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The “2C+"“C elastic scattering has been measured for E., =14.6—31.3 MeV,
O..m. =30°—110°. The elastic data have been analyzed via a phase shift analysis, enabling
the extraction of model independent sets of phase shift parameters. The extracted J” values
for the intermediate structure resonances at E,, =18.4, 19.3, and 20.3 MeV are 12%, 12,
and 12% or 14, respectively. The questions of ambiguities in the phase shift analysis and
the comparison with J7 values deduced from other experiments are discussed. Evidence is
presented for the existence of gross structure resonances. The elastic scattering has also
been analyzed using the sum-of-differences method to directly extract the total reaction
cross section. The results of these analyses are compared to existing models of the origin of

intermediate structure resonances.

NUCLEAR REACTIONS Measured the 2C+!2C elastic scattering,
E. . =14.6—31.3 MeV, 0., =30°—110°. Phase shift analysis, sum-of-
differences analysis.

I. INTRODUCTION

The study of the 2C+!2C system has revealed the
existence of resonant phenomena for energies from
below to well above (E_,, =48 MeV) the Coulomb
barrier. The spins and the elastic partial widths are
known for many of these resonances in the Coulomb
barrier region."? The elastic partial widths are sig-
nificantly larger than those predicted!=3 by the
compound nucleus model, which prompted the first
explanation®* of these resonances as nuclear “molec-
ular” resonances. More refined molecular
models>~® and alternate models such as the a parti-
cle model,” although explaining certain qualitative
aspects of the intermediate structure spectrum, have
not provided a satisfactory explanation for the ori-
gin of these resonances.

The 2C+'2C reaction has also been studied for
energies well above the Coulomb barrier. The elastic
scattering'®!! and many reaction channels!>*~¢ (as
well as the total reaction!” and total fusion cross sec-
tions!”1%) exhibit intermediate width structure.
However, the large compound nucleus level density
and the large number of open reaction channels
make it difficult to discriminate between intermedi-
ate structure and compound-nucleus fluctuations. A
statistical analysis'® of the >C+!2C elastic scatter-
ing for E., =13.5—37.5 MeV indicated that the
structures with widths between 200—800 keV were
consistent with statistical model predictions. There-
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fore, if intermediate width structures are to be inter-
preted as intermediate structure resonances, Cross
correlations among channels must be found, prefer-
ably among angle integrated yields. (Feshbach? has
pointed out that resonances need not be seen in every
channel.) It is also important to ascertain if a
unique spin can be associated with an intermediate
width structure.

Cosman et al.'® have recently compiled the exist-
ing data on the '>)C+!C system for E, ,, =10—35
MeV. They demonstrated that the intermediate
width structure (300—800 keV) is correlated between
the elastic and other reaction channels, particularly
the inelastic'* and the a +2°Ne channels.!>!” The
strong correlation of intermediate width structure
makes plausible the interpretation of many of these
structures as intermediate structure resonances.

Various models for the origin of intermediate
structure have been proposed, such as fragmented
shape resonances,”® resonant inelastic coupling,’—8
and shape isomeric states in *Mg.'>2! In order to
decide among these models, it is necessary to know
the spins and partial widths of the intermediate
structure. In particular, if the structures could be
associated with a unique J”, the resonance interpre-
tation for these structures would be further verified.
A reasonable choice of channel for the extraction of
resonant spins is the elastic channel, not only be-
cause of its spin-zero, identical particle nature, but
also by virtue of the dramatic correlated intermedi-
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ate structure (IMS) observed in this channel. Mea-
surements of the elastic channel also enable elastic
partial widths to be extracted directly, assuming that
spins are obtained unambiguously.

The results of the measurements and analysis of
the '>C+ !2C elastic scattering for E ,, =14.6—31.3
MeV and 6., =30°—110° are presented in this pa-
per. The elastic angular distributions were measured
in 100 keV steps in the energy region
E. ., =17.8—21.1 MeV. This region was studied in
such detail because the elastic scattering had never
been studied over much of this region and also be-
cause there exist three prominent intermediate width
anomalies in this region. The remaining energy re-
gions were studied in varying step sizes. All of the
elastic angular distributions were analyzed with a
phase shift analysis, in hopes of obtaining a model
independent set of resonant and background phase
shift parameters. The elastic data were also
analyzed using the sum-of-differences method>?* to
obtain a direct estimate of the resonant total reac-
tion cross section. Before proceeding to a discussion
of the details of the method and results of the phase
shift analysis (Sec. III A), a summary of the experi-
mental procedure used in making the elastic scatter-
ing measurements is described in the next section.

II. EXPERIMENTAL PROCEDURE

The »C+!2C elastic scattering measurements
were performed in three sets of runs at the
Brookhaven National Laboratory Tandem Van de
Graaff Facility. All targets were self-supporting
natural carbon foils, 10 pg/cm? areal thickness.
The targets also had a small deposit of ’Au (less
than 1 ug/cm?). The energy loss in the targets was
always less than 30 keV (c.m.).

Elastic and reaction products were detected in
bare silicon surface barrier detectors, which were
placed on two plates located on opposite sides of the
scattering chamber. Four detectors, separated by 5°,
were positioned on each plate. The detectors had an
angular acceptance of 0.5° (laboratory). The abso-
lute angles were known to better than 0.5° (laborato-
ry).

The energy signals from each plate were summed
and input to a single analog-to-digital converter.
Simultaneously, a logic signal was generated for
each detector and input to a pattern generating de-
vice. Therefore, each event was associated with an
energy signal and a number representative of the
detector which detected the particle. Only non-
pile-up events were recorded on-line. The relative
percentage of pile-up events to single events was
monitored and the beam intensity adjusted to keep
this percentage less than 1%.

Relative cross-section normalization was achieved
from the ratio of the measured >)C+!?)C and
2C4+%Au elastic yields and the calculated
2C4+Au Rutherford cross sections. Absolute
normalization was obtained by measuring the elastic
scattering of >C at E,;, =12.0 MeV, 15° < 0, < 20°,
at the beginning and end of each experiment. The
deviations from !2C+'2C Mott scattering are
known?? to be less than 10% at E,,;, =12.0 MeV. In
order to minimize the effects of carbon buildup on
the target, a cryogenic arm surrounded the target
and helped provide a high vacuum. Repeat runs
were performed to monitor the carbon buildup. The
uncertainty in the absolute cross sections resulting
from the uncertainty in target thickness and the
12C 4 12C Mott scattering is less than 15%.

The >C+"2C and ’C+!"’Au elastic peaks were
well separated from other reaction products at most
angles and energies. At the most forward angles,
01 <20°, and at the most backward angles,
01ap > 45°, there was a background due to light parti-
cle reaction products. Error bars have been calculat-
ed for all the data, taking into account the statistical
error and any error due to overlap with reaction
products or beam tail. The average relative uncer-
tainty in cross sections was approximately 5%.
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shift analysis fits.



III. RESULTS AND ANALYSIS

A. Phase shift analysis

The extracted '2C+'2C elastic angular distribu-
tions are displayed in Figs. 1—-3. The curves
through the data points are fits obtained from a
phase shift analysis of the data. It is obvious that
the elastic angular distributions can significantly
change their character with an energy variation of
J
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only 100 keV (c.m.) (e.g., the energy regions centered
at E_ ., =18.4, 19.3, and 20.3 MeV). The central
question is whether these variations are indicative of
resonant or nonresonant processes. An elastic phase
shift analysis was performed in an attempt to
answer this question. The details of the procedure
and the results of this phase shift analysis are dis-
cussed in this section.

The elastic differential cross section for identical
spin zero particles can be expressed as’

2

do _ | 2%’ exp{ —iy In[sin’(6/2)]] , exp{—iyIn[cos’(6/2)]}
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a is the fine structure constant, u is the reduced ELASTIC SCATTERING
mass, S;(E) are the elastic nuclear matrix elements, T T
and o; are the Coulomb phase shifts for partial BLEC_M_(MM Ecm(MeV) "
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FIG. 2. Same as Fig. 1 except E., =18.8—20.8 MeV.
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SI(E)=171(E)€21'61(E) ’ 2

where

Here, 1, is referred to as the reflection coefficient
for the /th partial wave, and §; as simply the phase.
In terms of these parameters, the total reaction cross
section is given by

or=223 @+ 1)(1-77) . 3)

I even

The values of the nuclear S-matrix elements were
obtained by varying 7; and §; such that a good fit
was obtained simultaneously for both the elastic an-
gular distributions and the total reaction cross sec-
tion. One criterion used to determine the *“good-
ness” of a fit is the value of the reduced X-square
(X,2). The X,? has contributions from the elastic
and total reaction cross sections and is given by

el | § [0 |
VO N-n—-1|%& Ac(6;)
oo | .
AO’R ’

where N is the number of experimental points and n
is the number of free parameters (i.e., twice the
number of partial waves allowed to vary) used in the
phase shift analysis. The uncertainty in the total re-
action cross section was chosen as a constant 25 mb.
This value is a factor of 3 or 4 less than the true ex-
perimental uncertainty.!” The use of an artificially
small error in the total reaction cross section made
the X, > more sensitive to the total reaction cross sec-
tion term. This helped ensure that all solutions (i.e.,
sets of phase shift parameters) found from the phase
shift analysis also correctly reproduced the total re-
action cross sections.

The search on the phase shift parameters was ac-

complished via a gradient search computer code.

which attempted to minimize the X, . In the energy
region from 14.6 to 22.8 MeV (c.m.) the /[ =4—18
partial waves were varied. The [/ =6—20 partial
waves were varied for energies between 24.0 and
31.4 MeV (c.m.). Low partial waves which were not
varied had fixed values of their scattering matrix
elements: 7;=0, §,=0 (i.e,, totally absorbed). The
grazing partial waves for E_ , =20 and 25 MeV are
approximately 12 and 14, respectively. Therefore,
the partial waves included in the calculations should
account for all of the nuclear contributions to the
scattering.

The approach taken to obtain phase shift parame-
ters was basically a bootstrap method. The first re-

gion investigated was from E_.,, =18 to 21 MeV.
The phase shift parameters for contributing partial
waves in the gradient search were initially varied
with identical differential step sizes. Once a few an-
gular distributions were fit, the fits were redone, this
time attempting to constrain the phase shifts to their
average values. This smoothing process occasionally
resulted in slightly inferior fits to the angular distri-
butions (i.e., larger values of the X,2). The exact
compromise between the smoothness (with energy)
of the phase shift parameters and the value of the
X,? was, of course, subjective (and consequently not
unique). More energies were fit and the smoothing
process was repeated. In this way the fits for all the
angular distributions were slowly obtained. All par-
tial waves were varied equally unless it was found
that superior fits could be obtained by a more rapid
variation of one partial wave.

One of the most important factors in each fit is
the choice of the initial values of the phase shift
parameters. The initial values of the reflection coef-
ficients were chosen roughly according to sharp cut-
off model predictions. Two strategies were used in
selecting the initial values of the phases. The first
strategy simply started all phases at 0° and allowed
them to vary slowly (except for any resonant partial
wave). The second strategy started the phases of
low partial waves at large values (similar to optical
model predictions®!°) and allowed them to vary
more rapidly. (The differential step sizes for the re-
flection coefficients and nuclear phases could be
varied independently in the gradient search.) Solu-
tions based on these initial conditions have been ex-
plored in detail.

The phase shift parameters obtained from the
phase shift analysis with the 0° phase initial condi-
tion are displayed in Fig. 4. The solid curves
through the data in Figs. 1—3 were calculated using
the phase shift parameters in Fig. 4. Before discuss-
ing this solution a few comments are in order. The
reasons for attempting this “zero phase” solution
were to reduce the number of free parameters in the
fits and also to start the phases out at model in-
dependent initial conditions. [The number of free
parameters, n, used in Eq. (4) was always taken as
twice the number of partial waves allowed to vary,
no matter how small the variation of the phases.] It
is difficult to quantify the reduction in the effective
number of free parameters which results from the
enforced slow variation of the phases relative to the
reflection coefficients. However, it was found that
the angular distributions could be fairly well fit even
with no variation of the phases, except on resonance.
These observations indicate that there are enough
free parameters in the reflection coefficients alone to
fit the off-resonance data. Thus, there exist ambi-
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FIG. 4. Results of 2C+ '2C elastic phase shift analysis using zero phase initial condition (see text). The experimental
total reaction cross section (solid curve) is taken from Ref. 17.

guities in the extracted background phase shift
parameters.

A systematic problem with this particular solu-
tion was the inability to simultaneously fit the elas-
tic angular distributions for 30°<6., <40° and
40° < 0., <90°. Therefore only the 40°< 6. ,, <90°
data were included in the gradient search and in the
evaluation of the X, 2 As will be shown below, this
problem most likely results from the use of back-
ground phases §; which are near zero. Another con-

tribution to this discrepancy may result from the use
of a point charge form factor and Coulomb phase
shifts in Eq. (1).

With the above considerations in mind, we may
now turn back to the phase shifts displayed in Fig.
4. The phase shift parameters are seen to generally
vary smoothly as a function of energy, except for
certain anomalies in some partial waves, the most
striking of which is the dramatic variations with en-
ergy of the phase shift parameters of the / =12 par-
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tial wave. Both the phase and reflection coefficient
for this partial wave go through correlated energy
variations between E__, =17.8—21.0 MeV. This
energy region could not be fit well (using the present
background) unless both 7, and 8;, were allowed
to vary rapidly with energy relative to the other par-
tial waves. The structures in the / =12 partial wave
are centered at 18.4, 19.3, and 20.3 MeV, which cor-
respond to energies where intermediate structures
have been observed!>~!¢ in various reaction channels
as well as in the total reaction cross section!” (shown
in Fig. 4 as a solid curve). There are also structures
at E., ~16.3 MeV for the / =10 partial wave, at
E .. ~29.4 MeV for /=14, and at E_, ~25.5
MeV for [ =16. Thus it is possible to conjecture
that the energies at which the above anomalies occur
may correspond to resonant energies. For the
anomalies in the / =12 partial wave this is a reason-
able conjecture since intermediate width anomalies
are known to be present at the three energies cited
above. The structures at E_,, =16.3, 25.5, and 29.4
MeV are also correlated with structures observed in
other channels. Unfortunately, the elastic data were
not taken in fine enough steps to enable an extrac-
tion of spin values of these structures from the elas-
tic phase shift analysis.

The reflection coefficient and the phase for the
I =12 partial wave vary rapidly with energy in the
energy region E. , =17.8—21.0 MeV. However, it
is important to determine if they do so in a resonant
way. To illustrate some of the properties of a
resonant S matrix, we will use the Breit-Wigner sin-
gle level resonance formula as an example. The
Breit-Wigner S matrix is given by

irel
(E —E,)+il'/2

Si(E)=(S)(E))

(5)

where (S;) is the background S matrix (assumed to
vary slowly relative to the width of the resonant
term). Iy and I are the elastic partial width and
the total width, respectively, and ¢ is the mixing
phase. In the complex plane (Argand diagram), the
S matrix describes a closed circular loop (if the
background amplitude does not vary over the reso-
nance). The radius of the loop is dependent on T
and the magnitude of the background S matrix.
Relative to a point inside the loop, the phase §; of
the S matrix varies by 7 [using the definition of the
phase in Eq. (2)]. However, relative to the origin,
the S matrix may vary by less than 7/2. As a con-
crete example consider a Breit-Wigner resonance in
the 12C+12C elastic scattering at E, ,, =19.3 MeV,
I'y=100 keV, '=400 keV, and | (S)|=0.75. If
the elastic scattering is measured in 100 keV steps,

the maximum deviation in the phase of the S matrix
observed would be 20°. Therefore, even resonances
with large elastic widths will not necessarily be asso-
ciated with large deviations in the phase of the
resonant partial wave. This makes an unambiguous
determination of the resonant spin difficult if the
elastic width is not large or if there is appreciable
background absorption.

The Argand diagram for the / =12 partial wave is
displayed in Fig. 5 for E_, =17.8—21.1 MeV. The
diagram reveals the existence of three resonances
with half widths of approximately 400 keV. The
Argand diagrams for the three resonances are rela-
tively simple and form essentially closed loops.
Therefore it is reasonable to estimate the elastic par-
tial width using the Breit-Wigner single resonance
formula (5), on resonance and with zero mixing
phase’:

1—‘el 1
+ for — > —
/1“:l 1+ . r-2 - (6)
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FIG. 5. Argand diagram for the / =12 partial wave for
the zero phase solution (see text).
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TABLE I. 2C+'2C elastic scattering resonant properties. ¥, is the elastic reduced width
and 7,2 is the Wigner limit for the elastic channel. R, is taken to be 5.7 fm for all calcula-

tions.
I-‘tot ‘VelZ
E. o JT nlres <771 ) (keV) /T (keV) Yelz /sz
Zero phase solution
18.4 12+ 0.55 0.74 400 12.8% 40 12.6%
19.3 12+ 0.45 0.74 400 19.6% 39 12.2%
20.3 12+ 0.50 0.74 400 16.2% 23 7.2%
Large phase solution
18.4 12+ 0.51 0.68 450 12.5% 45 14.0%
19.3 12+ 0.41 0.64 400 18.0% 36 11.4%
20.3 14+ 0.53 0.74 300 14.2% 100 31.6%

The extracted elastic partial widths, reduced widths,
and the ratio of the reduced widths to the Wigner
limits, obtained from the zero-phase solution, are
given in the upper portion of Table I. The reduced
widths account for approximately 10% of the
Wigner limit for the elastic channel. Therefore,
these resonances have a large '2C+ !C parentage, as
do the Coulomb barrier resonances.

The above results demonstrate that the elastic an-
gular distributions and the total reaction cross sec-
tion in the energy region E_., =17.8—21.1 MeV
can be well fit by three /=12 resonances and a
smoothly varying (in energy) background. The
question which must now be addressed is, are there
significant ambiguities in the phase shift parame-
ters?

The possiblity that the apparent resonant behavior
in the elastic and total reaction cross sections is the
result of the variation with energy of more than one
partial wave has also been investigated for
E., =17.8—21.1 MeV. As a starting point for the
search for a new solution, the phase shift parameters
for all except the / =12 partial wave were started at
the values obtained in the solution discussed above.
The I =12 phase shift parameters were made to vary
more slowly than those for other partial waves. It
was found that only the initial condition, 7, ~0.80
and 8;,~0.0, yielded a new solution. No attempt
was made in this solution to smooth the variation
with energy of the phase shift parameters. The
phases were allowed to vary as freely as the varia-
tion of the reflection coefficients.

The phase shift parameters and the fit to the total
reaction cross section are displayed in Fig. 6. The
resonances at 19.3 and 20.3 MeV can be fit by allow-
ing the I =12 reflection coefficient to be almost to-
tally reflected while the / =8 and 10 reflection coef-
ficients go through rapid variations with energy.
The dips in the / =8 and 10 reflection coefficients

are not accompanied by correlated variations in their
phases. There is also structure in the / =14 and 16
phase shift parameters. The resonance at
E. .. =18.4 MeV could not be fit without allowing
the absorption of the / =12 partial wave. However,
by not constraining the phase shift parameters to be
smoothly varying, it is possible to remove the associ-
ated variation of the /=12 phase. The smaller
values of the X, for this solution also result from
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the fact that no attempt was made to smooth the
phase shift parameters.

The finding of this second solution once again il-
lustrates that there are ambiguities in the phase shift
parameters. However, these two solutions both have
something in common, that is, they require an
unusual behavior for the phase shift parameters of
the /=12 partial wave. The zero phase solution
yielded three /=12 intermediate structure reso-
nances. An alternate solution could be obtained
only if the /=12 partial wave was reflected for
E .., =19-21 MeV and resonantly absorbed for
E ., =17.8—19.0 MeV. This second solution may
represent a mathematically equivalent representation
(at least in describing the elastic and total reaction
cross section) of the first resonant solution, which is
possible because of the large number of phase shift

parameters used in the fits. Thus, acknowledging -
the existence of ambiguities in the extracted phase
shift parameters, we believe that little can be learned
from a completely unconstrained search. A much
more fruitful approach is to look for resonant (i.e.,
resonant variation of one partial wave) solutions us-
ing different initial conditions for the phase shifts.
Optical model calculations!® and the phase shift
analysis of Emling et al.?* suggest that the phases §;
for the low partial waves (i.e, [/=0—8 for
E .. =14—19 MeV) obtain large values. Starting
with background phases similar to those obtained by
Emling et al.,?* we have obtained a new solution for
the energy region E__, =17.8—22.0 MeV. The
phase shifts and fit to the-total reaction cross section
are displayed in Fig. 7. It is important to notice that
the X, are usually a factor of 2 better for this fit, as
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compared to those for the zero phase solution, dis-
cussed above. The fits to the elastic data for this
solution are displayed in Figs. 1—3 as dashed curves.
It is apparent that this “large phase” solution does a
superior job at fitting the data, particularly the for-
ward angle data. These improvements over the zero
phase solution indicate that the phase shifts ob-
tained in this solution more closely represent the
true phase shifts.

An examination of Fig. 7 reveals the existence of
J™=12" resonances at E.,, =18.4 and 19.3 MeV
and a J"=14% resonance at E,, =20.3 MeV.
These are the same resonant energies as found in the
zero phase solution for the three J"=127% reso-
nances (Fig. 4). Except for the values of the phases
for the /=6 and 8 partial waves, the phase shift
parameters for the two solutions are, on the average,
very similar. Therefore, it is surprising that ambi-
guities exist for the spin assignment of the resonance
at E, , =20.3 MeV.

The Argand diagrams for the / =12 and 14 par-
tial waves are displayed in Fig. 8. The J™=12"% res-
onance centered at 18.4 MeV does not form a closed
loop and appears to possess a larger width than that
extracted in the zero phase solution (Fig. 5). The
J™=12" resonance at E, , =19.3 MeV does form a
closed loop, but does so in a rather complicated
manner (unlike a Breit-Wigner resonance which
would form a circular loop). The complicated
curves formed by the E_,, =18.4 and 19.3 MeV
resonances may result from an overlap of these two
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FIG. 8  Argand diagram for the [/=12

(Ecm.=17.8—19.8 MeV) and /=14 (E.,, =19.8—20.8
MeV) partial waves for the large phase solution.

resonances. This is plausible since the region which
complicates the forming of closed loops is centered
near E_,, =18.8 MeV, which is the overlap region
of the two resonances. The Argand diagram for the
1 =14 partial wave over the E_ ;, =20.3 MeV reso-
nance has an almost circular structure that does not
completely close. This behavior can be attributed to
a slow absorption of the background S matrix for
this partial wave.

Although the Argand diagrams do not form sim-
ple circular loops, we have used the Breit-Wigner
form of the S matrix to extract approximate elastic
partial and reduced widths [Eq. (6)]. The extracted
values of T and 7 are listed in the lower portion
of Table I. The values of ', are very similar for
both the zero phase and large phase solutions. Even
the 20.3 MeV resonance, for which different spin as-
signments have been obtained, has roughly the same
elastic partial width in both solutions. The lack of
dependence of the elastic width on the particular set
of phase shift parameters (which we assume ade-
quately fits both the elastic and total reaction cross
section data) probably results from the constraint
that the absorption of only one partial wave may ac-
count for resonances in the total reaction cross sec-
tion. However, the decreased penetrability for a
J™=14" resonance, as compared to a J"=12" reso-
nance at E_ ;, =20.3, yields a significantly larger re-
duced width. Thus, it has been found that the use of
large phases for the / =6 and 8 partial waves yield
superior fits to the elastic data and a J"=147 as-
signment for the E_, =20.3 MeV resonance. In
light of the improved fit obtained in the large phase
solution, the J7=14" assignment for the
E .. =20.3 MeV resonance is favored over the
J™=12" assignment obtained for this resonance in
the zero phase solution. However, the problem of
ambiguities in the phase shift parameters (and hence
spin assignments) cannot be eliminated from the
analysis of the available elastic and total reaction
cross section data.

An independent source of information on the spin
assignments for the three resonances in the energy
region E_ ., =17.8—21.1 MeV is found in the
branching ratios observed in particle decay channels.
The 19.3 MeV resonance has been found to be con-
sistent with a J™=12" assignment by a number of
authors.'>!%15 The 20.3 MeV resonance has been
found'? to have no decay to the 9.81 MeV (17/2%)
state in *Na and the 4.45 MeV (7%) state in ?’Na.
Considering the strong decays to these states, for the
19.3 MeV resonance two conclusions are possible.
The simplest conclusion is that the resonance at 20.3
MeV has J > 12. A second conclusion is that there
are structural differences between the two reso-
nances which dominate any statistical selection
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rules. Therefore, the superior J"=14% fit in the
phase shift analysis and the p and d decays suggest
that a J™"=14% assignment for the 20.3 MeV reso-
nance is most simply consistent with the data.
There are no indications that the 19.3 MeV reso-
nance is anything but J7=12"1,

Studies of the '2C('2C,Be(g.s.))'°O (Refs. 15 and
25) and 2C('2C,a7)*Ne (Ref. 25) reactions over the
18.4 MeV resonance yield conflicting spin values.
The a decay is consistent with J"=10"% while the
®Be (g.s.) channel favors J”=12*. The elastic phase
shift analysis yields J”=127 for the 18.4 MeV reso-
nance, which is consistent with the ®Be (g.s.) decay.
The J7=10% assignment obtained from the a chan-
nel could either reflect the existence of an almost de-
generate J™=10" resonance or a small resonance
decay width which could allow a small anomaly to
be seen in a single angle excitation function but
could have little effect on the dominant / value de-
duced from the angular distributions. At these ener-
gies the dominant / wave (grazing) for a decay to
the Ne ground state is / =10 (Ref. 25) so that this
would be likely to dominate all angular distribu-
tions. Thus, the J”=12% assignment obtained from
the three phase shift analysis solutions is also con-
sistent with the particle decay data. In the discus-
sion section of this paper we will address the impli-
cations of the spin assignments discussed above.

Our attention so far has been focused on the pos-
sible ambiguities in the spin assignments. The main
source of these ambiguities is the uncertainty in the
background phase shifts. In particular, different ini-
tial conditions in the background phases lead to dif-
ferent spin assignments for the 20.3 MeV resonance.
However, what is surprising is that the reflection
coefficients for the three phase shift solutions are,
on the average, remarkably similar. Also of interest
is the fact that although the initial conditions for
the reflection coefficients were similar to those of
the sharp cutoff model (or those of commonly used
optical models'®?*), the final reflection coefficients
always differed greatly from these initial conditions.
(They also differ from recent folding model calcula-
tions.?6)

Figure 9 displays the reflection coefficients from
the large phase solution for the / =14 and 16 partial
waves for E_ ., =17.8—22.0 MeV. The reflection
coefficients for the /=6—12 partial waves are
merged with the reflection coefficients obtained by
Emling et al.** in the region E,, =16.0—18.8
MeV. The reflection coefficients for all partial
waves above E_ . =22.8 MeV are from the zero
phase solution. However, it is important to em-
phasize that there is essentially only one phase shift
solution for E_, >22.0 MeV. The reason for this
is that the / =6 and 8 partial waves are almost com-
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FIG. 9. Reflection coefficients from the present phase
shift analysis and those of Emling et al. (Ref. 24). The
curve is drawn to guide the eye.

pletely absorbed above 22.0 MeV. Therefore, the
values of these phases are unimportant. The average
trend in the reflection coefficients for both the large
and zero phase solutions are very similar. There are
no indications in either solution that the phases for
I > 8 obtain large values. Thus, until elastic data are
taken in finer energy steps for E., >22.0 MeV,
only one phase shift solution can be extracted.

The most important feature of Fig. 9 is the aver-
age energy dependence of the reflection coefficients.
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Each partial wave shows evidence of enhanced ab-
sorption over a range of a few MeV. The gross
structures in the / =14 and 16 partial waves are on
the order of 4 MeV wide and appear to overlap.
There is a general trend toward wider regions of
enhanced absorption with increasing angular
momentum and energy. As mentioned above, the
average reflection coefficients are very similar for all
solutions. Therefore, Fig. 9 presents model indepen-
dent evidence that gross structure effects result from
the action of one partial wave (for / < 14) in a given
energy region.

B. Sum-of-differences

There is a very simple and direct way of extract-
ing the total reaction cross section from elastic
scattering data. Wojciechowski et al.?? have shown
that the total reaction cross section for heavy-ion re-
actions may be obtained from the following approxi-
mate expression (which has been modified for iden-

tical particles):
soD_ n/2 |doy dog | .
o =27 6 |40 40 sinf do ,

where doy/dQ and do,/dQ) are the Mott and ex-
perimental elastic cross sections, respectively. This
method of obtaining the total reaction cross section
is called the sum-of-differences (SOD) method. It is
a reliable method of extracting the total reaction
cross section as long as 0y <0gq,ing and both the
Sommerfeld parameter and the absorption are
large 223

Treu et al.? have measured the '>C+'2C elastic
scattering for E., =5.5—12.0 MeV and have ex-
tracted o ROD. The absolute value of aiOD exceeds by
as much as a factor of 2 the value oz obtained by
y-ray measurements."”’ The reason for this
discrepancy is not clear. It may be that the absorp-
tion and/or the Sommerfeld parameter are not large
enough in the region of the Coulomb barrier to satis-
fy the assumptions of Eq. (7). However, what is
most important for our discussion is the fact that
o3°P exhibits pronounced resonant structure which
is well correlated with resonances observed in the
elastic, @ +2°Ne, and ®Be+ 1°0 channels.

Figure 10 presents the results of a SOD analysis
of the 2C+!2C elastic data and also the total reac-
tion cross section measurements of Kolata et al.!”?’
and the 90° c.m. elastic excitation function!® for
comparison. The full angular range of the elastic
data, 6., =30°—90°, was used. The elastic data of
Treu et al. were used for E_.,, <15 MeV. The
center of mass energy corresponding to a classical
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FIG. 10. The total reaction cross section as deduced
from the '2C+!2C elastic scattering using the sum-of-
differences (SOD) method (Refs. 22 and 23). The experi-
mental total reaction cross section (Refs. 17 and 27) and
the 90° c.m. elastic excitation function (Refs. 10 and 11)
have been included for comparison.

grazing angle of 30° (c.m.) is 22 MeV. Therefore,
for E. , <22.0 MeV, the most important contribu-
tions to oy as derived from Eq. (7) are already in-
cluded.

The total reaction cross section as predicted by
the SOD method exhibits a decreasing cross sectior
with increasing energy. The absolute value of o3 "
is within error bars of o}® for E.,, ~15 MeV. At
higher energies o3°° drops below oSP. This may re-
sult from the loss of contributions to Eq. (7) from
angles forward of 6., =30°. To test this, we have
calculated o%°° using data from 40°< 0, <90°,
and have found approximately a 100—200 mb de-
crease in ox°°. Thus the decrease in the average
o3P suggests that there are significant deviations
from Mott scattering forward of the classical graz-
ing angle. This indicates that a more complete
phase shift analysis than the one presented above
would have to include elastic data for 8, ;, < 30° for
E. ., >16 MeV.

The dramatic IMS resonances observed in the to-
tal reaction cross section are equally apparent in the
total reaction cross section as extracted using the
SOD method. There is a one-to-one correspondence
between IMS observed in 052,127 o3°P, and the 90°
c.m. elastic excitation function.!®!! This confirms
that the dramatic variations with energy in the elas-
tic scattering angular distributions are related to the
presence of IMS resonances and that the resonances
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which are prominent in the elastic scattering are the
same as the resonances most prominent in the total
reaction cross section.

IV. DISCUSSION

The '>C+2C elastic scattering is characterized by
angular distributions which vary rapidly with ener-
gy, particularly in the energy region E_,, =18-21
MeV. Two sets of nuclear phase shifts have been
found which reproduce the variation with energy of
the elastic angular distributions by the resonant vari-
ation of one partial wave and the smooth variation
of all others. The zero phase solution contains three
J™=12" resonances at E_,, =18.4, 19.3, and 20.3

MeV. The large phase solution also possesses

J™=12" resonances at E.,, =18.4 and 19.3 MeV,
but yields a J”=14* assignment for the 20.3 MeV
resonance. Although the superior quality of the
large phase solution and particle reaction data favor
the J™=14% assignment for the E_, =20.3 MeV
resonance, enough ambiguities exist that a con-
sideration of the implications of either spin assign-
ment is necessary.

Three J7=12% resonances with large elastic par-
tial widths (see the upper portion of Table I)
clustered within 2 MeV is consistent with the ex-
istence of a fragmented elastic shape resonance.!*?
The fragmentation of elastic shape resonances by in-
elastic coupling has been considered by many au-
thors,”~® most recently in the band crossing model
(BCM).” 1t is possible by the use of certain surface
transparent potentials to obtain fragmentation of an
elastic J”=12% shape resonance in the >)C+!*C
system, although the number and widths of the
predicted intermediate structures are not exactly
reproduced. As such, the BCM allows a framework
by which to understand the three J™=12% inter-
mediate width resonances obtained in the zero phase
solution.

However, it is important to point out that the
average phase shift parameters obtained in the
present analysis differ substantially from those ob-
tained from either the optical model potentials used
in the BCM (Refs. 7 and 28) .or earlier optical model
potentials.!® These potentials yield reflection coeffi-
cients which, for surface partial waves, vary rapidly
(i.e., within a few MeV) from 1 (totally reflected) to
0 (totally absorbed). The average reflection coeffi-
cients displayed in Fig. 9 do not exhibit this
behavior. Each partial wave is active over a large
energy region, and many partial waves significantly
contribute to the nuclear scattering amplitude at any
given energy. Thus although the phase shift
‘analysis yields gross structure resonances, the
scattering amplitude is not dominated by a single
partial wave.

There are aspects of particle decay channels, not-
ably the proton and deuteron channels, which are
not easily understood if both the E_,, =19.3 and
20.3 MeV resonances are J"=12" resonances. The
dramatic variations of the proton and deuteron de-
cay over the 19.3 and 20.3 MeV resonances have al-
ready been discussed in Sec. IIIA. To date, the
BCM has not made specific predictions about parti-
cle decay channels, although it is conceivable that
channels other than the elastic and inelastic could be
added to the calculations. The addition of p +23Na
bands could potentially account for the selectivity
for decay to certain high-spin excited states, but it
seems unlikely that it could explain the strong varia-
tions in decay strengths over the 19.3 and 20.3 MeV
resonances, assuming J7=12% assignments for both
resonances.

The existence of a J7=14% resonance at
E .. =20.3 MeV has not as yet been incorporated
into any model of the origin of intermediate struc-
ture in the >C+!2C system. The BCM cannot
naturally explain the existence of a J"=12% and
14% resonance with large elastic reduced widths (see
the lower portion of Table I) located within 1 MeV.
However, the close proximity of a J”=127 and 14%
resonance does not preclude the existence of elastic
shape resonances. This is illustrated in Fig. 9,
which includes the phase shift parameters from the
large phase solution (which yields a J™=14" assign-
ment for the E_ ,, =20.3 MeV resonance), where the
average energy variation of the reflection coeffi-
cients is consistent with the existence of elastic
shape resonances. The existence of adjacent reso-
nances of different J” suggests that the origin of the
intermediate structure may result from a mechanism
different from that which leads to the elastic gross
structure resonances. Degrees of freedom other than
the elastic and inelastic channels may be important
to any description of the reaction mechanism and
resonant wave function.

Recent measurements® of the 2C(2C,a)*Ne*
reaction demonstrate that the ratio of a reduced
widths to the Wigner limit for decay to certain ex-
cited 2°Ne states is comparable to similar ratios for
the elastic and inelastic channels. Therefore, certain
a+2Ne* configurations must be included in any
description of the origin of intermediate structure in
the '2C+412C system. Both the existence of a rela-
tively complex spectrum of IMS resonances and the
large and selective decay to special a+2°Ne* config-
urations can qualitatively be included in a model
which describes?® the IMS resonances as states in a
secondary minimum of the *Mg potential energy
surface.! A complex spectrum of IMS resonances
would result from excitations within this secondary
minimum. For example a rotational-vibrational
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spectrum with a K"=0" band and K"=2% y-
vibrational band could conceivably account for the
close proximity of prominent J"=12% and 147 res-
onances. The selective resonant a decay would re-
sult from the decay of these “shape-isomeric” states
in Mg to those in 2°Ne. Deformed shell model cal-
culations?! do, in fact, predict minima in the poten-
tial energy surface of Mg and **Ne, which differ
by a (2p,2n) configuration, thus explaining the
enhanced a decay to special 2’Ne states. Further-
more, the rotational band based on the predicted
Mg axially asymmetric secondary minimum?"?
closely tracks the spectrum of known intermediate
structure resonances (including the Coulomb barrier
resonances), and Chandra and Mosel*® have demon-
strated that this axially asymmetric configuration
has a large overlap with the 2C+!2C entrance chan-
nel.

The above description of the origin of intermedi-
ate structure resonances in terms of shape-isomeric
states in secondary minima of the Mg potential en-
ergy surface is, with the present knowledge of spins
and reduced widths, speculative. Its advantage over
other models is that it is able in a natural way to ex-
plain a more complicated spectrum of IMS reso-
nance as well as nonstatistical decays to special
a +2Ne* configurations. However, before any one
model may be favored over another, ambiguities in
the spin assignment for the E_ ,, =20.3 MeV reso-
nance must be removed. Also, spin assignments and

reduced widths must be obtained for as many IMS
resonances as possible, particularly in the energy re-
gion where J"=8%1—12% resonances are already
known.

The results presented in this paper demonstrate
that, although not entirely free from ambiguities, a
phase-shift analysis of finely stepped excitation
functions and angular distributions of the >)C+12C
elastic scattering yields spin information on both in-
termediate and gross structure resonances. To re-
move more ambiguities from the phase shift
analysis, we are extending our analysis over a wider
range of energies. This analysis of the )C+!2C
elastic scattering combined with measurements of
the a +2°Ne* reduced widths will, hopefully, clarify
the origin of resonant phenomena in the >)C+!2C
system.
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