³⁴Cl superallowed β decay

S. Raman

Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830

E. T. Jurney

Los Alamos National Laboratory, Los Alamos, New Mexico 87545

D. A. Outlaw*

Duke University and Triangle Nuclear Laboratory, Duke Station, Durham, North Carolina 27706

I. S. Towner

Chalk River Nuclear Laboratories, Chalk River, Ontario, Canada K0J 1J0 (Received 8 November 1982)

The neutron separation energy of ³⁴S and the proton separation energy of ³⁴Cl have been measured accurately via the ³³S(n, γ)³⁴S and the ³³S(p, γ)³⁴Cl reactions. The measured values imply a Q value of 5492.48±0.20 keV for the total decay energy of ³⁴Cl if the calibration is based on the "mass doublet standard" and a Q value of 5492.42±0.23 keV if based on the 411.8044±0.0011 keV line in ¹⁹⁸Au. If the conserved vector current hypothesis is valid and the electromagnetic corrections are made properly, the ft values for superallowed $0^+ \rightarrow 0^+ \beta$ decays should all be the same. The ft values for the superallowed ³⁴Cl and ¹⁴O decays were found to be equal to better than (4±16) parts in 10⁴, in agreement with the expectations.

NUCLEAR REACTIONS ³²S, ³³S, ³⁴S(n,γ), E=thermal; measured E_{γ} . ³³S, ³⁴S, ³⁵S deduced neutron separation energy. ³³S, ³⁴S(p,γ), E=0.9-1.4 MeV; measured E_{γ} . ³⁴Cl, ³⁵Cl deduced resonances, proton separation energy. RADIOACTIVITY ³⁴Cl, ³⁵S, deduced Q. ³⁴Cl, deduced ft.

I. INTRODUCTION

Superallowed $0^+ \rightarrow 0^+ \beta^+$ transitions between members of an isospin multiplet have been studied for more than two decades. If isospin is a good quantum number, all the *ft* values are expected to be the same for these transitions. The *ft* values, in turn, lead to a value for the effective weak interaction vector coupling constant G_{V}' . The known superallowed *ft* values¹⁻³ are based on accurate measurements of decay energies, half lives, and branchings (where applicable). An uncertainty of less than 0.10% in a particular *ft* value has been the traditional goal of researchers in this field. This goal has been pursued, usually in a seesaw fashion, with significant improvements in the determination of decay energies followed by similar improvements in half-lives or vice versa. In 1976, when we began the present study, the ${}^{34}\text{Cl} \rightarrow {}^{34}\text{S}$ decay energy and the halflife were known¹ only to an accuracy of $\approx 0.3\%$ each. We have now deduced an accurate value for this decay energy from proton (S_p) and neutron (S_n) separation energies measured in the ${}^{33}\text{S}(p,\gamma){}^{34}\text{Cl}$ reaction and the ${}^{33}\text{S}(n,\gamma){}^{34}\text{S}$ reaction, respectively. Our value, and other meticulous decay energy and half-life values for ${}^{34}\text{Cl}$ that have been reported since 1976, have made

27

1188

©1983 The American Physical Society

wn TABLE I Sele

the ${}^{34}Cl \rightarrow {}^{34}S$ decay one of the best known (smallest uncertainty in the *ft* value) of all superallowed β transitions.

II. CALIBRATION ENERGIES

In 1975, a set of precise mass differences for ¹H-²H, ²H-³H, ¹²C-¹³C, and ¹⁴N-¹⁵N were reported by Smith and Wapstra⁴ on the basis of measurements made with a unique radiofrequency mass spectrometer built by Smith⁵ at Princeton. With these mass differences (referred to in the literature as the "mass-doublet standard") and a few other γ ray energies as primary calibration lines (see Table I), we developed a secondary list of calibration lines through (n,γ) measurements made at the Los Alamos Omega Reactor.⁶ The quoted uncertainties (one standard deviation) in these lines do not include the uncertainties in the primary calibration lines. We employed these values in the analysis of (n,γ) data on all stable sulfur isotopes.

Meanwhile, a different set of calibration energies has been published by Greenwood et $al.^{7,8}$ Above 2 MeV, their values for the primary calibration lines differ from the Smith and Wapstra values by nearly -100 eV, a difference primarily arising from a lower value in the deuteron binding energy measured by Greenwood and Chrien⁸ (see Table II). More recent measurements by van der Leun et al.⁹ and Vylov et al.¹⁰ reinforce the suggestion that the primary calibration lines above 2 MeV should be lowered by nearly 100 eV. The values reported in Refs. 8, 9 and 10 are ultimately tied to the 411.8044 \pm 0.0011 keV line in ¹⁹⁸Au (known as the "gold standard"). The above systematic differences will, of course, propagate into the secondary lines of Table I. To first order, they will carry a possible systematic uncertainty of -50 eV. However, in arriving at the neutron separation energy of ³⁴S, we prefer to retain our independent analysis based on the "mass doublet standard" and make a systematic adjustment at the very end.

For the (p,γ) measurements, we employed the 6129-keV γ ray in ¹⁶O as the calibration line because a portable source of this γ ray exists, and its energy is known with good precision. The portable source¹¹ utilizes the ¹³C(α,n)¹⁶O reaction in a mixture of ²⁴⁴Cm and ¹³C. The energy of the 6129-keV γ ray has been measured by Shera¹² as 6129.170 \pm 0.043 keV. In arriving at this value, Shera employed the same primary calibration

TABLE I. Selected γ -ray calibration energies. In our notation, 411.794 & =411.794 \pm 0.008 keV, etc.

	Jurney and		Greenwood			
	Raman ^a	et al. ^b		ence		
Source	$E_{\gamma}(\text{keV})$	$E_{\gamma}(\text{keV})$	$E_{\gamma}(\text{keV})$			
	Primary calibi	ation lines				
¹⁹⁸ Au decay	411.794° 8	411.804 ^d	2	+10		
⁶⁰ Co decay	1173.208° 25	1173.237	3	+29		
⁶⁰ Co decay	1332.501 ^f 5	1332.501	4	0		
¹⁴⁴ Ce decay		2185.662	7			
$^{1}\mathrm{H}(n,\gamma)^{2}\mathrm{H}$	2223.345 ⁸ 30	2223.247	17	-98		
${}^{12}C(n,\gamma){}^{13}C$	4945.416 ⁸ 30	4945.319	24	-97		
$^{2}\mathrm{H}(n,\gamma)^{3}\mathrm{H}$	6250.419 ⁸ 30	6250.316	24	-103		
$^{14}\mathrm{N}(n,\gamma)^{15}\mathrm{N}$	10829.199 ⁸ 30	10829.101	<u>38</u>	-98		
	Secondary calib	oration lines				
$^{12}\mathrm{C}(n,\gamma)^{13}\mathrm{C}$	1261.765 ^h 27					
$^{14}N(n,\gamma)^{15}N$	3532.067 40	3531.964	87	-103		
${}^{12}C(n,\gamma){}^{13}C$	3684.035 ^h 40					
$^{14}N(n,\gamma)^{15}N$	4508.744 45	4508.665	53	-79		
$^{14}N(n,\gamma)^{15}N$	5269.177 60	5269.122	35	-55		
$^{14}N(n,\gamma)^{15}N$	5297.862 40	5297.795	35	-67		
$^{14}N(n,\gamma)^{15}N$	5533.433 50	5533.401	35	-32		
$^{14}N(n,\gamma)^{15}N$	5562.118 40	5562.073	35	-45		
$^{14}N(n,\gamma)^{15}N$	6322.493 50	6322.474	60	-19		
$^{14}N(n,\gamma)^{15}N$	7298.975 50	7298.980	90	+5		

^aUnpublished values employed in analyzing thermal (n,γ) spectra from all stable sulfur isotopes.

^bReferences 7 and 8.

^cG. Murray, R. L. Graham, and J. S. Geiger, Nucl. Phys. **45**, 177 (1963); Nucl. Phys. **63**, 353 (1965).

^dE. G. Kessler, R. D. Deslattes, A. Henins, and W. C. Sauder, Phys. Rev. Lett. 40, 171 (1978).

^eR. G. Helmer, R. C. Greenwod, and R. J. Gehrke, Nucl. Instrum. Methods **96**, 173 (1971).

^fR. G. Helmer, private communication (1975).

^gReference 4.

^hSupersedes preliminary values reported by S. Raman, in *Neutron Capture Gamma Ray Spectroscopy and Related Topics 1981*, edited by T. von Egidy, F. Gönnenwein, and B. Maier (Institute of Physics, Bristol 1982) p. 357.

lines given in Table I as those employed by us. He, however, used an approximate nuclear recoil correction. (The quantity A in footnote a of Table I in Ref. 12 should refer to the mass of the recoiling atom in atomic mass units instead of the mass number.) The correct value, based on the "mass doublet standard" and on a reanalysis of the original data,¹³ is 6129.214 ± 0.043 keV. The uncertainty in this value includes all known sources of uncertainty except the changes intro-

<u>27</u>

TABLE II. Changes in the deuteron binding energy (in keV). In our notation, 2224.662 $30=2224.662\pm0.030$ keV, etc. The recoil correction is nearly 1.319 keV.

$S_n(^2\text{H}) = 2224.662 30$	(Smith and Wapstra ^b 1975)
2224.610 40	(Halverson and Johnson ^c 1978)
2224.628 ^a 16	(Vylov et al. ^d 1978)
2224.564 17	(Greenwood and Chrien ^e 1980)
2224.575 9	(van der Leun et al. ^f 1981)
2224.563 9	(Vylov et al. ^g 1982)

⁸Original value of 2224.572 ± 0.040 keV revised upwards by Greenwood and Chrien (Ref. 8) to reflect change in the 411-keV (¹⁹⁸Au) gold standard.

^bReference 4.

^oJ. E. Halverson and W. H. Johnson, Jr., Phys. Rev C 17, 1414 (1978).

^dIs Vylov, K. Ya Gromov, A. I. Ivanov, B. P. Osipenko, E. A. Frolov, V. G. Chumin, A. F. Shchus, and M. F. Yudin, Yad. Fiz. **28** 1137 (1978) [trasl.: Sov. J. Nucl. Phys. **28**, 585 (1978)].

•Reference 8.

^fReference 9.

^gReference 10.

duced by the change⁸ in the deuteron binding energy. Including the latter in a complete reanalysis of the data results¹³ in a value of 6129.142 ± 0.032 keV. Here again there is a problem because a slightly higher value, 6129.266 \pm 0.054 keV, has been recently obtained by Alkemade et al.¹⁴ on the basis of the "gold standard" and secondary calibration lines in ²⁶Al. The latter were developed via γ ray cascade-crossover relations generated by the use of resonances in the ²⁵Mg(p,γ)²⁶Al reaction. Just as in the (n,γ) case, we will proceed to use the corrected value of 6129.214 ± 0.043 keV based on the "mass doublet standard" and make a systematic adjustment at the very end to the proton separation energy of ³⁴Cl.

For determining the proton resonance energies, we chose the 991.91 \pm 0.03 keV resonance in ²⁷Al, measured by Barker *et al.*,¹⁵ and the 1317.17 \pm 0.07 keV resonance, also in ²⁷Al, measured by Maas *et al.*¹⁶ The value actually obtained by Maas *et al.* was increased by 30 eV to reflect the change in the ²⁷Al resonance calibration (991.91 keV instead of 991.88 keV) employed by these authors.

III. EXPERIMENTAL PROCEDURE AND RESULTS

A. (n, γ) measurements

The ${}^{33}S(n,\gamma){}^{34}S$ reaction with thermal neutrons was studied at the Los Alamos Omega West

reactor utilizing a 1.1-g target enriched to 88% in ³³S. The γ rays were detected with a 26-cm³ Ge(Li) detector with a NaI(Tl) annulus, which was operated in either a Compton-suppressed or a pair-spectrometer mode. Despite the smallness of the thermal-neutron capture cross section (\approx 300 mb), over 270 γ rays were identified in the 0.1-to 11.5-MeV region. Figure 1 shows a selected portion of the data. Over 250 γ rays were incorporated in a level scheme with 69 levels.

Table III shows eleven two-step cascades leading to $S_n({}^{34}S)$. Based on the entire level scheme, a neutron separation energy of 11417.217 \pm 0.016 keV was deduced for ${}^{34}S$. The quoted uncertainty does not include either the uncertainties in the primary calibration lines or any systematic uncertainty. Including only the former, we obtain a value of 11417.217 \pm 0.046 keV. There are no known previous measurements of the ${}^{33}S(n,\gamma){}^{34}S$ reaction.

While the $S_n({}^{34}S)$ measurement is the main focus of the present paper, we also present three other separation energies deduced along similar lines. They are $S_n({}^{33}S) = 8641.912 \pm 0.053$ keV, $S_n({}^{35}S) = 6986.089 \pm 0.044$ keV, and $S_n({}^{37}S) = 4303.61 \pm 0.07$ keV. Brief descriptions of these (n,γ) measurements on all stable sulfur isotopes have been presented elsewhere.¹⁷

B. (p, γ) measurements

The (p,γ) measurements on selected resonances in ³³S and ³⁴S were made at the Triangle Universities Nuclear Laboratories (TUNL) at Durham. The high-resolution proton beam facility at the TUNL 3-MV Van de Graaff accelerator and the associated analyzer-homogenizer system have been described elsewhere.^{18,19} A total incident proton energy resolution of 300-400 eV was maintained throughout the experiment. The $S_p(^{34}Cl)$ and $S_p(^{35}Cl)$ values were deduced from γ ray energies measured relative to the 6.1-MeV line and proton energies measured relative to the known resonances in ²⁷Al. Sulfur targets were prepared by evaporation of enriched isotopes (88.2% ³³S or 90.0% ³⁴S) in the form of CdS onto 10 μ g/cm² carbon backings employing procedures developed earlier.²⁰ The targets were typically in the 0.1- to 0.5- μ g/cm² range. Targets of ²⁷Al, matching in thickness to specific sulfur targets, were also made for concurrent use in the resonance energy measurements.

Proton excitation data were taken in steps of

Fig. 1. Portion of the γ -ray spectrum from the ³³S (thermal n,γ)³⁴S reaction.

50 or 100 eV near resonances chosen for study. Proton beam intensities were typically 2-3 μ A. Gamma rays and elastically scattered protons were detected with a 10-cm x 10-cm NaI(Tl) detector at 90° and a 50 mm² Si surface barrier detector at 135°, respectively. Portions of the data are shown in Fig. 2. Energy separations between the ${}^{33}S$ or ${}^{34}S$ resonances and the reference ${}^{27}Al$ resonances were obtained by repeated sequential measurements of their excitation functions. The ³³S resonance was found to occur 17.08 \pm 0.15 keV lower than the 991.91 \pm 0.03 keV

TABLE III. Selected two-step cascades leading to the neutron separation energy of ³⁴S. In our notation, 9288.280 $160 = 9288.280 \pm 0.160$ keV, etc. E_r denotes the recoil correction.

$E(\gamma_1)$	-	⊦	$E_r(\gamma_1)$	+	$E(\gamma_2)$		+	$E_r(\gamma_2)$	=	S _n	
9288.280	160 -	┢	1.363	+	2127.499	20	+	0.072	=	11417.214	162
8111.990	90 -	⊦	1.040	+	3304.031	20	+	0.173	=	11417.233	93
7341.670	60 -	⊦	0.852	+	4074.418	20	+	0.262		11417.202	64
6526.840	60 -	┡	0.673	+	4889.300	80	+	0.378		11417.191	100
6035.680	70 -	⊦	0.576	+	5380.590	90	+	0.458	_	11417.303	115
4197.690	90 -	⊢	0.278	+	7218.480	130	+	0.823	-	11417.272	159
3635.830	80 -	⊦	0.209	+	7780.220	100	+	0.957	_	11417.216	129
3278.790	110 -	⊦	0.170	+	8136.980	170	+	1.046	=	11416.986	203
3031.690	80 -	ł	0.145	+	8384.280	90	+	1.111	_	11417.226	121
2910.280	50 -	ł	0.134	+	8505.680	100	+	1.143		11417.237	112
2390.820	60 -	ł	0.090	+	9024.950	170	+	1.287	_	11417.147	181
Separation energy based on these 11 cascades					=	11417.215	34				
Separation	-	•							=	11417.217	16

Fig. 2. Portions of γ -ray yield curves for the (p,γ) reactions on thin targets. Gamma rays were detected with a NaI(Tl) detector.

²⁷Al resonance or at 974.83 \pm 0.16 keV. The ³⁴S resonance was located 52.11 \pm 0.10 keV lower than the 1317.17 \pm 0.07 keV ²⁷Al resonance, or at 1265.06 \pm 0.13 keV.

Gamma-ray spectra were obtained from the 975-keV ${}^{33}S(p,\gamma)$ and the 1265-keV ${}^{34}S(p,\gamma)$ resonances with an 80-cm³ Ge(Li) detector located at 90°. Portions of the γ -ray spectra are shown in Fig. 3. The 6088-keV γ ray, shown in the upper half, represents²¹ a transition from the 975-keV resonance to the ground state of 34 Cl. This γ ray was found to occur 41.50 \pm 0.10 keV below the 6129.214 \pm 0.043 keV ¹⁶O line, or at 6087.71 \pm 0.11 keV. The 5835-keV γ ray, shown in the bottom half of Fig. 3, represents²¹ a transition from the 1265-keV resonance to the firstexcited state of ³⁵Cl. This γ ray was found to be 293.91 ± 0.15 keV below the 6.1-MeV line, or at 5835.30 ± 0.16 keV. The first excited state is known²² to de-excite by the emission of a 1763.15 \pm 0.10 keV γ ray.

After applying relativistic center-of-mass transformations and nuclear recoil corrections, the proton separation energy of 34 Cl was deduced as 5142.40 \pm 0.19 keV and that of 35 Cl as

6370.44 \pm 0.23 keV. The measured neutron and proton separation energies are also given in Table IV. Our measured $S_p({}^{34}\text{Cl})$ and $S_n({}^{34}\text{S})$ values, together with a value of 782.338 \pm 0.010 keV for the neutron-proton mass difference, imply a Qvalue of 5492.48 \pm 0.20 keV for the total (β^+ + electron capture) decay energy of ${}^{34}\text{Cl}$. The uncertainty is dominated by the 0.15 keV uncertainty in the measurement of the resonance energy and the 0.10 keV uncertainty in the measurement of the γ -ray energy in the (p,γ) reaction.

C. Systematic Uncertainties

We are now in a position to consider systematic uncertainties and minor adjustments to the measured separation energies. These adjustments, though important, are small (< 100 eV) and comparable in magnitude to atomic and molecular effects which are not considered here.

For the present discussion, we switch our norm to the "gold standard." A comparison between the values 2224.662 ± 0.030 keV ("mass doublet standard") and 2224.568 ± 0.007 keV (weighted

Fig. 3. Portions of γ -ray spectra obtained with a Ge(Li) detector. The top curve shows the spectrum measured at the 992 keV ${}^{33}S(p,\gamma){}^{34}S$ resonance and the bottom curve the spectrum at the 1265 keV ${}^{34}S(p,\gamma){}^{35}S$ resonance. The 6129.2 keV γ ray in ${}^{16}O$ is generated by a portable ${}^{244}Cm + {}^{13}C$ source.

average of the "gold standard" measurements) for the deuteron binding energy (see Table II) implies that the measured separation energies should be lowered by 94 eV. We proceed to make this correction to our neutron separation energies which were based on the "mass doublet standard." Moveover, we have chosen to add half of this correction (47 eV) to the statistical uncertainties to provide a conservative estimate of the total uncertainties. The final adjusted S_n values are also given in Table IV.

We treat the S_p values differently because there exist two independent measurements of the energy of the 6.1-MeV ¹⁶O γ ray. The measured values, 6129.142 ± 0.032 keV and $6129.266 \pm$ 0.054 keV, both now on the same "gold standard," barely overlap. We adopt a weighted average of 6129.174 \pm 0.055 keV and revise our γ ray energies measured in the (p,γ) reactions downward by 40 eV to reflect this change. The final adjusted S_p values are also shown in Table IV. A detailed comparison with previously published separation energies is unnecessary because the present values are more accurate. The adjusted $S_p({}^{34}Cl)$ and $S_n({}^{34}S)$ values imply a Q value of 5492.42 \pm 0.23 keV for the total decay energy of ³⁴Cl. The adjusted S_n (³⁵S) and S_p (³⁵Cl) values imply a β^- decay energy of 166.74 \pm 0.26 keV for ³⁵S, compared to the directly measured value²³ of 167.4 \pm 0.2 keV. This discrepancy cannot be resolved further because the authors of Ref. 23 give few details concerning the estimation of uncertainties in their magnetic spectrometer measurements.

IV. BEST VALUES FOR ³⁴Cl AND ¹⁴O

The *ft* value of a particular β transition depends upon the Q value and the partial half life. The relevant experimental data for ³⁴Cl and for the most accurately known superallowed datum at the present time, ¹⁴O, are surveyed in Table V. For 34 Cl, the Q values are from Refs. 24-29, and the half-life values from Refs. 30-32; for ¹⁴O, the Q values are from Ref. 28 and Refs. 33-38, and the half-life values from Refs. 39-44. All measurements formally published before August 1982 whose quoted uncertainties are within a factor of ten of the most precise measurement are listed, except where a datum has been superseded by a measurement from the same laboratory and the earlier one withdrawn. A number of published energies have been corrected for changes in the calibration standards reflecting the 1977 mass table,⁴⁵ the neutron-proton mass difference,⁸ and the recent adjustment in the reference α particle energies.⁴⁶

The first statistical procedure followed in analyzing the tabulated data for arriving at the "best" values is that recommended by the Particle Data Group.⁴⁷ Weighted averages are calculated according to:

$$\overline{x} \pm \delta \overline{x} = \left(\sum_{i} w_i x_i / \sum_{i} w_i\right) \pm \left(\sum_{i} w_i\right)^{-\frac{1}{2}} , (1)$$

Reaction	Quantity	"Mass-Doublet Standard" Measured value (keV)	"Gold Standard" Adjusted value (keV)
$\overline{{}^{32}\mathrm{S}(n,\gamma)^{33}\mathrm{S}}$	Sn	8641.912±0.053	8641.82±0.10
$^{33}\mathrm{S}(n,\gamma)^{34}\mathrm{S}$	S_n	11417.217 ± 0.046	11417.12 ± 0.10
$^{34}S(n,\gamma)^{35}S$	S_n	6986.089 ± 0.044	6986.00 ± 0.10
$^{36}\mathrm{S}(n,\gamma)^{37}\mathrm{S}$	S_n	4303.61 ± 0.07	4303.52 ± 0.12
$^{33}S(p,\gamma)^{34}Cl$	S_p	5142.40 ±0.19	5142.36 ± 0.20
$^{34}\mathrm{S}(p,\gamma)^{35}\mathrm{Cl}$	S_p	6370.44 ± 0.23	6370.40 ± 0.24
$^{34}\text{Cl}(\beta^++\epsilon)^{34}\text{S}$	Q^+	5492.48 ^{<i>a</i>} ± 0.20	5492.42 ± 0.23
$^{35}S(\beta^{-})^{35}Cl$	Q-	$166.69^{b} \pm 0.24$	166.74 ± 0.26

TABLE IV. Summary of results.

"Deduced from the measured S_p ⁽³⁴Cl) and S_n ⁽³⁴S) values.

^bDeduced from the measured $S_n({}^{35}S)$ and $S_p({}^{35}Cl)$ values.

$$w_i = [1/(\delta x_i)^2]$$
, (2)

where the sums extend over all N relevant measurements. In each case, χ^2 was calculated and a scale factor S was determined:

$$S = [\chi^2 / (N-1)]^{\frac{1}{2}} .$$
 (3)

If S>1 and the δx_i are all about the same size, then the uncertainty $\delta \overline{x}$ in Eq. (1) was increased by the factor S, which is equivalent to assuming that all the experimental errors were underestimated by the same scale factor. If S>1, but the δx_i are of widely varying magnitudes, S was recalculated using only those results for which $\delta x_i \leq 3N^{\frac{1}{2}} \delta \overline{x}$; the scale factor was then applied in the same way. Uncertainties (one standard deviation) on the averages listed in Table V have been scaled according to the above prescription and the scale factors (S) have been noted. It should be emphasized that the scaling procedure for uncertainties does not affect the central average values.

The above method results in a set of values designated as SET A in Table V. The uncertainties quoted in this set are conservative and probably overstated because of the scaling procedure. For example, the large scale factor (S=3.3)occurs in the case of the ^{14}O Q values (see Table V) because four of the measured values (including the one with the smallest reported uncertainty) cluster around 5143.2 keV and the remaining three around 5145.2 keV. In arriving at the SET A values, all measurements were included because none of these have been explicitly withdrawn by the authors, and a rejection by us of any one value would have required lengthy explanations. The net result is that, even though an accurate Q value of 5143.13 \pm 0.08 keV has

been recently published by White *et al.*,³⁸ the statistical procedures followed above result in a value of 5143.26 keV, which is not too different, but carries a retrograde uncertainty of 0.25 keV.

In some cases (and especially in the above ¹⁴O case), we could have chosen not to average the data at all, or to average only a subset of the data. This is not an uncommon practice amongst scientists and data evaluators. Therefore, we have also derived a set of values designated as SET B in Table V from a selective averaging of the data. In contrast to the SET A values, the uncertainties are now much smaller. Therefore, some readers might consider the SET B values as optimistic and the uncertainties understated.

V. THE ³⁴Cl \rightarrow ³⁴S SUPERALLOWED *ft* VALUE

A careful treatment of uncertainties is important, because, ultimately, they will provide the limits by which the conserved vector current hypothesis (CVC) is verified by the superallowed $0^+ \rightarrow 0^+ \beta$ transitions. According to CVC, the *ft* values for such transitions should all be identical after small radiative and Coulomb corrections have been applied.

Radiative corrections have been expressed as a sum of two terms:⁴⁸ the outer radiative correction δ_R , which varies from nucleus to nucleus, and the inner radiative correction Δ_R , which is nucleusindependent and which can be absorbed in the definition of the coupling constant. For a verification of CVC, only δ_R need be considered, and in Table VI the third-order values from Ref. 2 are listed.

	-				
³⁴ Cl			¹⁴ O		
		Q ^a value (keV)			
Graber and Harris ²⁴	5494.10±1.64		Butler and Bondelid ³³	5143.60 ± 0.70	
Hyder and Harris ²⁵	5494.50 ± 1.24		Bardin et al. ³⁴	5145.00 ± 0.60	
Freeman et al. ²⁶	5489.40±1.90		Roush et al. ³⁵	5145.40 ± 0.50	
Hardy et al. ²⁷	5490.20 ± 2.30		White and Naylor ³⁶	5143.49 ± 0.37	
Vonach et al. ²⁸	5492.20 ± 0.40		Vonach et al. ²⁸	5142.70 ± 0.80	
Barker et al. ²⁹	5491.79 ± 0.55		Barker and Nolen ³⁷	5145.20 ± 0.60	
Present work	5492.42 ± 0.23		White et al. ³⁸	5143.13 ± 0.08	
		Adopted			
Average ($S=1.2$)	5492.33±0.22	(SET A)	Average $(S=3.3)$	5143.26 ± 0.25	
Present work	5492.42 ± 0.23	(SET B)	Reference 38	5143.13 ± 0.08	
		Half-life (msec)			
Hardy and Alburger ³⁰	1534.0 ± 3.0		Alburger ³⁹	70480 ± 150	
Ryder et al. ³¹	1526.0 ± 2.0		Singh ⁴⁰	70400 ± 100 70320 ± 120	
Wilkinson and	1520.0 ± 2.0		Clark <i>et al.</i> ⁴¹	70520 ± 120 70588 ± 28	
Alburger ³²	1525.2 ± 1.1		Azuelos et al. ⁴²	70300 ± 20 70430 ± 180	
			Becker et al. ⁴³	70430 ± 100 70684 ± 77	
			Wilkinson et al. ⁴⁴	70613 ± 25	
		Adopted			
Average $(S=1.9)$	1526.2±1.8	(SET A)	Average $(S=1.5)$	70597 ± 27	
Average of values			Averages of values in		
in Refs. 31 and 32	1525.4 ± 1.0	(SET B)	Refs. 41, 43 and 44	70606 ± 18	

TABLE V. Q values and half-life measurements in ³⁴Cl and ¹⁴O superallowed β decays.

^aQuoted is the ground state Q value. For ¹⁴O, the Q value for the superallowed branch was obtained using 2312.798 ± 0.011 keV as the excitation energy of the lowest 0⁺ (T=1) state in ¹⁴N. This energy measurement is by E. K. Warburton and D. E. Alburger, Nucl. Phys. A385, 189 (1982).

Likewise the Coulomb correction δ_c is considered to be made up of two components:⁴⁹ one, δ_{c1} , arising from charge-dependent configuration mixing with other 0⁺ states, and the other, δ_{c2} , being due to small differences in the single-particle neutron and proton radial wave functions which cause the radial overlap integral of the parent and daughter nucleus to be less than unity. Strictly speaking, these two aspects of the calculation of δ_c cannot be separated, but in all calculations to date the division has been made. In Table VI the calculated values of Towner, Hardy and Harvey⁵⁰ for δ_c are listed.

The corrected ft values for superallowed decays are denoted by $\mathcal{F}t$, and the statement of CVC becomes $\mathcal{F}t = \text{constant}$, where

$$ft(1+\delta_R)(1-\delta_c) = f_R t (1-\delta_c) = \mathcal{F}t \quad . \tag{4}$$

Thus, from the entries in Table VI, the ³⁴Cl and ¹⁴O data are seen to be in excellent accord and to support the CVC hypothesis. The result, expressed as a ratio, is

$$R = [\mathcal{F}t(^{34}\text{Cl}) - \mathcal{F}t(^{14}\text{O})]/\mathcal{F}t(^{14}\text{O})$$

= (4±16) × 10⁻⁴ (SET A)
= (2±11) × 10⁻⁴ (SET B) (5)

where the bulk of experimental uncertainty comes from the ³⁴Cl lifetime. A similar analysis has recently been performed by Koslowsky *et al.*⁵¹ They measured precisely the difference in Q value for the superallowed $0^+ \rightarrow 0^+ \beta$ decays of ¹⁴O and ²⁶Al^m, and their result, expressed as an equivalently defined ratio, is $R = (9\pm 8) \times 10^{-4}$.

It is clear that as experimental data improve in

· · ·	³⁴ Cl (SET A)	¹⁴ O (SET A)	³⁴ Cl (SET B)	¹⁴ O (SET B)
$Q(\beta^+ + \epsilon)$ in keV (from Table V)	5492.33 ± 0.22	2830.46 ± 0.25	5492.42 ± 0.23	2830.33 ± 0.08
Statistical rate function, ^a f	1998.25 ± 0.45	42.715 ± 0.025	1998.44 ± 0.47	42.702 ± 0.008
Half-life in msec (from Table V)	1526.2 ± 1.8	70597 ± 27	1525.4 ± 1.0	70606 ± 18
Branching ratio ^b in %	100.00	99.336 ± 0.010	100.0	99.336 ± 0.010
Electron capture fraction ^c in %	0.081	0.091	0.081	0.091
Partial half-life in msec, t	1527.4 ± 1.8	71133 ± 28	1526.6 ± 1.0	71143 ± 19
ft in sec	3052.2 ± 3.6	3038.5 ± 2.1	3050.9 ± 2.1	3037.9 ± 1.0
Outer radiative correction, ^d δ_R in %	1.682	1.566	1.682	1.566
$ft(1+\delta_R)=f_Rt$	3103.5 ± 3.7	3086.1 ± 2.2	3102.2 ± 2.2	3085.5 ± 1.0
Coulomb correction, ° δ_c in %	0.85 ± 0.07	0.33 ± 0.03	0.85 ± 0.07	0.33 ± 0.03
$ft(1+\delta_R) (1-\delta_c) = f_R t(1-\delta_c) = \mathcal{F}t$	3077.1 ± 4.3	3075.9 ± 2.4	3075.8 ± 3.1	3075.3 ± 1.4

Table VI. The ft values for ³⁴Cl and ¹⁴O superallowed β decays

^aUsing the computer code described in Ref. 49.

^bFrom data in the following references: G. S. Sidhu and J. B. Gerhart, Phys. Rev. **148**, 1024 (1966); R. W. Kavanagh, Nucl. Phys. **A129**, 172 (1969); G. J. Clark, J. M. Freeman, D. C. Robinson, J. S. Ryder, W. E. Burcham and G. T. A. Squier, Phys. Lett. **35B**, 503 (1971); H. S. Wilson, R. W. Kavanagh, and F. M. Mann, Phys. Rev. C **22**, 1696 (1980); and A. M. Hernandez and W. W. Daehnick, Phys. Rev. C **24**, 2235 (1981). ^cFrom the tables of N. B. Gove and M. J. Martin, Nucl. Data **A10**, 205 (1971).

Table VII. R values for different	choices of δ_c (theoretically calculated	l Coulomb correction).
See Eq. (5) for the definition of R .		

	R(SET A)	R(SET B)
$\mathcal{F}t: \text{ No } \delta_c, \mathcal{F}t = f_R t$	$(57 \pm 14) \times 10^{-4}$	$(54 \pm 8) \times 10^{-4}$
$\mathcal{F}t: \ \delta_c \ \text{from Towner},$ Hardy and Harvey ⁵⁰	$(4\pm 16) \times 10^{-4}$	(2±11)×10 ⁻⁴
$\mathcal{F}t: \delta_c$ from Damgård ⁵²	$(21\pm14)\times10^{-4}$	$(19 \pm 8) \times 10^{-4}$
Ft: δ_c from Wilkinson ⁵³	$(24\pm14)\times10^{-4}$	$(20 \pm 8) \times 10^{-4}$

^dFrom Ref. 2.

[•]From Ref. 50.

precision, the comparison can be used as a test of the δ_c calculations employed. For example, if no δ_c correction is used at all, then the ratio

$$[f_R t ({}^{34}\text{Cl}) - f_R t ({}^{14}\text{O})] / f_R t ({}^{14}\text{O}) = (57 \pm 14) \times 10^{-4},$$

which is certainly not consistent with R=0. Here f_R is $f(1+\delta_R)$. Furthermore, if the calculation of Damgård⁵² or the calculation of Wilkinson⁵³ is used for δ_{c2} rather than that of Towner, Hardy. and Harvey,⁵⁰ a poorer result $(R \neq 0)$ is obtained in each case (see Table VII). Koslowsky et al.⁵¹ observed a similar phenomenon. Of course, it is impossible to extricate separate conclusions about CVC and δ_c from a single comparison. Rather, it is the overall consistency⁵⁴ of all

- *Present address: Science Applications Inc., 1764 Old Meadow Lane, McLean, VA 22102.
- ¹S. Raman, T. A. Walkiewicz, and H. Behrens, At. Data Nucl. Data Tables 16, 451 (1975). ²J. C. Hardy and I. S. Towner, Nucl. Phys. A254, 221
- (1975).
- ³D. H. Wilkinson and D. E. Alburger, Phys. Rev. C 13, 2517 (1976).
- ⁴L. G. Smith and A. H. Wapstra, Phys. Rev. C 11, 1392 (1975); A. H. Wapstra, in Proceedings of the Second International Conference on Neutron Capture Gamma Ray Spectroscopy, edited by K. Abrahams, F. Stecher-Rasmussen, and P. van Assche (Reactor Centrum Nederland, Petten, 1975) p.686.
- ⁵L. G. Smith, Phys. Rev. C 4, 22 (1971).
- ⁶E. T. Jurney, H. T. Motz, and S. H. Vegors, Jr., Nucl. Phys. A94, 351 (1967).
- ⁷R. C. Greenwood and R. E. Chrien, Nucl. Instrum. Methods 175, 515 (1980); R. C. Greenwood, R. G. Helmer, R. J. Gehrke, and R. E. Chrien, in Atomic Masses and Fundamental Constants 6, edited by J. A. Nolen, Jr. and W. Benenson (Plenum, New York, 1980) p. 219; R. C. Greenwood, R. G. Helmer, and R. J. Gehrke, Nucl. Instrum. Methods 159, 465 (1979); R. G. Helmer, R. C. Greenwood, and R. J. Gehrke, Nucl. Instrum. Methods 155, 189 (1978).
- ⁸R. C. Greenwood and R. E. Chrien, Phys. Rev. C 21, 498 (1980). ⁹C. van der Leun and C. Alderliesten, Nucl. Phys. A380, 261
- (1982). ¹⁰Ts. Vylov et al., Joint Institute of Nuclear Research (Dubna) Preprint P6-82-108 (1982).
- ¹¹J. K. Dickens and R. D. Baybarz, Nucl. Instrum. Methods 85, 143 (1970).
- ¹²E. B. Shera, Phys. Rev. C 12, 1003 (1975).
- ¹³E. B. Shera, Phys. Rev. C 26, 2321 (1982) and private communication.
- ¹⁴P. F. A. Alkemade, C. Alderliesten, P. de Wit, and C. van der Leun, Nucl. Instrum. Methods 197, 383 (1982).
- ¹⁵P. H. Barker, D. P. Stoker, H. Naylor, R. E. White, and

the superallowed β -decay data that tends to support the present method of analysis.

ACKNOWLEDGMENTS

This work was sponsored by the Division of Basic Energy Sciences, U.S. Department of Energy under contract W-7405-eng-26 with the Union Carbide Corporation (Oak Ridge), W-7405-eng-36 with the University of California (Los Alamos), and DE-AC05-76ER01067 with Duke University (Durham), and by the Atomic Energy of Canada Limited (Chalk River). We acknowledge helpful discussions with A. H. Wapstra, E. B. Shera, V. Koslowsky, and J. C. Hardy.

W. B. Wood, in Atomic Masses and Fundamental Constants 6, edited by J. A. Nolen, Jr. and W. Benenson (Plenum, New York 1980) p. 233.

- ¹⁶J. W. Maas, E. Somorjai, H. D. Graber, C. A. van den Wijngaart, C. van der Leun, and P. M. Endt, Nucl. Phys. A 301, 213 (1978).
- ¹⁷R. F. Carlton, S. Raman, and E. T. Jurney, Bull. Am. Phys. Soc. 24, 818 (1979); S. Raman, R. F. Carlton, and E. T. Jurney, contributed paper in Proceedings of the International Conference on Nuclear Physics (Berkeley, 1980) p. 236; R. F. Carlton, S. Raman, and E. T. Jurney, Bull. Am. Phys. Soc. 25, 543 (1980); S. Raman, W. Ratynski, and E. T. Jurney, in Neutron Capture Gamma Ray Spectroscopy and Related Topics 1981 edited by T. von Egidy, F. Gönnenwein, and B. Maier (Institute of Physics, Bristol, 1982) p. 169.
- ¹⁸P. B. Parks, H. W. Newson, and R. M. Williamson, Rev. Sci. Instrum. 29, 394 (1958).
- ¹⁹D. L. Sellin, Ph.D. thesis, Duke University, 1968 (unpublished), available through University Microfilms, Inc., Ann Arbor, Michigan. ²⁰D. A. Outlaw, Ph.D. thesis, Duke University, 1974 (unpub-
- lished), available through University Microfilms, Inc., Ann Arbor, Michigan.
- ²¹P. M. Endt and C. van der Leun, Nucl. Phys. A310, 371 (1978).
- ²²E. K. Warburton, J. J. Kolata, J. W. Olness, A. R. Poletti, and Ph. Gorodetzky, At. Data Nucl. Data Tables 14, 147 (1974). ²³R.D. Connor and I. L. Fairweather, Proc. Phys. Soc.
- London A 70, 769 (1957) and 70, 909 (1957).
- ²⁴H. D. Graber and G. I. Harris, Phys. Rev. 188, 1685 (1969). 25
- A. K. Hyder and G. I. Harris, Phys. Rev. C 4, 2046 (1971).
- ²⁶J. M. Freeman, R. J. Petty, S. D. Hoath, G. T. A. Squier, and W. E. Burcham, Phys. Lett. **53B**, 439 (1975). ²⁷J. C. Hardy, G. C. Ball, J. S. Geiger, R. L. Graham, J. A.
- Macdonald, and H. Schmeing, Phys. Rev. Lett. 33, 320 (1974).
- ²⁸H. Vonach, P. Glässel, E. Huenges, P. Maier-Komor, H.

Rösler, H. J.Scheerer, H. Paul, and D. Semrad, Nucl. Phys. A278, 189 (1977).

- ²⁹P. H. Barker, R. E. White, H. Naylor, and N. S. Wyatt, Nucl. Phys. A279, 199 (1977).
- ³⁰J. C. Hardy and D. E. Alburger, Phys. Lett. **42B**, 341 (1972). ³¹J. S. Ryder, G. J. Clark, J. E. Draper, J. M. Freeman, W.
- E. Burcham, and G. T. A. Squier, Phys. Lett. 43B, 30 (1973).
- ³²D. H. Wilkinson and D. E. Alburger, Phys. Rev. C 13, 2517 (1976).
- ³³J. W. Butler and R. O. Bondelid, Phys. Rev. **121**, 1770 (1961).
- ³⁴R. K. Bardin, C. A. Barnes, W. A. Fowler, and P. A. Seeger, Phys. Rev. 127, 583 (1962).
- ³⁵M. L. Roush, L. A. West, and J. B. Marion, Nucl. Phys. A147, 235 (1970). ³⁶R. E. White and H. Naylor, Nucl. Phys. A276, 333 (1977).
- ³⁷P. H. Barker and J. A. Nolen, in *Proceedings of the Inter*national Conference on Nuclear Structure, Tokyo (1977) p. 155.
- ³⁸R. E. White, H. Naylor, P. H. Barker, D. M. J. Lovelock, and R. M. Smythe, Phys. Lett. **105B**, 116 (1981). ³⁹D. E. Alburger, Phys. Rev. C **5**, 274 (1972).
- ⁴⁰J. Singh, Indian J. Pure Appl. Phys. 10, 289 (1972).

- ⁴¹G. J. Clark, J. M. Freeman, D. C. Robinson, J. S. Ryder, W. E. Burcham, and G. T. A. Squier, Nucl. Phys. A215, 429 (1973).
- ⁴²G. Azuelos, J. E. Crawford, and J. E. Kitching, Phys. Rev. C 9, 1213 (1974).
- ⁴³J. A. Becker, R. A. Chalmers, B. A. Watson, and D. H. Wilkinson, unpublished results quoted in Ref. 44.
- ⁴⁴D. H. Wilkinson, A. Gallman, and D. E. Alburger, Phys. Rev. C 18, 401 (1978).
- ⁴⁵A. H. Wapstra and K. Bos, At. Data Nucl. Data Tables 19, 177 (1977). ⁴⁶A. Rytz, At. Data Nucl. Data Tables 23, 507 (1979).
- ⁴⁷Particle Data Group, Review of Particle Properties, Phys. Lett. 111B, xvii (1982). ⁴⁸A. Sirlin, Phys. Rev. 164, 1767 (1967).
- ⁴⁹I. S. Towner and J. C. Hardy, Nucl. Phys. A205, 33 (1973).
- ⁵⁰I. S. Towner, J. C. Hardy, and M. Harvey, Nucl. Phys. A284, 269 (1977). ⁵¹V. T. Koslowsky, J. C. Hardy, R. E. Azuma, G. C. Ball, E.
- T. H. Clifford, W. G. Davies, E. Hagberg, H. Schmeing, U.
- J. Schrewe, and K. S. Sharma, Phys. Lett., to be published. ⁵²J. Damgård, Nucl. Phys. A130, 233 (1969).
- ⁵³D. H. Wilkinson, Phys. Lett. **67B**, 13 (1977); D. H. Wilkinson, Phys. Lett. **65B**, 6 (1976). ⁵⁴I. S. Towner and J. C. Hardy, Phys. Lett. **73B**, 20 (1978).