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Spin orbit effects in quasifree knockout reactions
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An efficient calculational method for distorted wave impulse approximation analyses of
quasifree knockout reactions is described. Since the usual Racah algebra is eliminated, it is
straightforward to include spin-orbit distortions. Results are presented for 150 MeV (p, 2p)
and (p,pn) reactions. In some cases the effects of the spin-orbit terms are large.

NUCLEAR REACTIONS Effect of spin-orbit distortions in distorted
wave impulse approximation calculation for (p, 2p) and {p,pn) reactions.

I. INTRODUCTION

Quasifree knockout reactions such as (p, 2p) or
(p,pa) have been studied in recent years in order to
obtain information on the nucleon or nucleon cluster
parentage of nuclei. ' Such studies complement
the analogous transfer reactions which are usually
restricted to higher momentum components. An ad-
ditional feature of the knockout reaction studies is
the possibility, at least in principle, of studying the
projectile-nucleon or projectile-cluster interaction off
the energy shell. Regrettably, little work has been
reported in this connection. Partially this reflects
experimental difficulties and partially it is a conse-
quence of limitations of current theoretical descrip-
tions of the reaction.

Most current theoretical analyses of knockout re-
action data employ a distorted wave impulse ap-
proximation (DWIA) calculation. ' Usually a so-
called "factorization" approximation is introduced
so that the projectile-struck particle elastic scatter-
ing cross section enters as a multiplicative factor.
This feature is a serious drawback to studies of off-
shell effects since, more properly, the corresponding
two-body t matrix should be evaluated in the nuclear
Inediurn.

For present purposes the factorized form for the
DWIA cross section can be regarded as arising from
two approximations. Firstly, the transition operator
occurring in the distorted wave integral is replaced
by a two-body t matrix evaluated at the asymptotic
kinematics. Secondly, spin-orbit terms in the optical
potentials used to generate the projectile and emitted
particle scattering wave functions are omitted. As a
result, simplification of the spin summations leads
to the appearance of the two-body cross section as a
multiplicative factor. It is the elimination of the

latter approximation which is the subject of the
present paper. Thus, the calculations we will
present, including spin-orbit effects, utilize factori-
zation of the amplitude into DWIA and fully spin
dependent two-body terms, but no simplification of
the spin summations is possible.

Approximate methods which attempt to correct
for the factorization approximation have been
described, " and one calculation has been report-
ed." In addition, for (p, 2p), some exact calculations
for a local pseudopotential have been reported' and
extended using a momentum representation. ' Un-
fortunately, in all cases, the spin structure of the
two-body p-p transition operator is much simplified
and spin-orbit distortions are omitted.

Clearly, detailed studies of off-shell effects must
await the elimination of both the limitations of
current calculations. Nevertheless, the inclusion of
spin dependence in the optical potentials is of in-
terest in view of recent (p, 2p) studies employing po-
larized incident beams as mell as proposals to study
cluster knockout reactions induced by polarized pro-
tons.

In a previous publication' we presented our first
calculations of the effects of including spin-orbit
distortions in the DWIA theory of (p, 2p) reactions.
In order to carry out these calculations in an accept-
able amount of computing time, it was necessary to
introduce an unconventional numerical technique
which eliminates the need for Racah algebra. In the
present paper we first describe our new method of
calculation. This is to be found in Sec. II, in which
the basis of the method is given, after which the
theory is recast in a form suitable for calculation.
Second, in Secs. III and IV, we present and discuss
additional results for the effect of spin-orbit terms
in (p, 2p) and (p,pn) reactions.
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II. METHOD OF CALCULATION

1061

A. Basis of the method

Let us consider a quasifree knockout reaction A (a,cd)8 where A =8+b A. s is well known, ' a factorized
DWIA calculation for such a reaction involves the evaluation of an amplitude

T~"=(2L+1) ""fX' ' (r)X' ' (r)/LE(r)X,'+'(yr)dr,

where y=B/A, the X'-+' are distorted waves, and PL x is the spatial part of the bound state wave function of
particle (or cluster) b Th.e quantities L and A are, respectively, the orbital angular momentum carried by b
and its projection.

If spin-orbit terms are neglected, the use of conventional techniques of Racah algebra yields the following
expression:

I I& (21,+ 1)(21,+ 1)(2lg+1)
T 0- l

(2k + 1)

kq

x (4~aLA
I
"q)(40L0

I
k0)(~o0I q I

kq)(1 I 0
I k0)li. I I "q'o(~ )dz o(~a)~ (2)

where (l&A, ~l2A2 ~13A3) is a Glebsch-Gordan coeffi-
cient, d'„(8) is a reduced rotation matrix element,
and I& I ~ is a radial integral. Details can be foundacd7
elsewhere. For the present, we wish to point out
that, although simplifications of the above expres-
sion are possible in restricted cases, in general calcu-
lation times increase rapidly with the number of
partial waves (l„ l„and l~) which must be included
for the three distorted waves. This is partially ow-

ing to the somewhat complicated multiple summa-
tion which must be carried out, and partially simply
to increases in computing times for individual vector
coupling coefficients involving large angular mo-
menta (especially since the variables kq are not re-
stricted to small values). As a result, calculations
for higher energies can become prohibitively time
consuming and many groups have been obliged to
introduce additional approximations such as a
Wentzel-Kramers-Brillouin (WKB) representation
for the distorted waves. '

When spin-orbit terms are included, problems be-
come even more severe. Details of the expressions
which must be evaluated have been given by Jack-
son. ' Since each distorted wave becomes a matrix
in spin space, additional spin summations and vec-
tor coupling coefficients enter, thus leading to a
rather formidable calculation.

In order to simplify the calculation and to achieve
acceptable computing times, we have chosen to el-
iminate essentially all angular momentum algebra
from the calculation. Thus, we simply evaluate in-
tegrals of the form given in Eq. (1) directly rather
than expressions similar to that given in Eq. (2). At
first sight, this appears to be a poor decision since
we must now evaluate a complicated three-

I

dimensional integral rather than a linear combina-
tion of one-dimensional integrals. However, in prac-
tice, impressive savings in computing time result.
For example, for an L=O (p, 2p) calculation involv-
ing 30 partial waves for each particle, the direct in-
tegration method is roughly 80 times faster than a
conventional evaluation of Eq. (2). For L=2, the
savings increase to almost a factor of 110. Even
greater savings are achieved for calculations necessi-
tating more partial waves. Finally, on introducing
spin-orbit terms, the direct integration calculation is
slowed only by a factor of 3 to 4 so that computing
times are still much superior to spin independent
calculations employing conventional angular
momentum algebra.

Basically, our new method owes its success to the
fact that remarkably few Gaussian integration
points are needed for convergence. Typically,
15—20 points in each of r, 8, and P suffice (i.e., a
few thousand points total), irrespective of the num-

ber of partial waves. For a calculation with 50 par-
tial waves, this is to be contrasted with several tens
of thousands of radial integrals entering the summa-
tion appearing in Eq. (2), and an identical number of
angular coefficients which are involved even after
the summations over k, q, and A,~ are completed.

The small number of integration points needed is,
of course, a numerical matter to be addressed in in-
dividual cases. However, a number of observations
may be illuminating. Firstly, the complexity of Eq.
(2) arises from explicit use of partial wave expan-
sions which isolate pieces of each distorted wave
which vary rapidly with angle. In contrast, the
product of all three distorted waves may vary rather
slowly. An extreme example is a knockout reaction
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at zero recoil momentum, in which, if distortion ef-
fects are negligible, the product

H( r )=X,' '
X» X,+

is actually constant. Thus, for an L=O transition
the integrand would be independent of angle and the
only radial variation is due to PrA(r). Secondly,
even if H(r) does exhibit significant variation with
r, rather coarse integration methods may suffice in
view of the relatively slow variation of PL+(r). For
exainple, if 50 partial waves are used in each chan-
nel, H( r ) contains multipoles up to 1-150. Howev-
er, only the l =L term contributes to the integral.
Thus, an angular integration method which rather
crudely averages the rapidly varying higher mul-
tipoles of H(r ) can yield good results provided the
low multipoles close to I =L are accurately treated.
Similar comments apply to the radial integration
provided we are not dealing with unusually high
momentum components.

B. Formulation

In order to proceed we must recast the formalism
given by Jackson' in a form suitable for our pro-
posed direction three-dimensional integration
method of calculation. Since the distorted waves
take especially simple forms when expressed in a
system in which the z axis is parallel to the direction
of propagation, we first introduce three separate sets
of axes Q„Q„and Q» as shown in Fig 1. Qu. anti-
ties expressed with respect to these axes are identi-
fied as unprimed, primed, and double primed,
respectively. The directions of propagation of parti-

g III
Z
i ~t,

lnCldent
polarization Q&

h pl

FIG. 1. Relative orientation of axes used in calcula-
tions. The direction of propagation of particles a, c, and d
are parallel to z, z', and z", respectively. The incident
particle polarization axis is z '".

cles a, c, and d are thus the z, z', and z" axes,
respectively. The outgoing particle directions are
characterized by angles 8„8», and P as indicated in
the figure, thus permitting calculations for nonco-
planar geometries. A fourth set of axes Q~, employ-
ing a triple-primed notation, permits simple treat-
ment of polarized projectiles. For the present calcu-
lations the polarization axis z '" has been restricted
to the orientation shown, normal to the plane de-
fined by particles a and c. Generalization to other
orientations is straightforward.

Assuming for simplicity particles a through
d have spin —, and denoting spin projections by p;,
the transition amplitude in Q, can be written

(p,p» I
T

I p,JM)= g D", ' (R„)D'„' (R», )(p,'p»'I T
I p,JM),

I lf
PcPd

where the D~g(R) are rotation matrices, R«and R», are rotations into Q, of Q, and Q», respectively, and J,M
are the total angular momentum quantum numbers of particle b. Using the orthonormality of the D functions,
we can write the differential cross section for an unpolarized incident beam as

2~ c, I &p'r» I
T

I p.JM& I'trtu, „(2J+1)(2S,+1)
PaPcPd

JM

(4)

where S,= —, is the spin of particle a. The additional quantities are u the incident velocity, toit the phase space
factor, and C S the spectroscopic factor. For an incident polarized beam we can construct the analyzing power
in terms of the cross section for a spin projection p,

"'
in Q~ where

2

g (p,'p»'I T Ip, JM)D ' „,(R,p)
Pa

os(p,"')= roaC S g
RU

Pcs
.. 'JM

(2J+1) (5)
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and R,t rotates Q, into Qt.
To proceed we write

where

0'+-'
~ p &

= g X'+-'( r }
~

o &

and

I
J~&= g (I»bob

I
Ji}ri)fit(r)

I
ob&.

Hence,
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I
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I It
a&c
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where we have made the usual factorization approximation in separating the matrix elements of the two-body
transition operator t outside the distorted wave integral. The quantity T is defined by

T x „=(2L,+1) ~ y (r ')y (r "}y (r)g + (~r}dr
t lt

~a~cA

(10)

which is the generalization of Eq. (1).
The distorted waves appearing in the integrand are obtained from the radial wave functions Utj in the usual

fashion. Specifically,

&'+p (k. r) = 2 (l~ ~ pa I
J~)(1~ g ou

~
Jm)' +jr(ko r) ~!A(ka) Ylx'(") .«t, u,

For our choice of axes k, —:z so that use of explicit expressions for the vector coupling coefficients yields

X'+& (k„r)=(k r) 'gi'[(1+1)UIJ (k„r)+lUtj (k„r)]dao(8)
I

for o, =p„and
X'+~ (k„r)=+(k,r) 'gi [l(1+1)]' [UIJ (k„r) Utj (k—„r)]dIO(8)e+-'

I

For o~ = —p, =+—,, where j+ ——l+ —,. Applying the usual time reversal relation ships yields

g', ', (k„r')=(k,r) 'gi [(l'+1)Ut, ., (k„r)+l'Ur. , (k„r)]doo(8')

(12a}

(12b)

(13a)

and

7', ', (k„r')=+(k, r) 'gi 'fl'(l'+I)]'~ [Ur, (k„r) Ur, (k„r)—]d~o(8')e (13b)

QL,A(r)=R(r)
4m

for o,' =p,' and o,'= —p,', respectively. Similar expressions in terms of r, 8", and P" are obtained for particle
d. Finally, gib(r)=R(r)YI t,(r) can be written

1 /2

d (8)e' ~ . (14)

Thus, the integration (10) can be carried out using Eqs. (12)—(14) in conjunction with simple expressions for
(O', P') and (8",P") in terms of (8,$) to evaluate the integrand at each Gaussian mesh point in r, 8,$

In order to complete the calculation it is necessary to substitute for the two-body t matrix in Eq. (9). This is
related to a t matrix in which all spin projections are referred to Q, by
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(a'o~
l

r lo crb)= g D', (R„)D „(8d)(o, o'dl 'r
l
o,o'b)',

cTc0'd

(15)

and the latter t matrix can be related to the usual amplitudes expressed in a channel spin representation. ' Our
final expression for spin projection p,

"' is thus

cry'(p, )= cosC S g g (2L+1)' (LASbcrb l~~)
tv I II + I

PcPd Pa+a c c
JM ada "cr Ad d b

x T", „( c.rc,rl r
l
crgcrb )0'a 0'c ad

I II
PaPcPd

(16)

n~. RESULTS

Calculations for the (p, 2p) and (p,pn) reactions
have been carried out using the global optical model
parameters of Nadasen et al. ' which were obtained
from fits to proton elastic scattering data taken at
incident energies of 80 to 180 MeV. The wave func-
tion for the bound nucleon was generated in the usu-

al fashion as an eigenfunction of a Woods-Saxon
well adjusted to reproduce the empirical separation
energy. The corresponding geometrical parameters
are listed in Table I. The two-body t matrix,

(o,crd
l

t
l
cr, crb),

was obtained by interpolating available on-shell
nucleon-nucleon phase shifts. Despite the use of a
factorized expression for the overall amplitude, this
scattering is, more properly, half off the energy
shell ' owing to the binding of the struck nucleon in

TABLE I. Bound nucleon potential parameters. The
notation is identical with that used in Ref. 1.

Reaction

Ca(p, 2p)"K.
Ca(p, pn) Ca

208Pb(p 2p)207Tl

r0
(fm)

1.3
1.3
1.25

a
(fm)

0.6
0.6
0.63

~so
(MeV)

12.0
12.0
5.0

where the amplitude T is defined by Eqs.
(10)—(14). It is this expression which is evaluated in
the computer code THREEDEE used for the calcula-
tions described in Sec. III. Since we are dealing with
spin —, particles, simple analytic expressions are, of
course, available for the D matrices. '

I

the target. For the present, we ignore this complica-
tion and, in common with most of the earlier work,
approximate the corresponding t matrix with the
on-shell amplitude at either the initial or final rela-
tive energies. These choices are referred to as
initial/final energy prescriptions (IEP/FEP), respec-
tively. In the calculations which follow, in the ab-
sence of specific statements to the contrary, it may
be assumed that we have utilized the FEP and that
IEP results are not qualitatively different.

In Ref. 14 we presented calculations and data at
an incident energy of 150 MeV for Ca(p, 2p) K
(2.52 MeV) which is a 2s &~2 L =0 transition. Calcu-
lations for a quasifree angular distribution or "fac-
torization test, " in which the angular variation of
the differential cross section is measured at kinemat-
ic conditions such that the residual nucleus recoil
momentum, Pz, is zero, were found to be rather lit-
tle changed on introducing spin orbit distortions
(aside from an overall renormalization of —10%%uo).

The corresponding polarization analyzing powers
are shown in Fig. 2(a). In the absence of spin-orbit
terms the analyzing power is predicted to be identi-
cal to the free p-p analyzing power. ' Thus, the cal-
culations are presented as a function of the effective
p-p c.m. scattering angle. The angular range is re-
stricted at forward angles by the requirement that
both detected particles have energies in excess of 20
MeV. This is a typical constraint, both from experi-
mental considerations and to minimize possible con-
tributions from sequential processes. It is seen that
there are significant quantitative differences between
the spin orbit (SO) and no spin orbit (NSO) analyz-

ing powers, although there are no major qualitative
effects. Similarly, for the corresponding differential
cross sections shown in Fig. 2(b), inclusion of spin-
orbit distortions does not lead to major qualitative
changes. However, the peak cross section is reduced
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0.2-

0. 1—
CLo.

0.0
40

(b)

8 (deg)

SO

100

thus interpret the results as arising from an average
depolarization of the incident beam of -30%. This
is significantly larger than the WKB approximation
estimate (of -5%) obtained for Ca at 320 MeV.
In contrasts to the behavior of the analyzing powers,
the SO1 differential cross sections lie close to the
NSO results. Thus, it is the spin-orbit terms for the
emitted protons which are largely responsible for the
reduction in cross section between the NSO and SO
predictions. Inspection of the calculations reveals
that this is not a complicated effect involving in-
terference between several of the spin dependent dis-
torted wave amplitudes defined in Eq. (10). Rather,
it is due almost entirely to a reduction in the single
complex amplitude involving no spin flip (i.e.,
p; =o; for all three particles) which dominates the

200-
0.2—

J3

150-

Cy

O
Cg

b

100—

O. l

CL

40 50 60 70 80 90 IOO

8 (deg)

50 I I I I I I I I I I I I I I I

30 40 50 60 70 80 90 IOO

8 p(deg)

FIG. 2. Calculations for a quasifree angular distribu-
tion for Ca(p, 2p) K (2.52 MeV) at an incident energy of
150 MeV as a function of the effective p +p scattering an-

gle. The kinematics is chosen such that the residual nu-

cleus is at rest. The notation SO, NSO, SO1 is defined in

the text. (a) Polarization analyzing powers; (b) differential
cross sections.

I

~CD

Cy

b

50-

(b)

by -12% leading to a more modest decrease with
decreasing values of 8&~ than in the NSO calcula-
tion. Also shown in Fig. 2 are calculations (denoted
SO1) in which spin-orbit distortions are included
only for the incident proton. In the case of the
analyzing powers, these lie close to the SO results so
that the emitted proton spin-orbit terms have little
influence. This is presumably a consequence of the
fact that the polarization of these particles is not
measured so that a sum over both spin projections is
involved. ' ' Since the ratio of SO to NSO analyz-
ing powers is -70%, independent of angle, one can

I I I I I I I I I I I I I I I

30 40 50 60 70 80 90 100 I IO

8pp(deg)

FIG. 3. Calculations for a quasifree angular distribu-
tion for Pb(p, 2p) Tl (g.s.) at an incident energy of 150
MeV as a function of the effective p+p scattering angle.
The kinematics is chosen such that the residual nucleus is
at rest. (a) Polarization analyzing powers; (b) differential
cross section.
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———NSO
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50— Ca (p, pn) Ga

L= 0
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ep {deg)

FIG. 4. Calculations for a quasifree angular distribu-
tion for Ca(p, pn)' Ca (2.47 MeV) at an incident energy
of 150 MeV as a function of the effective p +n scattering
angle. The kinematics is chosen such that the residual nu-

cleus is at rest. (a) Polarization analyzing powers; (b) dif-
ferential cross sections.

calculation of the differential cross section.
Somewhat larger effects might be expected for

more massive nuclei. This follows since the spin-
orbit potential strength is proportional to the projec-
tile orbital angular momentum. Thus, for Pb, for
example, the spin-orbit terms should be roughly
70%%uo stronger for the presumably important surface
partial waves than for Ca. Results for

Pb(p, 2p) Tl (g.s.) at 150 MeV are shown in Fig.
3. This is an L=O (3s&~2) transition so that, again,
the NSO analyzing powers are identical to the free
p-p values. In fact, we see that, contrary to the
preceding argument, the effects of including spin-
orbit terms are significantly smaller than for Ca
although the relative change in differential cross sec-
tion is somewhat greater. That arguments based on
dominance by a few surface partial waves are poor is

consistent with the observation that the DWIA tran-
sition amplitude is -0.2 of the corresponding plane
wave calculation. Thus, distortion effects are not
especially severe [at least in comparison with reac-
tions such as (a,2a), where the corresponding ratio
of amplitudes can exceed 1/100].

In Fig. 4, results are shown for Ca(p, pn) Ca
(2.47 MeV) which is the analog L=O transition to
the (p, 2p) case shown in Fig. 2. The comparison is
of interest since the spin structure for p +n scatter-
ing is somewhat different from the p+p case.
Specifically, singlet-odd and triplet-even terms can
now enter. While the singlet-odd force is weak, the
triplet-even force, which is responsible for the bind-
ing of the deuteron, is strong and is dominated by
the tensor force. (For example, in the Hamada-
Johnston potential the triplet-even tensor term is
roughly twice the triplet-even central term at 1.4
fm. ) In view of this major difference in the two-

body t-matrix spin structure, we speculate that the
effects of the optical potential spin-orbit terms may
differ qualitatively between analog (p,pn) and (p, 2p)
transitions. We see from Fig. 4 that this is not the
case. While the NSO (p,pn) analyzing powers are
somewhat larger than for (p, 2p) (being again identi-
cal to the free two-body values) the effect of the
spin-orbit terms is to reduce the analyzing powers in
much the same fashion as for (p, 2p). For the dif-
ferential cross sections there is essentially a constant
reduction in magnitude of —11% due to the addi-
tion of the spin-orbit terms. Thus, the angular vari-
ation is somewhat flatter than that shown for (p, 2p)
in Fig. 2(b). This change does not arise from differ-
ences in the spin structure of the amplitudes. Rath-
er, it is a consequence of differences in kinematics
owing to the differing neutron and proton separation
energies in Ca. As a result of slightly lower emit-
ted particle energies for the (p,pn) reaction, distor-
tion effects are somewhat greater at large values of
8* than for the (p, 2p) case. While the predictions
shown are not inconsistent with experiment, ' ' sen-
sitivity to the parametrization of the nucleon optical
potential can be expected and should be evaluated in
any careful analysis of these reactions.

In the preceding calculations of L=O quasifree
angular distributions, kinematic conditions were
chosen so that at all angles the residual nucleus was
left at rest. It follows from plane wave impulse ap-
proximation arguments that this choice minimizes
sensitivity to the struck nucleon momentum wave
function and that much of the resultant angular
variation arises from a changing nucleon-nucleon t
matrix. An alternative procedure is to select
kinematic conditions in which the situation is re-
versed so that, aside from phase space and distortion
effects, cross section variations predominantly re-
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07
) Ca(g.s)
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FIG. 6. Calculations for Ca(p, pn)' Ca (g.s.) at an in-

cident energy of 150 MeV in a noncoplanar geometry. In
the notation of Fig. 1, 6I, =30', 8g ——48.7', and T, =90.38
MeV. Both 1d3/2 and 1d5/q transitions are shown. (a) Po-
larization analyzing powers; (b) differential cross section.

the neutron detector is rotated in a plane normal to
the original scattering plane through an angle p.
For the angular range shown, recoil momenta range
from zero to -350 MeV/c. Unlike the previous
cases discussed, there are large differences between
the SO and NSO analyzing powers. Specifically,
near P=30' the SO result swings rapidly from posi-
tive to negative values and back again. In contrast,
the NSO result varies slowly over the entire angular
range studied. In Fig. 5(b) we see that similar
behavior is exhibited by the analyzing powers for the
analog (p, 2p) transition, although the overall magni-
tudes are smaller due to the differing nucleon-
nucleon amplitudes. Referring to Fig. 5(c), in which
the cross section is shown for the (p,pn) case, it is

clear that the rapid change in analyzing power can
be correlated with a minimum in the unpolarized
cross section which arises from a node in the neut-
ron momentum wave function at —120 MeV/c.
Similar relationships have been found in studies of
polarization effects in other reactions. Thus, precise
measurements of both cross section and analyzing
power should serve to constrain both the calculation
of spin-orbit effects and the treatment of the bound
state wave function.

Referring again to Fig. 5(c), we see that the intro-
duction of spin-orbit distortions has fairly modest
effects on the differential cross section. Specifically,
the cross section at the p=0 maximum is reduced
by —17%%uo, while the minimum at —120 MeV/c is
somewhat shallower in the SO calculation than in
the NSO case. This latter effect is not surprising
since, in the plane wave limit, the -120 MeV/c
point coincides with a node in the 2s)/3 wave func-
tion, and has zero cross section. Thus, the nonzero
cross section predicted at this point is solely a conse-
quence of distortion effects. Specifically, it is the re-
sult of refraction permitting contributions from
nonzero parts of the neutron momentum distribu-
tion. Since, in the SO calculation distortion effects
differ in the j=(+—, partial waves, some greater de-

gree of smearing with respect to the NSO calcula-
tion seems likely.

In Fig. 6, polarization analyzing powers and dif-
ferential cross sections are presented for

Ca(p,pn)' Ca (g.s.) at 150 MeV. We again consid-
er a noncoplanar geometry with a detected proton
energy and with proton and neutron angles 0, /0~
chosen to be the same as for the preceding calcula-
tions. For the ground state transition, a neutron is
ejected from the ld3/2 shell. However, for compar-
ison purposes, calculations assuming 1d5~2 are also
shown. From Fig. 6(b) it is clear that, in common
with the preceding L=O calculations and with the
L =2 calculations of Ref. 14 for a coplanar
geometry, the differential cross sections are not
drastically changed on introducing spin-orbit distor-
tions. However, for the rather large analyzing
powers shown in Fig. 6(a), this is not the case.
While the SO analyzing powers do not exhibit the
rapid angular variation noted for L=O in Fig. 5,
they do differ significantly from the NSO predic-
tions. In particular, while the NSO analyzing
powers exhibit rather modest differences between
183 /2 and 1 8 5/2 transitions (for the particular
kinematics considered), the corresponding SO calcu-
lations diverge markedly for angles beyond P=40'.

Somewhat more common than measurements of
noncoplanar angular distributions are measurements
of "energy sharing distributions" in which the
detected particle angles are fixed and cross sections
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JOO— Pb(P, 2p) Tt(g.s.)
L=O

(a)

are extracted as a function of detected energy. In
this type of measurement there is, in principle, some
variation of the nucleon-nucleon t matrix. However,
the behavior of the cross section is normally dom-
inated by the changing struck nucleon momentum
wave function.

Results of "Ca(p, 2p) K at 148.2 MeV have al-

ready been presented' for both L=0 and L=2 tran-
sitions. For the differential cross section, effects due
to inclusion of spin-orbit distortions were quite
small aside from the renormalization of the L=O
cross section previously noted. It should be em-
phasized that there was no corresponding change in
the L=2 cross section, so that the introduction of
spin-orbit distortions produced a change in relatiue
spectroscopic factors.

Calculations for Pb(p, 2p) Tl at 150 MeV in-

cident energy are shown in Figs. 7 and 8 for L=0,
3s~/2 and L=2, 2d3/2 proton knockout, respectively.
For the L=O cross sections shown in Fig. 7(a), we
see that the peak cross section in the SO calculation
is reduced by -20% with respect to the NSO result.
In addition, the minimum at -43 MeV in the NSO
curve, which results from a node in the 3s &~2

momentum wave function, is shifted to lower ener-

gies and becomes shallower in the SO calculation.
For the L=O analyzing power calculations in Fig.
7(b) the NSO result is not shown. It is negligibly
small at all detected energies considered since the
corresponding p+p scattering angle is always close
to 90' c.m. In contrast, the SO result is large and
changes sign close to the energy of the minimum in
the corresponding differential cross section. In Fig.
8(a) the cross section for the L=2, 2d3/p transition
to the 0.351 MeV excited level of Tl does not
show large changes on introducing spin-orbit distor-
tions. However, for the polarization analyzing
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FIG. 7. Calculations of the L=. O (3s&/2) energy shar-

ing distribution for 'Pb(p, 2p) Tl (g.s.) at an incident

energy of 15O MeV, 8, =Od ——45.12'. (a) Differential cross
section; (b) polarization analyzing power.
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FIG. 8. Calculations of the L=2 (2d3/2) energy shar-

ing distribution for Pb(p, 2p) 'Tl (g.s.) at an incident

energy of 150 MeV, 0, =ed ——45.12'. (a) Differential cross
section; (b) polarization analyzing power.
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powers in Fig. 8(b) there are again quite large ef-
fects. Specifically, as we approach equal emitted
proton energies at -70.8 MeV (which is a point of
symmetry since we are considering equal and oppo-
site emitted proton angles) the small negative excur-
sion which is predicted in the NSO calculations is
entirely eliminated in the SO curve. That the spin-
orbit terms are relatively important in this region is
consistent with the fact that, in the plane wave limit,
the cross section is zero at this point. However, in
contrast to the behavior noted at nodes in L=O
wave functions, in the present example the spin-
orbit terms serve to eliminate a more complicated
NSO distortion effect, perhaps as a result of greater
averaging.

In measurements of coplanar symmetric angular
distributions ' (CSAD) particles are detected in a
plane at equal angles on either side of the beam with
equal energies. Consequently, for (p, 2p) the polari-
zation analyzing power must be identically zero ow-
ing to the left-right symmetry of the experiment.
Analyses of CSAD differential cross sections for
He(p, 2p) H at 250 to 500 MeV incident energy

have shown that, though negligible at angles corre-
sponding to recoil mom enta below about 250
MeV/c, the spin-orbit terms do change the predic-
tions significantly at higher momenta and, in fact,
improve agreement with experiment.

Predicted differential cross sections for
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FIG. 10. Calculations of the coplanar symmetric
(T,=Td, 8,=0g) angular distribution of the differential
cross section for Ca(p, 2p) K (2.52 MeV) L=0, 2s&&z at
an incident energy of 150 MeV.

'Pb(p, 2p) o7T1 (g.s.) at 150 MeV incident energy
are shown in Fig. 9 for a CSAD measurement. On
the basis of plane wave arguments a CSAD predic-
tion can be expected to show much the same depen-
dence on residual nucleus recoil momentum as the
corresponding energy sharing measurement. Thus, a
curve qualitatively similar to that shown in Fig. 7(a)
was anticipated. From Fig. 9 we see that this is not
the case. In fact, distortion effects have generated a
double peaked structure more reminiscent of an
L&0 transition. In view of this rather special dis-
tortion effect it is no surprise that the inclusion of
spin-orbit terms in the optical potentials has a major
effect on the relative heights of the two peaks. In
Fig. 10 CSAD predictions are shown for

Ca(p, 2p) K (2.52 MeV) at an incident energy of
150 MeV. For this L=O, 2s&~2 transition the NSO
distribution shows the anticipated shape with a sin-
gle peak at low recoil momenta. Thus, the special
distortion effect encountered for the preceding case
is presumably absent and we would anticipate small-
er differences between SO and NSO predictions,
which indeed proves to be the case.

20 30 40 50 60 70
ec =ed (deg)

FIG. 9. Calculations of the coplanar symmetric
(T,=Tq, 8,=8~) angular distribution of the differential
cross section for 'Pb(p, 2p) Tl (g.s.) L=O, 3s~~2 at an
incident energy of 1SO MeV.

IV. SUMMARY AND CONCLUSIONS

A new procedure for DWIA calculations of quasi-
free knockout reactions has been described in which
the explicit calculation of angular momentum cou-
pling coefficients is replaced by a three-dimensional
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numerical integration. The procedure is simple to
generalize to include spin-orbit terms in the distort-
ing potentials and the resultant computer calculation
is considerably faster (and cheaper) than convention-
al NSO calculations employing Racah algebra.

Sample calculations for 150 MeV (p, 2p) and

(p,pn) reactions were presented. The incident energy
was selected partially because of the availability of
good optical potentials for this energy region and
partially because of proposed experiments at this en-

ergy. In general, the effects of including spin-orbit
distorting potentials are not negligible. For differen-
tial cross section predictions there were no major
qualitative changes aside from a CSAD prediction
for Pb. However, errors of 10% to 20% in rela-
tive spectroscopic factors are to be expected for
analyses employing NSO calculations.

For polarization analyzing powers, relatively
modest differences between SO and NSO predictions
for "factorization tests" or quasifree angular distri-
bution measurements were found. However, for
measurements involving a range of residual nucleus
recoil momenta (and hence expected to be deter-
mined largely by the changing struck nucleon
momentum wave function), major differences be-
tween SO and NSO calculations were noted. Most
notable was a rapid change in the polarization
analyzing power correlated with a node in the
momentum wave function for L=0. This proved to
be a general feature of both (p, 2p) and (p,pn) calcu-
lations for both energy sharing and noncoplanar an-

gular distribution data. If it can be found experi-
mentally, this should prove useful in constraining
the assumed struck nucleon wave function and in

testing the accuracy of the spin dependence of the
scattering waves generated by the optical potential
chosen for subsequent DWIA analyses.

For L & 0 transitions much of the j dependence of
the polarization analyzing power is known to arise
from polarization of the struck nucleon due to spin
independent (NSO) spatial localization effects. 2 In
L =2 calculations for an energy sharing distribution
the major features of the NSO predictions remained
in the SO results although there were changes in de-
tail. On the other hand, calculations for a noncopla-
nar angular distribution showed greater differences
between NSO and SO predictions with the latter,
suggesting somewhat enhanced j dependence at large
angles.

Finally, it should be noted that, while it does in
general appear to be important to include spin-orbit
distortions in DWIA analyses of (p, 2p) and (p,pn)
reactions, other generalizations from the small num-
ber of specific calculations presented here are prob-
ably unwise. Clearly, it is now highly desirable to
turn to the question of off-shell effects on the
nucleon-nucleon t matrix in order to further refine
the analysis.
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