromagnetic field, it is appropriate to view the
asymptotic states as states which contain the full in-
fiuence of the applied field, and the transition-
causing perturbation will be the beta decay interac-
tion. This means that the asymptotic states are ex-
plicitly time dependent, and not the stationary states
normally employed. The Fermi Golden Rule thus
cannot be used. A suitable transition formalism is
given below, based on an S-matrix approach within
a Hamiltonian formalism.

The derivation will be accomplished without con-
sideration of explicit Dirac space properties. They
can be inserted at the end. The equation of motion
for the unperturbed system is

(i5~ —Hp)y=o

with a Green's operator satisfying

(iB Hp)G(t tp) =5—(t —tp) 1

The equation of motion for the complete system in-
I

In these expressions, Hp, V, G are operators, P, g, 1

are vectors, t is a parameter external to the Hilbert
space, and Ho and V may both be time dependent.
The desired S-matrix element for transitions caused
by V can be defined by

Sf;= lim (pf, g;'+ '),
f~oo

which is the probability amplitude that a complete
in-state with initial quantum numbers (indicated by
subscript i) will evolve into a particular noninteract-
ing final state (subscript f}.

The Green's operators are explicitly

G'+'(t, t, )= —i8(t —tp}g ~a, t)(a, tp ~,

G'-'(t, t, )=i8(t,—t) g ~
a, t)(a, tp ~,

where it is convenient to introduce Dirac bra-ket no-
tation for these expressions with the correspondence
to the earlier vector notation that

where, IaI is the set of all quantum numbers. The
correspondence between these retarded and ad-
vanced operators is

G' '(t, t, )=G'+' (tp, t),

and their action on the asymptotic states is

G'+'(t, tp)P (t, )=—i8(t —tp}P (t),
G' '(t, tp)y (tp)=i8(tp —t)tI) (t) .

The formal solution for the interacting state g is

i't"( )t=P( )t-+f «iG'-"(t, ti) V(ti)g"-'(ti) .

By direct substitution, the S-matrix element is

f

Sf;= lim (pf, p;)+ lim f dti(pf(t), G'+'(t, t, )V(t, )g,'+'(t, ))
f~oo taco

f

=5f;+ lim dt, (G'-'(t„t)pf(t), V(t, gI}(+t,)} .

From the property that G' '(ti, t) propagates Pf(t) to Pf(t, ), and the fact that

lim 8(t —t, )=1,
f~oo

it follows that

Sfj —5' i f dti (pf (ti ), V(ti )QI+'(ti ) }

and also
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Sji —5f( i f dri(ljkf(ti), V(t i)p;(r i))

—i f dti f dt2(p/(ti), V(ti)G'+'(ti, t2) V(t2)QI+'(tg)) .

To lowest order in V, the result is simply

Syf 5ff i f dt(py, Vp; ),
which is a standard result, even though here the
states P/, P; are themselves explicitly time depen-
dent.

To apply this result to beta decay, the following
correspondence will be made:

The momentum translation expression for the nu-
clear wave function in interaction with the elec-
tromagnetic field is

%(r,t) =exp(ieA r)4(r, t), (8)

where 4(r, t) is the nuclear wave function with no
electromagnetic field. Validity conditions for the
approximation in Eq. (8) are

ql ip(e) y ql qg(v)

V~, y"(1—ay ),6
«Roco/E « 1,
coRp «1, (10)

where %~,%; are nuclear states in the presence of the
applied field, 4" and 4'"' are electron and neutrino
states, also in the applied field; the products like
%~%" are meant to imply direct products of the
respective spinor spaces; and the expression for V
acts in both spinor spaces, but with a value of a.= 1

in the lepton space. The empirical value for a. in the
nuclear space is v=1.23. The factor 2' '~i' at-
tached to the Fermi coupling constant is of histori-
cal origin in beta decay theory Sinc. e 5~ is ir-
relevant in a real transition, the final form for the
S-matrix element is

Sg;= i,~
—fd x[%'Jyq(1 —ay )4;]

This has precisely the appearance of the standard re-
sult, except that here it must be remembered that the
nuclear and leptonic states are states containing the
full effects of the applied electromagnetic field.

C. Interacting nuclear states

The calculational procedure developed above for
induced beta emission is to substitute wave functions
including the effects of the applied electromagnetic
field. The formalism is otherwise the standard beta
decay calculation. The nuclear wave function to be
used must represent the effects of the applied field
to an order of interaction which is at least as large
as the order of forbiddenness of the natural beta de-
cay. It must also be valid in the presence of elec-
tromagnetic fields of such intensity that the conver-
gence of conventional perturbation theory is suspect.
A technique ideally suited to the present problem is
the momentum translation approximation. "

where a is the amplitude of A, Ro is the nuclear ra-
dius, co is the energy of a photon of the applied field,
and E is the total nuclear transition energy. For op-
timal transition probability, eaRp should be of order
unity. Also, co/E will be many orders of magnitude
less than unity. Equation (9) is thus easily satisfied.
Equation (10) states essentially that the ratio of the
nuclear radius to the wavelength of the applied field
is very small, which is amply satisfied for all fields
of possible interest. One further condition for appli-
cabihty of the momentum translation approximation
is that no intermediate nuclear states are accessible
through interaction with a small number of
applied-field photons. This is certainly not possible
here. Hence, Eq. (8) is an excellent approximation
to employ.

With the standard product solution for the nonin-
teracting wave function

the initial nuclear wave function in the presence of
the field is, from Eq. (8),

4;(r,r)=e ' g;(r)e (11)

and the final nuclear wave function to be used is

%'/(r, t)=e ~ g/(r)e

The reduced charges e; and e~ are the appropriate
forms of Eq. (5) or (6), and P;( r ), g/(r ) are station-
ary state nuclear wave functions with no field
present.

D. Interacting lepton states

The leptons emitted in P decay are an electron
and an antineutrino. The antineutrino is un-
charged, and possesses no coupling to the dec-
tromagnetic field. The antineutrino is therefore
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described by an ordinary free-particle wave function.
The emitted antineutrino is treated as a neutrino in
the initial state with reversed four-momentum, i.e.,

(13}

In Eq. (13},k(„) is the four-momentum with time
part E(„),u" is a spinor, s(„) is the spin parameter,
and V is the normalization volume. The scalar
product indicated in the exponential is a four-vector
product

k(~) x —k (y)xp

E(v) t k(v)' r

(14)

which has the solution (the Volkov solution}

The electron emitted in beta decay is a charged
particle whose coupling to the electromagnetic field
is very significant when the field intensity is high.
In ordinary beta decay theory, the electron is treated
as a free particle, although Coulomb corrections are
sometimes introduced. In the present situation, the
free particle electron solution is replaced by the Vol-
kov solution, which is an exact wave function for a
free, charged particle in the presence of a plane wave
electromagnetic field. The equation whose solution
is required is the Dirac equation

(i(()+eJ —m )q)"=0,

q (g)

E, V

' 1/2

exp ip,—x+.
,„,d(k x)'(2ep, A+e A ) 1 — kg u '(p„s, ),(k x)

zp k «'")0 2p, k
(15)

valid when A"(x) represents any arbitrary packet of plane wave components with a common k direction of
propagation. In Eqs. (14) and (15), the slash notation is defined to mean A—:y "2„;p, is a constant four-vector
with time part E, which satisfies the mass-shell condition p, =m; k is the propagation four-vector for the
electromagnetic field which is lightlike, or k =0; A& is the four-vector potential of the transverse electromag-
netic field, with the transversality condition giving k.A =0, and with A" a function only of the phase k.x; and
where u( ' is a spinor satisfying the condition (p, —m)u"=0, and is a function both of p," and of the spin
parameter s, .

The circumstances which the Volkov solution are to describe are that the electron suddenly appears at some
time (say r =0) in an electromagnetic field which has been on for a long time prior to the creation of the elec-
tron. It is thus appropriate to consider the field to be monochromatic. The transient response of the electron
is contained in the Volkov solution, arising as a result of the choice (k x }o——0 for the lower limit of the in-
tegral in Eq. (15). The electromagnetic field is specified as

A)'=ae)'cos(k x+p) (16)

where p is a phase shift reflecting the fact that the beta decay cannot be expected to occur in phase with the
field. The polarization four-vector e in Eq. (16) has the scalar invariant e = —1. Equation (16) will be con-
verted to its long-wavelength approximation form later. The end result of using Eq. (16} in Eq. (15), with
(k x)0=0, gives

y(e) m

E V

' 1/2

expI i tp, x+rik —x+g sin(k. x+p)+ —,g sin2(k x+p) —gsinp ——,g sin2p] I

X 1 — /gg u (pe s~)
2p, k

with the definitions

cape '&

esca

p, k
'

4p, k

(The minus sign is introduced in the definition of g to account for the fact that a gauge with e =0 will be used,
in which casep, e= —p, e.}
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III. TRANSITION PROBABILITY

A. Squared S matrix

The starting point is the S-matrix element, Eq. (7), which gives

2 fd xfd x'[+f(x)y„(1—ay')4;(x)][%"(x)yi'(1 —y )4'"']

X [p'"'(x')(1+y')y"q "(x')][%';(x')(1+a'y )y„%f(x')] .

The initial and final nuclear states are given in Eqs. (11) and (12), the antineutrino state comes from Eq. (13),
and Eq. (17) specifies the electron state. With these substitutions, the squared S-matrix element is

2

~Sf, ~

= d x d x'expIi[(Ef E;)(t—t') —(ef —e;)(—A r —A'r')+(p, +k~„~) (x —x')
4E,E(„)V

+i)k (x —x'}+(sin(k x+p) —(sin(k x'+p)

+ —,rt sin2(k x+p) ——,7) sin2(k x'+p)] J

X[ff(r)y„(1 sty')g;(r—)] u" 1— QQ ys'(1 —y )u"
2p, .k

s
r

X u'"'(1+y')y" 1 — kg' u" [g;(r ')(1+sty')y„pf(r ')],
2p, k

where the notation A' refers to the fact that the argument bears a prime; i.e., A" =—A"(x'), A'—=A(x'). There
is no selection of final spin states, so a sum over the spins of electron and antineutrino will be carried out. This
is accomplished with the theorems

gu u =k(„),
'(v) (20)

gu'"u"= (Pe+m) .1

2m

The definition is now introduced that

gg[gf(r)y„(1 —~y )p;(r)] u" 1 —
2 krak

y"(1—y }u'"'
e ~V s s(v) e

2p, k

X u'"'(1+y')y" 1 — kA' u" [f;(r')(1+ay )y„ff(r')],
2p, k

(21)

where the nuclear part is

M„„=[ff(r)y&(1 sty')gt(r)][/;(r ')(—1+sty')y„Pf(r ')]

and the leptonic part is

(22)

W&"=—,Tr 1 — Ak y&(1 —y ) (1+y )y' 1 — kA
2p, k E(„) 2' k 2' (23)
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The spin sum results (20) have been used in Eq. (23). In the combination p, +m, the m term will not contri-
bute, since the trace of the product of an odd number of Dirac matrices always vanishes. The expression W""
will be treated in three parts defined by

(24)

2

Tr[Aky "(1—y )k(„)(1+y )y"kA'p, ],
e (v) Ie

(25)

1

SE,E(v)
Tr[y"(1—y')k(„)(1+y')y"kA 'p, +A ky "(1—y')k(„)(1+y')y p, ],2' k

(26}

with

(27)

The quantity M&„ is a squared nuclear transition
current, and W&" is a squared leptonic transition
current. The separation of W"" into three terms, as
in Eqs. (24)—(27), has physical meaning. The Vol-
kov solution, as it appears in Eq. (15) or (17), con-
tains the factor

(1—eke/2p, k} .

&pi" arises from the square of the first term in this
factor, Wp2" comes from the square of the second
term in the factor, and the cross terms give Wp3".

The term

—eke /2p k

represents a spin interaction. One way to see this is
to note thai

kA = io""kpA—„,
where

(r""—:(i /2) (y"y"—y "y")

is the four-dimensional spin operator. The Volkov
solution for a scalar (spin zero) particle has exactly
the same exponential function as Eq. (15}, but it
lacks the kQ tenn. Thus, the portion of the squared
S matrix associated with Wp)" will be called the
"direct" part, Wpz" gives rise to the "spin" part, and
Wp3" is the "interference" term. Transition proba-
bilities coming from the direct and spin terms must
always be positive, but the interference term can be
of either sign, corresponding to constructive or de-
structive interference between the direct and spin
terms.

B. Squared transition current

1. Direct term

where

~la (k(v)pe g k(v) pe+k(v)pe } ~

e (v)

(29)

p,v~1b E E + k(v)ppei. .
e (v)

(30)

The lepton factors Wp)" are to be combined with
the nuclear part defined in Eq. (22). The nuclear
part can be used in the nonrelativistic limit, which
gives

Iffy'4

=Sf4

If' =o

(tfr'y'0 =o
(31)

(1—y')k(„)(1+y') =2(1—y')k( ), (2g)

which comes from facts that y anticommutes with
all the y&, and that

(1-y')'=2(1-y') .

The trace expression to be evaluated is straightfor-
ward and gives the result

Tr[y "(1—y )k(„)y"p, ]=4(k(„)p,"—&""k(„)p

+k("„)P,"+id'p" k(„)pp,i„),

where the part containing the completely antisym-
metric tensor d'p" comes from the y term. The
squared leptonic current will be written as the sum
of two parts,

~pv ~p'v+ ~pv

The WP(" expression in Eq. (24) can be simplified
by using This nonrelativistic nuclear approximation leads to
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M""W,z„-[(tif(r)P;(r)][/;(r ')(tif(r '}JW(iN+a [itif(r)o P;(r)][/;(r ')o gf(r ')]~, i

K—[itif(r}g;(r)][/;(r }o pf(r )]W,oj
—K[QJ(r)ojp;(r)][/;(r )1(f(r )]W(jo.

The nuclei are unpolarized, and an average over nuclear spins causes the terms linear in ~ to vanish, and
leads to

1010 ~—ejaj .3

Averaging over nuclear spins thus gives

[(tf( r )g; ( r ) ][ ((i; ( r ')pf ( r '
)]&,00+ —,a [ff ( r )o (((i; ( r )][g;( r ')o gf ( r '

)]W (jj (32)

Recall that W(&„as given in Eqs. (29) and (30) contains W"(i"„ involving a factor ei'i'" . Because of this an-
tisymmetric factor, W(b makes no contribution to either W(oo or W(jj, and so these terms are easily evaluated
as

l Pe'k(v)
(2E(,)E, —k(„) p, )= 1+

e (v) e (v)

1 Pe 'k(v)
~ljj (2k(v) pe+3k(v) pe}

e (v) e (v)

The M&~","product can then be written as

~p ~1 —' [(efiti )+fefei) '++ (ef oei) (ef oui} ']

Pe ~(v)+[(If' } ( If'�)~y' 3
+ ( Pf oei } ( Pfoei)

e (v)
(33)

2. Spin term

From Eqs. (25) and (28), W~z" is the sum of two parts

~~a"=~~a."+~~2("

where

Tr[A Ir Pk(„)y"kA'p, ],4E,E(v) 2p, k
'2

Tr[A Ifr"r'&(.)r"&A'j)i. l .
4E,E(v) 2p, k

(34)

(35)

Some reduction in these forms follows immediately from using the light cone condition k =0, and the
transversality condition k A =k A =0. A little Dirac matrix algebra gives

kA'p, Ak= —2p, kA'Ak .

With Eq. (36), Eq. (34) involves evaluating the trace of a product of six Dirac matrices. The result is

2

[A A'(ki'k(„) +k "k~(„) g""k k(, )
—)

2pe k EeE(v)

(36)

+k 'A(k"A'" k "A'i')+k .A'(k "—A" ki A")+k k(A'i'A—" Ai'A'")]—(37)

The trace appearing in Eq. (35) contains a y factor, which involves a product of four Dirac matrices through
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its definition

Thus, even after reduction with the aid of Eq. (36), the trace of a product of ten Dirac matrices must be ac-
complished. The result is

2

[e p sg"'A A'~k("„)k e»—tJk k(„)A' At
2' k Eg E(v)

—d'"
pA A'k(„)k~+et'" t)(k( )

AA'~ —k( )
A'A~)k~

+(e" prk" e' p—rk")k(„)A'~Ar (e"—p„k(",)+e prk~(, ) }A A'~kr

+e" p„(A "A' A'"A —)k~(„)k" e'
p (A—"A' A'"A —)k~(„)k"] . (38)

These expressions for Wq" are to be combined with the squared nuclear transition current M» as given in

Eqs. (22) and (31). The result is of the form of Eq. (32), but with W~q" components in place of W~(". A gauge
for the electromagentic field will be used uniformly hereafter in which

et'=(0, e), (39)

that is, the scalar potential associated with the plane wave vanishes. The terms needed for the W~q' analog of
Eq. (32) are, from Eqs. (37}and (38},

e N ~, k k(v)
W~oo —— A.A' 1+

2p~ 'k E~ NE(v)

3' ~ ~ k k(y)

2p, k E, 3toE(„)

l8 N k ~ ~, ~(v)
-Fib()0= —'AXA' — 'AXA'

2' k Eg N E(v)

~ 2

2p, k E, N 3E(v)

When A is defined by a combination of Eqs. (16) and (39},then the overall squared transition current for the
spin term is

M»Wz" —— cos(k x+p)cos(k.x'+p)Mq,v E
(41)

where

(PfP;)-, (/fan;)-,
—.—1+ +z (PIof;)-, (PIoit);), , .1—k'k(v) 2 g g t k'k(v)

NE(v) 3NE(v)
(42)

Equation (42) has exactly the same form as the right-hand side of Eq. (33), except for the replacement of
p, k(„)/E,E(„)by k k(„)/toE(„). Subsequently, Eq. (33) will be written as

(43)

9. Interference term

As in the preceding cases, &~3" is divided into parts without and with a r by setting
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~P,V
30 4 E Tr[y»k(„)y"kA 'p, +y»k(„)yp, A I)r],

2p, k

W3$ —
4E E Tr[y "y~k(„)y"~A Ã +y y &(.)y p.~&]

e (V) pe

After evaluation of the traces, the results are
r

jtlV
30 E,E(„)

[p, A(k"k(",)+k "k»(„))+p, k(,)(A»k' A "k—»)
2p, .k

+k(„).A(k"p,' k "p,"—) kk(„—)(g""p,.A p,"A "—+A "p,")

p, k(k—»(„)A" g""k(,—)
A+A»k" )+p A'(k»k("„)+k"k»(„))

p, .k(„)(—A'"k" A'"k")—kA '—(k"p" k "p")—

kk(„)(g—""p, A'+p,"A'" A'"p,") —p, k(k»(„—)A'" g""k(„)A—'+A'"k("„))],

[e~prsk~k~(„)p,"A g»"+e»"~pk A~k(„) p,
2p, k

e»" pk pp—k(„).A+e»' pk k~(„)p, .A &",pp, A~—k k(,)+&»" pk( )A~p. k

(e» pP—("„)+e"pP»(„) )k A~p,"+(e» pg,
" &' I))p»—)k'k( )A"

+(e» p„A" e" prA»)k—P, k(„)+(e»~prk" e'~pg»)k(„)—P, Ar

—fp&zk k&~]p&A g —E &pk A k[vi'p&+E' k p k 'A

+e»"~pk~k(„)p, A'+e»". ~I)p, A'~k k(„)+e»"~pk(„)A'~p, k.
—(E zprk ~~) +e +hark~~) )k A' p, +(e"~~)p," s"~p)p,")k—k~„)A

+(c» pp'" e" pp'»)k p~k,"—„,+(e» ~p" e" pp»)k, „)p~—A'r] . (45)

~en combined with ~»" as in Eq. (32), and with the electromagnetic field potential prescribed by Eqs. (16)
and (39), the resultant interference term squared transition current is

M» W3 = [cos(k x +p) +cos(k x'+p)]&3
2p, k (46)

where
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~3 (4f Pi) ( Pff')
k k(v)Pe'&

1+
E, a)E(v)

k pe'~ p X
+l—X —lE E

k
e

N

k(v) +l
(v)

Pe

E E()

kXe k( )

CO E(v)

+&'(/fop;) (fftrf;)-, ,
p, e k.k(v)

1 — +-
Ee COE( v) 3

. k Pe'+ l' PeX~+i—X
N Ee 3 Ee

k Pe k(v)'~
1 ——.

co E, E( )

k(v) i k X j' k(v)+
E(v) 3 CO E(v)

(47)

C. Transition probability per unit time

1. Direct term

The squared S-matrix element associated with the direct term follows from replacing the squared transition
current in Eq. (19) by Eq. (33), or its equivalent from Eq. (43). This leads to

G2
~
Sf;

~ i —— fdt fdt'exp[i( Eo+E, +—E~„~+geo)(t t')]—

X fd3r fd3r'Miexp[ ieA—r+ieA' r ' i(k,—+k~„~+qk) (r —r ')]

Xexp[i((sin(k x+p) —/sin(k x'+p)

+ —,ri sin2(k. x+'p) ——,g sin2(k x'+p))] . (48)

Two remarks about Eq. (48) are needed. One is that
the notation

EO =E' Ef
has been introduced. The other concerns the differ-
ence between final and initial reduced charges.
From Eqs. (5) or (6) it follows for P decay

(Zf ——Z;+1, Nf N; —1}that——

ordinary Bessel function. It may be defined for in-

teger order by the integral expression

J„(u,v}= 1

2'

X f d8exp[i(u sin8+v sin2L9 —n8}],

coreA
ey —e =e (49) (50)

where A is the total nuclear mass number, and A„„
refers to the number of nucleons in the core alone.
For most cases of interest,

A gage /A 1

The result (49} is incorporated in Eq. (48).
The last exponential in Eq. (48) can be written in

terms of a particular transcendental function intro-
duced previously, which is a generalization of the

or, for arbitrary order, by the series representation

This is not a standard transcendental function.
Some of its basic properties are listed in Appendices
8 and C of Ref. 28. Particular properties needed
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here are

J„(—u, v) =(—)"J„(u,v),

J„(u,—v)=( —)"J „(u,v),

(51)

(52}

exp[i (g sin(k. x +p) + —,rt sin2(k. x + p) )]

= X J,(g, ,'~)e'""'+p)

exp[i(u sine+ v sin28}]= X e'" sJ„(u, v) . J ( g
(
~)e il(—k x+P)

(53)

The last exponential in Eq. (48) can be expressed
in terms of the generalized Bessel function. Equa-
tion (53) gives

(54)

where the second form (which is the more con-
venient to use) follows from Eqs. (51) and (52). In
like fashion, the expression

exp[ —i()sin(k x'+p)+ —,gsin2(k x'+p})]= X J„(—g, ——,rl)e'"("'"+p) (55)

is obtained. Analogous expansions in terms of the ordinary Bessel functions give

(N

exp( ieA—r)=exp[ iea—r c os(k x+p. )]= X JJ(ea. r)e 'J'k'+P',
J=—oo

CO

exp(ieA'. r')=exp[iea r'cos(k x'+p}]= X J~(ea r')e'~(k" +p),

(56)

(57}

where a =ac, and A is as given by Eqs. (16) and (39).
The direct term squared matrix element is now

Is'I '=, XXXXJt(-~.--,'.)J.(-~, --,'~)
l n j m

X fdt fdt'exp[i( E()+E,+E(„)—+geo)(t t') ilto—t+in—cot' ij tot+im—cot']

Xexp[i( l+ n ——j +m )p]

X fd r fd r'W)J&(ea. r)J~(ea r ')

Xexp[ —i(k, +k(„)+rtk) (r —r ')+ilk r ink r '—
+ijk r imk r']—. (58)

The integrations over t and t' can be performed, with the t integration giving rise to

5( Ep +Ez +E( ) +—&to —l(v —j(v), .

and the t' integration yielding

5( E()+E,+E(„)+vjco—neo me@) .— —
The product of the two delta functions will give a zero result unless their zeroes are concurrent, which gives
the condition

I+j=n+m . (59)

Equation (59) eliminates all dependence on the phase p from
~ Sf; ~, , and will also be used to eliminate the

sum over /.

To calculate the transition probability per unit time, the limit
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will be taken. This can be accomplished by using the device that

T/2 T/2
lim — dt ~ ~ ~ dh ' ' =2175( Eo—+Ez+E(~)+'/co —neo —mco} .

T~oo T —T/2

The transition probability per unit time is thus, from Eqs. (58) and (59),

2 g g g&„(—g, ——,il)&„z+~(—g, ——,
'
il)5( Eo+—E, +E(„)+g(o n(—o m—co)y2 ll & 2 5 —J Nl

)( f d r f d r'W(J&(ea r)J~(ea r')exp[ i(—k, +k(„)+rjk —nk —mk} (r —r')] .

Vp, dp, dQ, Vk(„) dk(„)dQ(„)
(61}

(2n )' (2n )s

In the solid angle integration for the neutrino, the only angular dependence is from the p, k(„) term in M) ~

Since the p, vector can be considered 6xed for this integration, then

dQ(y)pg k(y) —0 (62}

and so

Mi~aS i

where

&i =(ff4 }-,(%f 4)-, +&'(4f&4 }-,'(4f &4 }-,

and

f dQ(„)9F(——4n8P) .

The neutrino is taken to be massless, so that
~
k(„) ~

=E(„),and

f d k(„)~4m f E(„)dE(„) .
The energy delta function can be used to accomplish the integration over E(„),which leads to

The long-wavelength approximation will now be introduced. As is always done in the theory of allowed beta
decay, the electron and antineutrino three-momentum contributions k. r md k(,) r will be neglected Elec-
tromagnetic field terms, as expressed in mk r, are certainly negligible, since it will appear sho~ly that m is a
small integer. The remaining electromagnetic field contribution, (g —n}k.r, can be the largest of the terms in-
volved, but it is also small, and will be neglected. Equation (60) will thus be used with its final exponential fac-
tor replaced by unity.

The total transition probability per unit time is calculated by integrating w i over the final statm available to
the emitted particles, or

E( )
=Ep —E —'QQ) +ll co+Nl co

Then, after a change of integration variable from p, to E„the total transition probability per unit time is

8'i ——
4 ggg f dE,dQ, E,(E, m)'~ (Eo E, —gco+nco+m—co)—

n j m

X~,( —g, ——,q)&„j+ ( —g, ——,g) f d'r f d'r'3F(J&(ea r)J (ea.r') .
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Equation (64) differs from the transition probability expression for an allowed beta decay by the presence of
the ordinary and generalized Bessel functions, and the summations over their indices.

2. Spin term

The squared S-matrix element associated with the spin term follows from replacing the squared transition
current in Eq. (19) by Eq. (41). To simplify matters, long-wavelength-approximation terms of the type that
were dropped from the direct term following Eq. (60}will now be neglected from the outset. Equation (49) will
also be incorporated. Thus the squared S-matrix element is

I ~pi l2 x f dt f dt 'exp[i'( Eo+—E +E( )+/co}(t t )]-6 2'/co

e

r d r'&2exp —ieA r+ieA'r

Xexp[i()sin(cot+p) —(sin(cot '+p)+ —,rt sin2(cot+p)

—
z rt sin2(cot'+p))]cos(cot+p)cos(cot'+p) . (65)

Generalized Bessel functions are introduced as in Eqs. (54) and (55), and ordinary Bessel functions as in Eqs.
(56) and (57). The result is

g g g +~i(-g, --, q)~.(-g, --, ~}
6 2'gN

e I n j m

X t t'exp i —Eo+E +E( ]+'QQ)

1( 1+j—}cot+i (n + rn)cot']exp[i( 1 j+n+I—)p—]

X f d r f dr'WzJ(ea r)J (ear')

X [el(ui+~t '+2p), i (mt mt ') ~
—i(ut mt —) —i(mt+a&—l '+Q).+e +e +e

(66)

The sum of four terms in the final square bracket in Eq. (66) gives four different delta function behaviors when
the t and t integrations are performed. Designate the four terms in succession as term (a), term (b), term (c),
and term (d). Term (a) has the product of delta functions

5( —Ep+E& +E(&)+rtN —lco —jco+co)5( —Ep+Ez+E( ) +&co—ilco —rnco —co),

which gives the condition

I =n —j+m+2. (67a)

Equation {67a) causes all dependence on the phase p to vanish from term (a). Term (b) has the delta function
product

5{ Eo +E +E( ) +rl—co leo jco+co )fi(—E—()+E,—+E(„)+rtco nco in c—o +co—),
which gives

1=n —j+in, (67b)

and eliminates dependence on p from term (b). Term (c) has
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5( E—o+Ee +E(„)+ rjco lc—o jc—o co—)5( E—o+E, +E(„)+ rjco n—co m—co —co),

which gives

I =7l —J+Nl

and eliminates p from term (c}. Term {d}has

5{ Eo+—E +E( )+rjco lco—jco—co—)5( Eo+—E +E(„)+rjco nc—o rn—co+co),

which gives

l=n —j+m —2,

{67c}

(67d)

and eliminates p. With the l sum gone as a consequence of Eqs. (67a)—(67d), and with the transition probabili-

ty per unit time introduced by

w2 ——hm —
~ Sfg~~00 T

Eq. (66) leads to

X f d r f d r'Wpz(ea r)J (ea r ')

X I5( Ep+Eq+E(», )+r/co nco ——mco —co)

1 1

X [~n —j+»»»+2{ 4» z 1)+Jn —j+»»» { 0» g '9)]

+5( Eo +Ee +E—
(»») + 'l/co —n co ni co+co )—

1 1

X [J»» —j+»»»( 0 2 rj)+ J»» —j+»»» —2{ 0 ——,rj)] I (68)

There are now two delta functions. To obtain a single common delta function, shift the origin of the n sum in
the first term so that n+ 1~n, and in the second term so that n —1 —+n. As a consequence, Eq. (68) becomes

w2 ——2m'
2 g g g 5( Ep+E +E~,)—+rjco nco mco)— —6 'QN

~' 2E. n

X f cl3r f d r'M2J&(ea r)J (ea r'}[J„+i(—g, ——,'il)+J„)(—g, ——,rj)]

1 1

X[J»» —j+»»»+i{ 0 g 9)+Jj»»+»»» —i( 0 z l)1 ' (69}

passage to the total transition probability per unit time is accomplished as in Eq. (61). Also, Eq. (62) ha»ts
analog with the k.k~„~ terms in &2, so the antineutrino solid angle integration leads to

where 9P i is given in Eq. (63). As with W), integration over E)„) is achieved with the energy delta function,
and the integral over p, is converted to an E, integration. These steps lead to
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2Gp'2= ggg f dE,dQ, E,(E, —m )' (Ep E—, —gco+nei+mco)
ir»» j»»»

X " [J„+i(—g, ——,rj)+J. i( —g, ——,g)]
e

1 1X[ „j+ +i( —g, , 8—)—+J„;+ i( —g, ——,rj)]

X f d r f d r'3fiJ&(ea r)J~(ea r') . (70)

3. Interference term

The procedure to be followed for the interference term follows the lines already established with the direct
term and spin term. The squared S-matrix element comes from Eqs. (19) and (46). With the long-wavelength
approximation introduced from the beginning, the squared S-matrix element is

G2
~Sfi ~32 —— , —" f dt f dt'exp[i( Ep+E—+E( i+ )3c)o(t —t )]

2@~ k

X r r 'W3exp —ieA r +ieA'-r '

Xexp[i((sin(tot+p) —(sin(eit '+p)

1 1+ z rj sin2(cot+p} ——rj sin2(pit '+p))]

X [cos(cot+p)+cos(pit '+p)) . (71)

Next, the representations in Eqs. (54)—(57} are introduced, and the trigonometric terms in the final square
bracket in Eq. (71) are expressed in exponential terms. As was the case with the spin part, there are four terms
resulting, with different products of delta functions implying a constraint on the l summation index in terms of
the n, m, and j indices. When the I sum is removed, w3 introduced by

w3 lliil
~ Sf»

~ 3
1

T~iN T

and a single delta function factor achieved by appropriate shifts in the origin of the n sum, the resulting ex-
pression is

G2
W3 =2'

Jf2

caco

4p, k g g g 5( Ep+E, +Ei„i+—rjpi nei mpi—)—
X f dir f d r'&3Jj(ea r)J (ea r ')

1 1 1

X I J»»( k» 2 'Q)[J»» —j+m+1( 0» 2 1)+J»» —j+m —1( 0» 2 '9)l

+J. j+ ( 0 , n)[J.+i(—0.——2n)+J. —i( 0— 2n)]] -. — —

Total transition probability per unit time is calculated as in Eq. (61). When the antineutrino solid angle in-
tegration is performed, those terms in W3 [Eq. (47}]containing k k&„i, e ki„i, (p, X e ) ki„i, and (k X e ) ki„i
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will vanish. Then 8'3 is

62
W3 —

4 g g g f dEdQ, E(E, —m )' ( Eo E—, r—ico+nco+mco)
(2m }4 2p, k

X f der f der'AiJJ(ea r)J (ea r'), (72)

p.+i—X
E, co E,

with 8P i as given in Eq. (63).

(73}

IV. VERY HIGH INTENSITY,
VERY LOW FREQUENCY CASE

z =(eaR0) (74)

This quantity is typical of intensity parameters
which arise in all bound-state intense-field prob-
lems. For specific intense-field phenomena to
occur through the nucleus-field interaction, it is gen-
erally true that z must be roughly of order unity.
Values of z much larger than unity will cause a de-
cline in transition probability as intensity increases,
in contrast to the common behavior of the increase
in probability with intensity.

The second intensity parameter which arises in

A. Orders of magnitude

The transition probability expressions in Eqs. (64),
(70},and (72} are complete within the context of the
present work, but they are difficult to evaluate. Sig-
nificant simplification in these expressions can be
accomplished if certain special cases are considered.
One obvious limit is the case where the field ampli-
tude goes to zero. Then 8'2 and W3 vanish, and 8'~
reduces to the transition probability for an allowed
beta decay without Coulomb corrections. Of far
more physical interest for this investigation are the
cases where the order of magnitude of either of the
two field intensity parameters that occur in the re-
sults are in the neighborhood of unity.

Because of the finite range of the nuclear wave
functions in Eqs. (64), (70), and (72), the arguments
of the Bessel functions appearing therein are limited
to values of the order of eaR&, where Ro is the nu-

clear radius. This suggests the introduction of the
intensity parameter z, defined by

this problem is that normally associated with free
electrons in an electromagnetic field, and is defined
b 29 30

8 Q
Zf= 2 ~2' (75)

It is related to the field-nucleus intensity parameter
zby

zg —— 2z=(3&(10 )z .1

2(mRo)
(76)

The numerical relation given in Eq. (76) comes from
the estimate

R0-5)(10 ' cm, (77)

P=10 2~P&Ri ' (7&)

in units of W/cm . The factor 10 is for conver-
sion from ergs to joules, ao is the fine structure con-

which is typical of a broad range of light-to-medium
nuclei. When the order of magnitude of zy is in the
neighborhood of unity, Eq. (76) shows that z is
small. Field-electron effects will then be more im-
portant than field-nucleus effects. ' In the
remainder of this section, attention will be focused
on the case where the order of magnitude of z is in
the neighborhood of unity. This is the case where
the field is most effective in overcoining forbidden-
ness in beta decay. Equation (76) then implies that
z~ is large.

The easiest way to achieve z in the neighborhood
of order unity in practice is to employ a very low
frequency field. The energy flux in the field neces-
sary to achieve a given value of z is expressed by
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stant, and A, is the wavelength of the applied field.
The inverse-square dependence on wavelength in Eq.
(78) means that a given z value can be achieved
much more readily at long wavelengths than at
short wavelengths.

The fact that field-nucleus effects are dominant in
a field intensity domain where zJ is large means that
the transition probabilities stated in Eqs. (64), (70),
and (72) can be simplified. The quantity z/ occurs
only in the generalized Bessel functions in these
equations, and z~ &&1 makes it appropriate to use an
asymptotic form for the generalized Bessel func-
tions. Because these functions depend on three
quantities (order and two arguments}, there are a
number of different asymptotic forms possible de-

pending on the relative magnitudes of these parame-
ters. The magnitudes of the physical parameters
which arise in the present problem will now be ex-
plored to demonstrate first that an asymptotic form
of the generalized Bessel function is really appropri-
ate. A particular asymptotic case is generated, and
it will then be shown to be the applicable one for the
present work.

An immediate consequence of z=0(1) is that
large values of the j and m indices in Eqs. (64), (70},
and (72) are of no importance. Since the magnitude
of the c0 energy is very much less than an electron
rest energy, the term mcus as it appears, e.g., in the
energy delta function in Eq. (60), can be neglected as
compared to the other terms.

With me@ neglected in the energy delta function,
the physical condition E~„~ & 0 leads directly to

n &r) —(Eo E, )/co=rl —(Q T, )/co —. —

The last expression in Eq. (79) comes from setting
Eo ——m +Q, where Q is the usual Q of beta decay

(and m is now the electron mass, not the summation
index), and setting E,=m +T„where T, is the
electron kinetic energy. One immediate implication
of Eq. (79} is that there is a lower limit on the n in-
dex. From the definition of q in Eq. (18},its order
of magnitude is

[which is consistent with Eq. (77)], so that z=0(1)
employed in Eq. (81) gives

rl »Q/c0 . (83)

n »1. (85)

Finally, from the definition, Eq. (18), g has the order
of magnitude

~ g ~

=O(ea/co) =O(z' /coRO) . (86)

One can write

coRO (c0——/m)(mRO) =(—,0 )(co/m) .

But co/m is many orders of magnitude less than uni-

ty, so it follows that coRp «1, and then Eq. (86)
gives

(87)

Equations (84), (85), and (87) are the basic condi-
tions making it appropriate to employ an asymptotic
form of the generalized Bessel function.

B. Asymptotic generalized Bessel function

The generalized Bessel functions in Eqs. (64), (70),
and (72) will be written here as J„(—g, ——,rl).
Equations (84), (85), and (87) show that g, ~ g ~, and
n are all much greater than unity. (Note that g can
be either positive or negative. }

1
From Eq. (50},J„(—g, ——,g) can be written

J„(—g, ——,rl)= I dHe"/' ',
2K —7r

where

f (8)= i (4b sinH—+ —,sin28+ vH), (88)

Furthermore, since Q =0 (m) typically, and

m/co»1, then

(84)

Also, Eqs. (83) and (79). then imply that

2 2ea
4m co

This means that

2 2 2 2

0 ea 0 ea 0 z
Q/c0 4mQ 4m' (2mRo)'

(80)

(81)

with

cos8p ———b+c,
where

(90)

b—= , v=— (89}4g'

The saddle points 80 of f(8) in the complex 8 plane
are found from f '(8) =0 to be located at

For a typical nuclear radius, one has c—:[b + —,(1—v)]'i .1

(91)

1

mRp= so
(82) Constraints that arise from physical considerations

(discussed below) are that
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I
b

I «1, b + —,(1—v) &0, (1—v) «1 .

(92)

Hence, cos8o is real, and four saddle points occur on
the real 8 axis in the interval —n &8&m. These
saddle points are designated 8J, j=1,2,3,4, and are
listed in Table I.

The real axis is a level surface for f(8) in the
complex plane, and all paths of steepest descent (and
ascent) cross the real axis at a 45' angle. For evalua-

1

tion of J„(—g, ——,g} by the steepest descent

method, the path of integration is deformed as
shown in Fig. 1. Saddle point locations are shown
in Fig. 1 by the small circles. Steepest-descent
evaluation of J„(—g, ——,ri), gives, in general

4 sf)
J ( —g, ——,g)= g „,/, , (93)

2nri i )'( fj")'/—
where f& f(8&), fJ

——'=f"(81) are found by substitut-

ing the solution (90} into (88) and its second deriva-
tive. Equation (93) leads to

J„(—g, ——,ri) = „,/ cosP~
1 1 2

2m' (
I f I'

I

)'/2

FIG. 1. Path of integration for evaluation of the
asymptotic generalized Bessel function.

1 1
n( 0& 2 'ri) )/z (cos(()]+cos(()2} '

(2mric}'/z

(96)

In addition to the generalized Bessel function of
order n, certain other contiguous, or nearly contigu-
ous, orders are also needed. A change of n to n +1
changes the parameter v to v+ lip, so the ampli-
tude factors in Eq. (94) or (96) are scarcely affected.
However, the phases P&, $2 change signif-
icantly when n changes by even one integer. This
change is found by differentiating Eqs. (95) with
respect to v to find

Bv
' =a~i, 2

where

2

(
I
fl'

I

)'" M

n8&+ri(3b +——c)[1 (c —b)2]'/ ———,
4

(94)

which gives

1
(()~ 2 v+ —=P~ 2(v)+8{,z ~

Then, for example, if q is a small integer,

J„+z ( —g, ——g) = [cos(P&+2q8t)
1 1

(2m pc }'/

(97)

Pq ——n 8z+ g(3b —c)[1—(c +b) )' +
4

f &' 4ic[1—(c ——b) ]'/, —
f2' 4ic[1——(c+——b)2]'/ .

The inequalities (92) give

If2 I
= I fr I

=4c

so the result is then

(95)

TABLE I. Location of saddle points in the asymptotic

evaluation of the generalized Bessel function.

+cos($2+2q82)] .

(9&)

The inequalities (92) imply that 8~ and 82 are both
nearly m /2, so then

1 1

J„+2 ( —g, ——,ri)=( —) J, ( —g, ——,ri}

In the following, the sum of generalized Bessel
functions of orders n +1 and n —1 will occur. The
approximation involved in Eq. (99) is then not ade-

quate, since it would indicate a spurious zero result.
The true result is small, but not zero, so a form
analogous to Eq. (98) must be used. The required
expression is

Hp cos8p

c —b
—c —b
—c —b

c —b

sin8p

[1 ( b)2]1/2

[1—(c+b) ]'/
—[1—(c+b) ]'/'

[1 {c b)2]1/2

1 1J,p&( —0, —2 g)+J, )( —g, ——,ri)

1
, /2 [cos(P&+8~ ) +cos(P ~

—8& )
(2m ric) '/

+cos(hz+ 82)+cos($2 —8z)] .
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The trigonometric terms can be combined to yield
1 1J„+i( —g, —, rl)—+J„,( g,———,rl )

, ~ [(c—b)coski —(c+b)cos02] '
2

(2nrlc). '~

The particular conditions of Eq. (92) associated
with the final form of the asymptotic generalized
Bessel function will now be explored. From Eqs.
(80) and (86), the parameter

I
b

I
has the magnitude

I
b

I
=

I
g/4rl

I
=0(m/ea)=0(mRolz'~ ) &&1,

(103)

From the energy delta function, it can be seen that
(n —rl)r0 is the amount of energy contributed by the
electromagnetic field. In view of the low frequency
and consequent low energy density of the applied
fields, it is presumed here that no substantial
amount of energy can be extracted from the field.
This wi11 be stated as

(101) q)n . (104)
as long as z'~ &&,o. Equation (101) is the first of
the conditions (92). For the third condition in Eq.
(92), one has

r) n—(Q —T. )/oi 0,/~
1 —v=

7l

(102)

Equations (79) and (83) have been used to arrive at
(102). Finally, Eq. (92) states the condition

b +(1—v)/2&0.

When the definitions in Eqs. (89) and (18) are substi-
tuted, this condition can be written as

Not only does Eq. (104) automatically satisfy Eq.
(103), it is also a conservative assumption in that it
truncates the sum over n and omits a portion of the
transition probability.

C. Transition probability per unit time

I. Direct term

The asymptotic form for the generalized Bessel
function arrived at in Eq. (96) is now to be employed
in Eq. (64). One of the two generalized Bessel func-
tions in Eq. (64) is exactly in the terminology given
in Eq. (96), whereas the other function can be writ-
ten as

'( —g, — 'g)= 'cos Pi+(m —J)—+cos pi+(m —j)—N l5 —J
2

(105)

The result (105) follows from Eq. (95), along with
the knowledge that Pi,Pi-n/2 This last . item is in-
ferred from Eqs. (91) and (92), and Table I. Equa-
tion (105) can be simplified to a form depending on
whether m —j is an even or an odd number. Sup-
pose first that m —j is even, or m —j=2q, where q
is an integer. It follows that

1
q 1(-g —-i))=(—)V ( —g —-rl) .

(106)

With the knowledge that only small values of the in-
dex m will contribute, the term m in the

( Eo Ee rlco+nco+—m—co)

factor of Eq. (64) can be dropped, and then the
threefold sum over the n, j, and m indices in Eq.
(64) involves only the ordinary and generalized
Bessel functions. This threefold sum is

J, ( —g, —, rl)J„&+~(—g, ——,rl)JJ(ea —r)J~(ea.r ')
rt j m

( —) (cosgi+cosgz) J~ q~(ea r)J (ea r'), (107)
n m q
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where Eqs. (106) and (96) have been used. The
quantities $1,$2 depend directly on n, and n is al-

ways a very large number. Hence

g( —)~J2 (ea r —ea.r')
q

=cos(e a r —e a. r ') . (110)

(cosp, +cosp2) =1+—,cos2$1+ —,cos2$2

+COS($1+f2)+COS( $1—$2)

(108)

can be replaced by its average value of unity because
of the rapid oscillation of the trigonometric func-
tions as n changes. The j and m sums in Eq. (107)
can then be carried out. From Neumann's addition
theorem, ~ one has

2q(e a r )J (e a r ')

=J2 (ea r —ea r'), (109)

which then also makes possible the sum over q in

Eq. (107), to give

The above results pertain to the case where the
difference of indices m —j, which appears in Eq.
(105), is an even number. When m —j is odd, the
cosine functions in Eq. (105) become sine functions.
This has the essential consequence that the square of
the sum of cosines in Eqs. (107) and (108) is replaced
by

(cosg1+ cos$2)(sin/1+sin/2)

= —,sin2$1+ —,sin2$2+ sin($1+$2) . (111)

When Eq. (111) is averaged over its oscillating tri-
gonometric functions, the outcome is zero. Hence,
the contribution of odd m —j differences is heavily
dominated by the contribution of even m —j differ-
ences, and so only the even case will be retained.

With Eqs. (109) and (110) employed in Eq. (107},
only a single sum remains. When all of the above
results are incorporated into Eq. (64) for the total
transition probability per unit time, one has

2Gz
W1 —— f dE, f dQ, E,(E, m)'/ —g(EO E, r}co+—neo}—

2m
'

ll
'QC

r r'cos ea r —ea.r' (112)

The twofold spatial integration in Eq. (112}combines with the definition of A1 in Eq. (63) to give

~ ~dsr f dsr '(cose a.r cose a r '+ sine a r sine a r '}lf 1

= ~cos(ear cos8) ~y; + ~sin(earcos8) ~y; +z ~cos(earcos8)o ~y; +a (sin(ear cos8)0
~ fj . (113)

Equations (112) and (113)yield

2G2
W1 —— f dE,E,(E, m)'/ f d—Q, g(EO E, rlco+nco)——

(2n )' 'QC

1/2cos z' cos8
Rp

+ sin z' cos8
Rp

1/2cos z' cos8 o.
Rp

2

+~ sin z' cosg o
Rp

(114)

The sum over index n will now be accomplished. Since n is always very large, the parameter v=n jg [see

Eq. (89)t will be viewed as a continuous variable. The sum over n is then replaced by an integration over v in

the form

.=&-~ z,+s, i/~

E —1+v
( Eo E, rico+

neo�)—

— 'QN

'QC
=(2}co) dv '

1 —. (E~—E~)/vm [y2+ 1

(1 )]1/2
2

(115)
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where the limits on the sum come from Eqs. (79) and (104). With the notation

EO

'gN

and change of integration variable

(116)

Eq. (115)becomes

( EO Ee —rite+ nod } 1/2
a (a—p)=2 / (rico} dP

'QC 0 (2b2+P)1/2

23/2
(2)~)2[8(2b 2+a)s/2 8(2b2)s/2 2()(2b2)s/2a 15(2b2)1/2a2]

1S
(117)

The solid angle integral in Eq. (114) will now be treated. It is convenient to introduce a dimensionless in-
tegration variable for the energy integral by setting

e, =E,/m .

With the further definitions

60 EOI m~ pe =pet m

and with zf as given in Eq. (75) or (76), the parameter a of Eq. (116) is

2a= —(eo—ee )(ee p, sin—8,cosg, );
Zf

the parameter 2b is, from Eqs. (89) and (18),
2

2b = t.os 8, ;
Zf

and 2) in the combination 2)co/m is

'f67 f j.

m 2 (eo—p, sin8, cosg, }

(118)

(119)

(120)

(121)

(122)

Implicit in Eqs. (120)—(122) is a selection of the axes of the spherical polar coordinates p„8„and Pe. Setting
p, .e =p, cos8, as in Eq (121) m. eans that the polar axis is along the e direction; and setting

p, k=p, cosin8, cosg,

as in Eqs. (120) and (122) means that the x axis is along k.s4

The solid angle integration indicated by Eq. (114) with Eq. (117) is very complicated. It can be simplified by
the approximation that those quantities in the integrand which are proportional to cosP, will average essential-
ly to zero when integrated over p, from n to 1r. The rem—aining integration over cos8, can then be done in
closed form to yield

dQe [8(2b +a) / —8(2b ) —20(2b ) a —15(2b )' a ]
Nl

5mlcr '(++pe ) +
I pe I e

3 2 1/2

111 1/2 + 1S (a+pe ) + 3 a(++pe
zf 6e ~ pe t7

+a'(a+p. '}'"——,',
I p. I

' —2a
I p. I

' —3a'
I p. I (123}

where
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0—=2e, (ep —e, ) .

When Eq. (123) is substituted in Eq. (114),the result is of the form

62m'
Wi= fi IM;

2~3

(124)

(125}

The quantities in Eq. (125) are defined so that
I M;„d I

contains the entire nuclear matrix element for induced
beta decay, including all intensity dependence; and fi is the spectral integral for the emitted electron. Specifi-
cally, the definitions are introduced that the squared nuclear matrix element is

IM~„p I
i=,

&z
cos z'~ cosa

4~(2zf ) Rp
+ sin z'~ cosa

Rp

2

+~ cos z' cos8 cr +~ sin z' cos8 0.
Rp Rp

(126)

and the spectral integral is
6'0

fi(Ep)= de, hi(sp, s, ),
1

where hi(ep, e, ) is the spectral function

1 o' «+P.'}'"+IP. I «+P } IP I

hi(ep, E)=— 'ln ',~, + ' '
[8(0+p, ) +10o'(o+p, ')+15o ]

3 E'~, 0' 45m,

2

(8p, +30op,—+450 ) .
45m,

The form (125}corresponds to the standard form for allowed beta decay, where

Gm
Wo= fo IMo I'

2773

arith

IMo I

'=
I

1
I
fi'+~'

I
~

I f '

(127)

(128)

and, when Coulomb corrections are neglected, as they are in the present work, the spectral integral is
60

fp(sp)= de, hp(sp, s, ); hp(ep, e, )=e,(s; —1)' (s'p —e, )'.
1

Were a complete expression for Wi retained, it would reduce to a form like Wp in the limit z~O (whereas
Wp~0, Wg ~0 as z —+0). However, the results obtained for Wi as given in Eqs. (125}—(128) derive from the
asymptotic form for J„(—g, ——,rj), and

I g I
»1, rj »1 are incompatible with z~O. Thus, the zero intensity

limit of Wi is not directly accessible from Eqs. (125)—(128}. One must return to Eq. (64) for the low intensity
limit.

2. Spin term

The generalized Bessel functions in Eq. (70) will be replaced by their asymptotic forms. Equation (100) gives

1 1 2
J„+i(—g, —z rj)+J„ i( —g, —z g)= i&z [(c—b)costi —(c+b)costi],

(2mrjc)'~

1 ( —)s2
n —j+m+1( P~ z '9)+Jn j gpss i( —

g&
—

& rj)
i&& [(c b)cosfi —(c +—b)costi],

(2mgc}'~~

where, as in the Wi case, m —j=2q gives the dominant contribution, and odd-integer m —j values are unim-
portant. As before, the energy contribution mao can be neglected as compared to the other energies, and so the
threefold sum over n,j,m indices involves only ordinary and generalized Bessel functions. The sums are
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ggg[J. +1(—0 ——,n)+J. 1( —0 ——,n)][J. Jp +1(—0, ,—n—)

n j
+J„J+~ 1( —g, —, 7—))]JJ.(ea r)J~(ea r ')

[(c—b)cosp1 (c—+b)cosp2) J 2&(ea r)J (ea r ') . (129)( —)e2

n m

When the squared term containing the phases $1,$2 is averaged because of the rapid oscillations of these
phases, the result is just e +b . The sums over m and q can then be done exactly as in Eqs. (109) and (110).
These results employed in Eq. (129), plus the procedure shown in Eq. (113),take Eq. (70) to the form

462 2 b2W2=, J dE, (E, m)'—/ f dQericog(Ep E, —7)co—+neo)
(21r }' 'QC

1/2cos z' cosa
Rp

+ sin z' cose
Rp

+K cos z cosO 0'
Rp

2

sin z' cos8 0.
Rp

2

(130)

As was done in the direct term, the sum over n will be performed by treating v(=n/7)} as a continuous vari-

able. The sum to be done is

2 (c'+b') (7Icp}' ~d (a p)'(4b'—+p)
21/2 p (2b 2+p)1/2

n =q —( Eo+E, )/~

with a defined as in Eq. (116),and p= 1 —v. The outcome of the p integral is

(c2+ b 2) 25/2
g(Ep E, 7Ico+ncp)—— = (7Icp) [2(2b +a) / +14(2b )(2b +a) /

gc 105

9(2b 2)7/2+ 28(2b 2)5/2(2b 2+a ) 35(2b 2)3/2(2b 2+a )2]

(131)

When the extra 7)cp factor appearing in Eq. (130) is incorporated with Eq. (131),the solid angle integration that
must be performed is

3

dQ, [2(2b +a) +14(2b )(2b +a) —35(2b ) (2b +a) +28(2b ) (2b +a)—9(2b ) ]
m

4 2 1/2
5~ 1 a (a+P, ) +IP, I 27/2 3»» 2 4ln

1/2 + s(a+pe } Ipe I (4a + ~ape + 5pe
zf ee Pe cT

(132)

exactly as in Eq. (125), where
I M&„s I

is given in Eq. (126). In analogy with Eq. (127), the spectral integral is
5'0

f2(IEp) = de /l2(ape )'
1

where Eqs. (130) and (132}give the spectral function as

(134)

where definitions introduced in Eqs. (118), (119},and (124) are employed; and where it is again assumed that
quantities in the integrand which are proportional to cosP, will average to zero when integrated over P, from
—m. to ~.

The spin part of the total transition probability per unit time is of the form

62m'
f2 IWnd I2~3

(133)
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P

h2(ep, , )=
21 3ln, /2 +

1 3 [ (p, ((o'+p, ) —p, ] 3 (o+ —,p, ) . (135)21 0 105 g, 3Ee

3. Interferenee term

When the generalized Bessel functions in Eq. (72) are treated according to Eqs. (96) and (100), and averages
are taken in the resulting trigonometric functions, the consequences are

1 1

~n( 0~ 2 1)[Jn —j+m+1( k~ 2 q)+In —j+m —1( f~ 2 q)l
5"gC

J.-j+ ( —0 ——,n)[~.+l( —0 ——,n)+~. -l( —0 ——,n)]=-
7T'gC

where again m —j=2q and odd m —j differences can be neglected. Sums over rn and j are done as in Eqs.
(109) and (110), the definitions of Eqs. (73) and (63) are employed, and the outcome is that Eq. (72) becomes

62
W3 —— f dE,E,(E —rn )' f dA

(2n )' 'gC

Pe'~ . k Pe+i X—& g ( Ep E, rjt0—+—neo)
24b

E, a) E,

cos z' cos8
Rp

+ sin z' cos8
Rp

r

1/2 r+K COS z COSH 0
Ro

sin z' cos8 0.
Ro

(136)

The sum over n that has to be done in Eq. (136}is the same as the one which appears in Eq. (112), and which
is evaluated in Eq. (117). The philosophy for the solid angle integral is as before, with terms proportional to
cosP, or sing, neglected. As a result, the term k )& p, .e can be droppmi in Eq. (136). The solid angle integral
that arises from Eq. (136) with Eq. (117}is

+Pe & Pe &

~

~

p, k E,
'g

[8(2h2+ )3/2 8(2b2)5/2 2()(2b2)3/2~ 15(2b2)1/2~2]
m

P

+p, ')'"+~p~
1/2 416zf ~ ~p ~

1/2 + tr+p,

&&[cr3+ —,o (o+p, ') + „o(cr+p—,2) , (tr+—p,—)']+4~p, ~3(3o2+ —,op, 2+ —,p, ) '.

(137)

(138)

As with the other parts, the interference part of the total transition probability per unit time is of the form

6'm'
f3 I M&ns I2%3

with
~
M;ne ~

shown in Eq (126), and. with Eqs. (137) and (138) leading to the spectral integral

f3(Ep) = de 'h3(ep, E', )
1

(139)
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involving the spectral function

4

12

1

48

2 1/2
I p I (o' +pe ) i 118 g i 136 4 l6(0+—„Op, +—„Op, + —,p, )

E'q

(140)

D. Nuclear parameters

Application of the foregoing formalism to practi-
cal calculations requires first that a determination be
made of the appropriate separation of the nucleus
into a core and a fragment. This can be done in
terms of the standard single-particle shell model.

A few examples of how fragment assignments are
made are given here. For example, 4s Cd6~ has a
single nucleon fragment. The core nucleus, 4II Cd64,
is a stable nuclide in nature with spin and parity of
0+. By the usual single-particle model, this means
that this "even-even" nuclide has the spins of all of
its protons and of all of its neutrons antialigned in
pairs to give pairwise and overall zero angular
momentum. The odd neutron in "Cd has a shell
model assignment of si&z, which should then deter-
mine the entire nuclear spin and parity to be (—,)+,
which is the case. Upon beta decay, the unpaired

s~/2 neutron becomes an unpaired g9/2 proton,
which then contributes the entire observed ( —,)+ spin
and parity of the final 49 In~ nucleus.

An example of a two-nucleon fragment is provid-
ed by 38Sr52. The core nucleus, 38Sr50, is the princi-
pal stable isotope of strontium. In particular, N= 50
is a magic number for the neutron shell in Sr, and
Z=38 represents the closure of an f5&i shell for the
protons, so Sr is a clear case of a stable, relatively
tightly bound core nucleus. The two neutrons in

Sr beyond the magic number of N =50 then consti-
tute the fragment, one of whose two neutrons will
undergo beta decay. They must be considered as a
pair because initially they are angular-momentum
coupled to 0+, and it is impossible to say which of
the two will decay. Finally, the remaining d5&2
neutron will couple to the newly formed pi~i proton
to jive the 2 state of the 39Y5] daughter nucleus.

&7Rb5c is an example of a nuclide where the frag-
ment must consist of thrm nucleons. The odd pro-
ton in Rb must be part of the fragment because in-
itially this p3/2 particle accounts for the entire Rb

3
spin and parity of ( —,) . The beta decay itself in-

volves a neutron, not the odd proton, and since the
beta decay neutron is initially paired with another to
give 0+, then both of these neutrons
must also be assigned to the fragment. In the final

state, the g9/2 neutron which beta decays to a p3/2
proton will couple to 0+ with the initial odd proton,
while the remaining g9/2 neutron finds itself un-
paired in the final state, and so accounts for the
( —,)+ spin and parity of the Sr daughter nucleus.

E. Form of the nuclear matrix element

Total transition probability per unit time is the
sum of the three contributions Wi, Wi, and W&,
given in Eqs. (125), (133), and (138}. Each of the
8'„contains the same squared transition matrix ele-
ment

I M;„d I, defined in Eq. (126). This will now
be examined in more detail.

Equation (126) is expressed as the sum of four
terms. The first pair of terms arises from the vector
part of the beta decay interaction, and corresponds
to the usual Fermi matrix element of beta decay
theory. The second pair of terms (the ones contain-
ing the Pauli spin operators cr) comes from the axial
vector part of the beta decay interaction, and corre-
sponds to the usual Gamow-Teller matrix element
of beta decay theory. However, a simplification can
be introduced from isospin considerations, which
have not been placed in evidence in the above work.
For Fermi matrix elements, the isospin conservation
rule is ET=0, ' where T is the total isospin quan-
tum number. This condition is not satisfied for
most transitions involving forbidden decays. Then
only the Gamow-Teller matrix elements need to be
retained. In such cases, Eq. (126}is replaced by

I Mind I

'
2K

cos z cos0 cr1/2

4n(2' )'~2

sin z' cosO 0.
Ro

(141)

The terms in the square bracket in Eq. (141) are
squared nuclear transition matrix elements, with the
f and i subscripts referring to final and initial nu-
clear states. The coordinate r which occurs in the
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where q is the total number of nucleons in the frag-
ment. Since only one of these q nucleons will under-

go beta decay (say the jth one), then whenever r cos8
appears in the matrix element, the replacement

1r cos8—+—r.cos8 ~

q
J J (142)

should be used, where 8j measures the angle between

rj and the polarization vector of the applied field.
Equation (141) can be stated in more detail as

K

igi ( /Mff /
+ /Mff /

)
4m(2zf )'

(143}
where

~ COS

Mfi — . g g Qf, cos
(2j;+1)

21/2
ujcos81 CT1/J(

(144}

2 1/2

1(f,sin uj cos81 0 1(;(2j;+1) '
q

(145}

In Eqs. (144) and (145), uj is the dimensionless radi-
al coordinate

uj rj iRO', —— (146)

j; is the total angular momentum of the initial state,
so that (2j;+1) ' times the sum over m; is an aver-

matrix elements refers to the position vector r of the
nuclear fragment with respect to the nuclear core.
In practical calculation of the nuclear matrix ele-
ments, one needs the coordinates of the separate nu-
cleons contained in the fragment. The vector r
gives the location of the c.m. of the fragment. Since
each nucleon in the fragment can be taken to have
the same mass M, then the position vector of the jth
nucleon in the fragment (rj) is related to r by

q
qMr= g Mrj,

age over orientations of initial angular momentum;
and the sum over mf is a sum over orientations of
the final angular momentum. In practice, only one
of the two terms in Eq. (143) will be nonzero. When

ff and P; have the same parity, only Mf; will sur-
vive; and when they have opposite parity, only Mf;
will survive. Practical calculational examples are
given in a companion paper.
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