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Elastic scattering of 65 MeV polarized protons from 25 nuclei (' 0—' Bi) has been mea-

sured. The volume integral of the real central part of the optical potential (Jq) shows a
behavior similar to the binding energy curve for the target mass number. The mean square

radius of the real central part of the optical potential is found to obey the relation (r l~„
=(0.937+0.012)A +(6.42+0.21) fm . By comparing with the systematics of the charge

distributions obtained from electron scattering data, it is found that the effective two-body

interaction range between an incident proton and a nucleon in the target has a target mass

number dependence given by (r');„, =(0.132+0.013)A2~2+(4.24+0.24) fm2. Assuming

this relation, root mean square radii of the point nucleon distributions are obtained. The
dependences of the Je value and the ( r2) ~, value on the mass number and energy obtained

here are compared critically with recent microscopic optical potential calculations.

NUCLEAR REACTIPNS 160 24Mg 28si 40Ar 40,44, 48Ca 46,48,601(
54,56pe 58,60,62,64N1 Y Zl 98, 100M 144S 208Pb 209B ( ) Es 9 & ps~a
MeV; measured 0(0), A(0); deduced optical-model parameters, mean-

square nuclear radii, and volume integrals for the real central potential.

I. INTRODUCTION

Recent progress in nuclear matter theory has
made it possible to understand the nuclear optical
potential microscopically in terms of a two-body
nucleon-nucleon interaction. Jeukenne, Lejeune,
and Mahaux (JLM)' at Liege and Brieva and

Rook (BR) at Oxford have calculated the nu-

clear optical potential microscopically. In order to
check critically these global optical potential
theories and to extract new aspects in many body
problems, it is necessary to measure accurately pro-
ton elastic scattering over a wide range of target nu-

clei and over a wide range of energies relative to the
Fermi energy. In applying nuclear matter theory to
scattering problems there are many difficulties to
overcome by using suitable approximations. The
most ambiguous process among them is the
transformation procedure from infinite nuclear

matter to finite nuclei, such as the process using the
local density approximation (LDA). As was already

pointed out by Wong' and Negele, " the LDA. is

not accurate in the nuclear surface region. On the

other hand, the nuclear surface is the region most

sensitively explored by nuclear scattering, and sur-

face effects will be exemplified by their mass num-
ber dependence. In order to clarify the role of the
nuclear surface and to check the approximation
used in the theory, it is important to determine ac-
curately the mass number dependence of the optical
potential. For the LDA the energy dependence of
the t matrix in nuclear matter is reflected directly in
the potential depth. But in the folding potential of
Brieva and Rook the situation is not so straightfor-
ward as in the LDA. For checking the validity of
their approximation, the energy dependence of the
optical potential will be a useful guide.

On the experimental side, the study of the optical
potential has progressed after Becchetti and
Greenlees's' work. If we plot the data available on
elastic scattering in a two dimensional plane of in-
rident proton energy versus target mass number, we
notice that data are concentrated at energies below
35 MeV and for targets near magic nuclei. In addi-
tion, systematic experimental studies on the optical
potential using a polarized proton beam are still
scarce. Recently Fabrici et a/. reported' ' mea-
surements of the elastic scattering at several proton
energies between 20 and 45 MeV. Although their
systematic analysis utilized polarization data only
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26 ELASTIC SCATTERING OF 65 MeV POLARIZED PROTONS 945

partially, it has clarified the energy dependence in
that energy region. In the intermediate energy re-
gion, a group at Indiana University is investigat-
ing' ' the systematics of the optical potential in a
relativistic framework. In this paper we report sys-
tematic measurements on elastic scattering of polar-
ized protons and an analysis of data over a wide
range of target mass numbers, from ' 0 to 2o98i, at
an incident energy of 65 MeV. Partial results have
been published. ' The use of high-purity ger-
rnanium (HP-Ge) detectors has made possible rapid
data acquisition at this energy. The 65 MeV data
are thought to be valuable not only because they fill
a gap in experimental data but also because of the
simplicity of the reaction mechanism; they are rela-

tively free from the giant resonance effects and the
multistep processes observed in the lower energy re-

gion. Section II describes the experimental method.
In Sec. III, the method of data reduction and the er-
ror estimation are discussed. Section IV is devoted
to the optical potential fitting procedure. Section V
discusses systematics of the mean square radius ex-
tracted from the optical potential parameters. A
comparison between experimentally obtained

( r )~, values and microscopic calculations is
presented in Sec. VI. Section VII describes the
method to extract nuclear matter radii as an appli-
cation of Sec. V and compares them with the 800
MeV LAMPF data. Systematics observed in the
volume integral of the real central part of the opti-
cal potential is treated in Sec. VIII, together with
the JLM microscopic optical potential. Conclusions
and a summary are presented in Sec. IX.

II. EXPERIMENTAL METHOD

The polarized proton beam (of 10 keV energy)
from the atomic beam type polarized ion source '

(PIS) is injected axially into the Research Center for

Nuclear Physics (RCNP) (Osaka University) AVF
cyclotron. A beam buncher in the injection sys-
tem intensifies the pulsed beam peak current by
about a factor of 3. The extracted beam of 65 MeV
was energy analyzed and transported to the polari-
zation experiment area. As shown in Fig. 1, the
beam was first focused on a target to a beam spot
size of about 1 X2 mm . After passing through the
target, the polarized beam was again focused on a
polarimeter target foil and then collected by a Fara-
day cup located downstream of the polarimeter.
The beam current was monitored by a current digi-
tizer whose output pulses were routed by a spin con-
troller, depending on the beam polarization direc-
tion.

Scattered protons were detected by 1.5 cm thick
HP-Ge detectors, which were located at symmetric
scattering angles to the left and right of the beam
on goniometers outside the scattering chamber. In
the angle region of rapidly changing angular distri-
butions, the detectors were placed at a distance of
more than 30 cm from the scattering chamber (of
26.6 cm diameter) to obtain better angular resolu-
tion. A vacuum bag was inserted between the
scattering chamber and the HP-Ge cryostat to
reduce the energy loss and range straggling of the
scattered particles in air. For solid targets, the ac-
ceptance solid angles of the detector were 0.145 msr
at forward angles (9& 32.5') and 0.690 msr at back-
ward angles (8)32.5'). For gas targets, the vacuum
bag was inserted between the front and back slits of
a double-slit collimator. The gas target 6 factors of
the slit system were 1.09)&10 at the forward an-
gles and 2.15)&10 at the backward angles. The
beam direction was determined by two methods.
One was the conventional kinematical crossover
method. The other was to search for the scattering
angles on both sides of the beam direction at which
the sign of the analyzing power of p+ Pb elastic
scattering changes sign rapidly. The uncertainty of
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the scattering angles was estimated to be less than
+0.05 degrees.

The degree of beam polarization changes depend-

ing on the vacuum in the ionizer region of the PIS,
the out-gassing history of the ionizer, and on other
ionizer conditions. So the beam polarization was
monitored continuously by a polarimeter located
downstream of the scattering chamber. Scattered
protons from the polarimeter target foil (a stacked 3
mg/cm2 thick polyethylene foil) were detected by
NaI(Tl) scintillators placed at Hhb

——47.5'. The left-

right asymmetry of the elastic scattering from ' C
was used to deduce the beam polarization. The po-
larimeter target foil was changed after an appropri-
ate beain irradiation in order to reduce the effect of
contaminant buildup. The beam polarization error
due to the contaminant peak was estimated to be
less than 0.2%. As the analyzing power of the ' C
polarimeter at Ohb ——47.5' we adopted a value of
0.975+0.011, which was obtained in the double

scattering experiment at Ez ——65 MeV by Kato
et al. The direction of the proton spin was re-

versed after every 200 pC of integrated beam charge

by reversing the solenoid magnetic field direction at
the ionizer of the PIS. In the later stage of the ex-
periment the spin direction was reversed every 1 s

by alternating the atomic-beam rf transition mode
between weak-field and strong-field transition. Sig-
nals from a microprocessor triggered the spin con-
troller which controlled the rf transition mode, the
scalers, and the data storage locations in the
memory of the pulse height analyzer, where energy
spectra were stored in different memory locations
depending on the polarization direction. The aver-

age beam intensity during the measurements was
about 30 nA and the beam polarization was about
60—70%. The overall energy resolution detected
by the HP-Ge system was 180—250 keV FWHM,
including the beam energy spread and the range
straggling due to window foils of the scattering
chamber, the vacuum bag, and the HP-Ge cryostat.
Table I lists the forms, thicknesses, and enrichments
of the target foils used. The thicknesses of the solid
target foils were measured by dividing the total
weight by the area, and for gas targets the gas pres-
sure was monitored using a strain gauge sensor.

Nucleus

16p

Ne
Mg

28Si

40Ar

Ca
"Ca
48C

4'Ti
48C

"Ti
54Fe

56Fe

"Co
8Ni

62Ni

~Ni
89Y

"Zr
98Mo

'00Mo

'~Xm
208pb

Bi

Form

gas (02)
gas (Ne)
metal foil
metal foil
gas (Ar)
metal foil
metal foil
CaCO3 + Mylar
metal foil
CaCO3 + Mylar
metal foil
metal foil
metal foil
metal foil
metal foil
metal foil
metal foil
metal foil
metal foil
metal foil
metal foil
metal foil
metal foil
metal foil
metal foil

TABLE I. Targets.

Thickness
(mg/cm )

1 —2 atm
1 —2 atm
3.18
2.98
1 —2 atm
2.19
2.78
1.34
0.52
0.99
0.82
1.57
1.02
2.09
2.04
2.04
1.71
3.55
1.376
2.672
0.900
0.372
1.71

15.1
4.23

Enrichment

natural (99.8%%uo)

natural (90.51%)
99.94%%uo

natural (92.21%)
natural (99.60%)
natural (96.97%)

. 98.55%%uo

97.27%
81.20%
99.25%
83.2%%uo

96.81%
99.93%
99.83%
99.83%%uo

99.79%
96.48%%uo

96.48%
natural (100%)
97.65%
97.01%%uo

97.27%
96.33%%uo

99.14%%uo

natural (100%%uo)
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III. DATA REDUCTION

Analyzing powers were measured by the left and

right detectors located at the same scattering angle.

We denote by L, the number of particles detected

by the left detector in the spin up mode. L„R„
and R, is defined in an analogous way. The analyz-

ing power AY(8) and its statistical error 5A&(8) are
calculated as follows:

'LR
L~R,

L tpolR &p01

Lgp iR&poi

2 1/2

1 r' —1

A~(' C) r'+1

5Pb„
+

Pb.m A
5Ar (8)=Ay(8)

Ay(8) = Pb„r +1
1/2

=Ar(8)

2
2r+ 4r —1

1 1 1 1

Rq R, L, Lq

5'(' C)
6Pb.,m =Pm (8)

Ar(' C)

&2

+ i4
1 1 1' + + +

R,~) R,p,) L tp, ) L,~)

1/2

Ay(' C)=0.975, 5Ar(' C)=0.011,

where L,~~ denotes the carbon elastic peak sum for
the left polarimeter detector in the spin up mode,
and L,~~, R,~~, and R,p,~

are similarly defined.
Ar(' C) and SAN(' C) are the carbon analyzing
power and its uncertainty at the scattering angle

8~,b
——47.5' and Er ——65 MeV. Differential cross

section data were corrected by the detector efficien-
cy due to nuclear reactions in the Hp-Ge itself. The
energy dependent detector efficiency e(E&) in the
energy region from 45 to 65 MeV was obtained
from Makino's data according to the relation

e(E)=(1.0062&&10 E+1.018)

Using this formula, the difference of the elastic
peak detecting efficiency between H~,b

——0' and
8~,b ——80' was 0.7% for ' 0, and 0.3% for Ca.
Thus the correction due to Makino's data affected
the relative angular distributions of the differential
cross sections negligibly. Measured cross section
and analyzing power data, are plotted in Fig. 2. Er-
ror bars shown in the figure are only statistical
ones. In the analyzing power data, uncertainties of
the ' C-polarimeter analyzing power are included.
%e notice a systematic shift of the diffraction pat-
tern as the target mass number increases. In partic-
ular, a sharp rise near 30' in the analyzing power

data shifts forward as the target mass number in-
creases.

IV. OPTICAL POTENTIAL FITTING

U(r) = Vc,„~(r)—V f(r;re, az ) i W„f(r;r~,a~—)

+4a, Wi f(r;r „a,)
. d
dr

where

1+ V» —f(r;r &„a&, )( o"L),
W~C

f(r;ro, ao)=1+exp((r roA'~ )/a—o)

Vco.i(r) =
Ze r 2

2r A' r A
3— r (r~

2

r Qrgr

Optical potential fitting to the measured data was
performed using the automatic search code MAGALI

of Raynal. The following optical potential was
used:
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FIG. 2. (a) Measured cross sections and analyzing powers. The solid curves are optical potential calculations. The
parameters used are listed in Table II. In fitting the analyzing power data, the data used were extended to 0, =90'
for the light nuclei although only the data for 0, (75' are shown in the figure. (b), (c), and (d) Measured cross sec-
tions and analyzing powers. The solid curves are optical potential calculations. The parameters used are listed in Table
II.

A search for best-fit values of the optical poten-
tial parameters was started using the gas-target
data. The probability of becoming trapped in a
false local minimum during the search for a g
minimum was thought to be small, since uncertain-
ties in the cross section due to uncertainties in the
target thickness measurement are small for the gas
targets. For Ar, we started with the Becchetti and
Greenlees parameter values. The initial parameter
values for ' 0, Ne were obtained from the best-fit

Ar parameter set. For other targets, potential
parameters of the neighboring target which had al-
ready been fitted were adopted as a starting set.
Also, a renormalization of the calculation was in-
troduced because of the target thickness uncertain-
ty. In Fig. 2 measured differential cross sections
and analyzing powers are shown together with the
best-fit optical potential calculations. The optical
potential parameters and the associated g values
obtained are listed in Table II. Uncertainties in the
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where tion, respectively. Therefore (r )», is expressed as

and

(r )~„=f r U(r)dr f U(r)dr

(r )m«, —f r p(r)dr f p(r)dr

(r2);„,= f r V;„,(r)dr f V;„,(r)dr

In order to obtain a relation between the half-
density radius and the mass number, we use the
volume integral of the Fermi-type density distribu-
tion:

If we assume that U(r) and p(r) are spherically
symmetric Fermi functions, (r ),«can be calcu-
lated to a good approximation ' as

(4)

where R and a are the half-density radius and
diffuseness of the point-nucleon density distribu-

where

1+exp

po
r

r —Rm

am
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X

Since a and po are reasonably constant with A, the
half-density radius R~ is calculated as a function of
A, as

20- 1.25XQ
2.0X,

where

rm
4mpo

' 1/3

m m 3

n a~

r 'A'"

m a~
2A 2/3

rm
+ ~ ~ ~ (7)

28 30 32 Q
34 MeV

FIG. 4. An example of the procedure for deducing
the error bars is shown. The volume integral per nu-

cleon of the real central part of the optical potential, the
mean square radius of the potential, and the total p
value are plotted as a function of the potential depth Vg

for Ti. For (r2)~„error bars are obtained from the 2

Pp point and for Jq/A from the 1.25 Pp' point.

Inserting (7) into (5), we obtain for (r )~,

+am
+ J5 m 2 2/3 +

rm A

The last term can be neglected since the ratio of the
4th term to the 3rd term is less than 0.02 for the

nuclei considered (A ) 16). We finally obtain an ap-
proximate relation

If we treat (r2);„, as a constant as usual, (r )~, is
linear in A, with the coefficient —,rm . In order
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to obtain the (r );„t value, we need to know the a~
value, which is inferred from the charge distribu-
tion data. By comparing the two linear relations (1)
and (9), we obtain the value of

r =(1.25+0.01) fm .

If we assume that the point proton density distri-
bution is also of the Fermi-type (as we did for the
nuclear matter distribution), then (r )d,„s, can be
written in terms of the half-density radius Rp and
the diffuseness ap of the point proton distribution,
and the mean square radius of the charge distribu-
tion of the proton itself, (r )p,«,„,as

40—

E

30

L
lg

C4

20

M SR of Charge Oistribution

For a relation between R~ and the mass number 3,
we use the same relation as (7):

10

R=ra/ 1 ——1 3
P

vr a

2g 2/3
rm

7T Q~

2g 2/3 + 0 ~ ~

10 20
I

30

FIG. 5. Mean square radii of charge distributions ob-
tained from electron scattering are plotted as a function
of the mass number A.

We finally obtain a linear relation for (r )d,„s,
with A2/3:

2+ (r ~proton ' (12)

are obtained. If the diffuseness of the point nucleon
distribution is assumed to be equal to the diffusenss
of the point proton distribution, we get the value of

and

rz
——(1.154+0.004) fm

az ——(0.434+0.012) fm .

These values are slightly modified by taking into
account the neutron charge distribution. ' Thus

rp =(1.158+0.004) fm

and

ap =(0.397+0.011) fm

The mean square radius of the charge distribu-

tion, (r ),t,„s„from electron scattering ' is plotted
in Fig. 5 as a function of A . By least-squares

linear fitting, we obtained

(r2)d,„,—(0.799+0.006)A i

+(2.50+0.12) fm

By introducing the (r )p„„„=0.64 fm and com-

paring values from electron scattering with Eq. (12),
we obtain

(r );„t=(4.24+0.24) fm

We notice that the value of r~ extracted from the
present experiment is larger than that of r obtained
from the electron scattering data. In order to show
that such a difference is common to proton scatter-
ing, linear fits were made to the mean square poten-
tial radii from Percy's collection of optical poten-
tial results at 27—32 MeV incident proton energies.
These are shown in Fig. 6. The values obtained are

r =(1.21+0.03) fm

and

(r )tot=(4.06+0.84) fm

at 30 MeV. Although the 30 MeV data consist of
optical potential parameters by many authors and
hence could contain many inconsistencies among
the parameters obtained due to different fitting
principles, the r~ and (r );„t values from the 30
MeV data are consistent with our values, and r is
larger than the r& value of 1.158 fm. From the
analysis of the 800 MeV-1 GeV data, it is con-
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(r )pQtent)a~ Mass Number Dependence

Brieva on the nucleon-nucleus optical potential
using a realistic nucleon-nucleon interaction, the ex-
change term is repulsive in the nuclear center,
whereas at the surface it is attractive. An exchange
term of this type introduces a mass number depen-
dence of the effective interaction range if (r )„„is
defined as

30

C
tLt

0
CL

CV

20

l0

10 20
I

30

FIG. 6. Mean square radii of the real central part of
the optical potentials of the collection of Percy and

Percy at E~=27—32 MeV are plotted as a function of
g 2/3

eluded that r is approximately equal to r~.
One answer to this contradiction is to introduce a

target mass number dependence into the effective
interaction range (r );„,. As demonstrated in Fig.
3, the linear relation between (r )p«and A ~ is
confirmed and acceptable. Therefore the mass
number dependence to be introduced into (r );„,
must also be linear in A . A recent argument
based on experimental data, " and the experi-
mental results from the Los Alamos Meson
Physics Facility (LAMPF), show that with a small
correction from the charge distribution in the neu-

tron itself, the difference between the root mean

square radius of the point nucleon distribution and
that of the point proton distribution is less than 0.1

fm, which is smaller than the error in our (r );„,
value. Thus the average density distribution of
point nucleons may be thought to be equal to that
of point protons. Then the effective two-body in-

teraction range obtained is

(r };„,=4.24+0.24

+(0.132+0.013)A ~ fm

According to the recent theoretical work of

)tnt (r )pot (r )charge+ (r )proton ~

Another source of the mass number dependence
may come from a small difference between the
point proton and the point neutron distributions,
bemuse the proton-neutron interaction is stronger
than the proton-proton interaction, and this fact
may enhance the effect from the density distribu-
tion difference. Thus the mass number dependence
of (r );„,is an empirical relation and reflects vari-
ous many-body effects. The true origin of this mass
number dependence may be explained by an elab-
orate microscopic calculation. The possibility of a
target dependence of the effective interaction range
has been suggested already by Sinha. Our (r );„,
value is larger than the GPT's value ' of (2.25+0.6)
fm. GPT's (r );„, value was obtained in the
search for the X minimum mainly of the cross sec-
tion data btx:ause of the partial lack of polarization
data at that time. By equally weighting the polari-
zation and cross section data we were able to reduce
the VR"-type ambiguity and have found a larger
value for the mass number dependent (r );„,.
Bertsch et al. also obtained a large (r ) value
(-6 fm ) for inelastic scattering by fitting the in-
teraction to the matrix element of the scattering
operator, the t matrix or 6 matrix. Since their in-
teraction is effective at the nuclear surface and is
not density dependent, their (r );„, does not have
any mass number dependence. Our (r };„,values
for medium-weight nuclei are as large as the one
obtained in the Bertsch calculation.

VI. COMPARISON BETWEEN
EXPERIMENTAL (r )t t VALUES

AND MICROSCOPIC CALCULATIONS

In the preceding section it was pointed out that
there is a difference between (r ),«and (r )~t in
the target mass number dependence. This differ-
ence was reduced to the mass number dependence
of the effective two-body interaction. In Fig. 7 the
calculated values based on the recent microscopic
theories are shown with the experimental (r )~t
values. The line labeled JLM is the calculation us-

ing the JLM model. A detailed explanation of the
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FIG. 7. Mean square radii deduced from the best-fit
optical potential are compared with the recent micro-
scopic optical potential calculations. The 0 symbols
denote Brieva-Rook values interpolated to E~ =65 MeV.
The solid line marked JLM is obtained from the optical
potential with the microscopically-derived parameters of
Jeukenne, Lejeune, and Mahaux.

JLM calculation will be given in Sec. VIII. Brieva
and Rook calculated the. (r )p„values of ' 0, Ca,
and Pb for several incident energies and their
(r )~t values varied smoothly with energy. The
points labeled BR show the interpolation to 65 MeV
proton energy of the BR calculations. The BR cal-
culation reproduces remarkably our experimental
values shown as the line labeled Kyoto data, al-
though the BR value for 'Pb is a little smaller
than the observed value. Calculations in the JLM
model differ greatly from the experimental values
(by 2 —5 fm } and cannot reproduce the slope of the
mass number dependence. Lejeune and Hodgson
pointed out that the JLM calculation does not ex-
plain the (r )~t values and angular distributions
and must be modified by introducing a phenomeno-
logical range parameter. Such a phenomenological
parameter, however, wi11 mask the validity of the
theory to study the dynamics of the reaction. The
main origin of the discrepancy may be in the LDA
approximation used to transform the optical poten-

tial in nuclear matter to the optical potential in a
finite nucleus. These two types of microscopic cal-
culations suggest that the density dependence of the
effective two-body interaction at the nuclear surface
plays an essential role in explaining the A depen-
dence of the (r );„, value. It was already pointed
out in nuclear matter theory that there is a density
dependence in the nuclear matter effective interac-
tion. As the density decreases, the effective two-
body interaction increases due to the Pauli princi-
ple, and the depth of the optical potential well in-
creases. But the A dependence of (r );„, is not ex-

plained by the density-dependent JLM interaction
using the LDA alone, because the slope of the JLM
calculation on the target mass number A is different
from the experimentally observed one (see Fig. 7}.
On the other hand, when obtaining the t matrix in
the r representation in the BR calculation, the
momentum sum up to the Fermi momentum gives
another contribution to the density dependence of
the interaction, in addition to the dependence com-
ing explicitly from the Pauli principle. From our
present knowledge of the BR calculation, however,
we cannot discern the primary origin of the A

dependence of the (r );„,.

VII. ROOT MEAN SQUARE RADIUS
OF THE POINT NUCLEON DISTRIBUTION

OF THE TARGET NUCLEUS

Applying the results obtained in the preceding
section, we can extract the root mean square radius
of the point nucleon distribution of the target nu-

cleon, as follows

&matt=(( &potentiai (r &int}

where

(r );„t=4.24+0.24+(0.13+0.013}A fm

The calculated (r )m,«values from our elastic
scattering data are listed in Table III, together with
the 800 MeV polarized proton elastic scattering re-
sults from LAMPF. The LAMPF ( r ~) '

tt values
were calculated from the proton MSR values (r )p
and the neutron MSR values ( r )„of their
data, using the relation

1/2

Although the LAMPF (r )„and (r )p values
are model dependent, they are thought to be rela-
tively free from the dynamical effects on the
nucleon-nucleon interaction in the nucleus. We no-
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TABLE III. Values deduced from the optical potential parameters. The volume integral

per nucleon and mean square radius of the real central part of the optical potential are list-

ed, together with their respective errors. The effective interaction range and the nuclear
matter radius are listed and compared with LAMPF values. The LAMPF values are calcu-
lated using

1/2

Nuclei
Jg /A

(MeVfm )

(r'& t

(fm )

(r'&;.t
(fm2)

(r'&'" (fm)
Kyoto LAMPF

16O

"Ne
24Mg

28Si

40Ar

Ca
"Ca
48C

Ti
4'Ti

"Ti
54Fe

Fe
"Co
s8Ni

Ni
62Ni

64Ni

89~

~Zr

Mo
' Mo
'44Sm

208pb

209B1

346.8+"'
349 5+'
303.0+14's

325.3 14 0

330.4+11 s

333.6+8'6

318.8+8'.s

315.0+7 s

317.24+4

313.1+4 0

309.7 3's

303 1+s1
307.1

307.8+4'0

306 8+34

309.4+s'0

315.1+3'2

323.4+2'4

318.9+4 4

321 0+5.8
326.0 1'0

»7.4+,'4,

330.7 70
319 7+3 6

1235+ '

14 14+o.'06

14.32+ '

14.92 O'07

17.54+0'28

17.58+0'18

18.39+0 18

20.47+0'09

19.63+0'20

20.25—0.12

2107+ ' '

21 27+0.21

25 09+—o'. 3s

25.35+0'41

27.20+,",',

32.18+Q 39

—0.064

39 36+0.46

5.08

5.21

5.34

5.46

5.78

5.78

5.89

5.98

3.93
5.98

6.03

6.13

6.17

6.24

6.22

6.26

6.31

6.35

6.87

6.89

7.05

7.08

7.87

8.87

8.89

2.70

2.99
3.00

3.08

3.43

3.43

3.54

3.52

3.59

3.62

3.58

3.61

3.68

3.77

3.66

3.74

3.84

3.86

4.27

4.30
4.49

4.51

4.93

5.51

5.52

3.39

3.48

3.47

3.57

3.67 or 3.70

3.86

4.25

5.55

tice in Table III that our values agree remarkably
well with the LAMPF results. This indicates the
validity of our procedure for extracting the (r &;„,
value and the mass number dependence of the effec-
tive interaction range. %e have thus obtained a
new method for extracting (r &~,«value from po-
larized proton elastic scattering.

VIII. THE VOLUME INTEGRAL
OF THE REAL CENTRAL PART
OF THE OPTICAL POTENTIAL

In the folding model the volume integral J~ of
the real central part of the optical potential is calcu-

lated as

Jg f V( ro)d ro

= f dro f dr (r)V;„,(
~

r —ro~ )

=A f V;„,(a)da

The volume integral value J~ is proportional to the
target mass number if the effective two-body in-
teraction potential between the projectile and the
target nucleon is independent of density and energy.
A linear fit to the J~ values confirms the approxi-
mate validity of the above assumption at 65 MeV,
and the volume integral is expressed as

JR(318+3)A MeVfm' .
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j'

500- Energy Dependence of 3R/A

In order to show how the recent microscopic calcu-
lations explain the empirical volume integral values,

Jz/A values are plotted as a function of incident
proton energy in Fig. 8. The double-circle point at
65 MeV is the average value of the Kyoto data.
The open circles show the recent measurement for

Ca by the Milan group. ' ' We notice that the
Kyoto data lie on a smooth extrapolation of lower-

energy Milan data. The solid and dashed curves la-
beled JLM indicate the volume integral of the mi-

croscopic optical potential calculated in the JLM
model. According to the parameter table of the
JI.M calculation, the optical potential in infinite
nuclear matter is obtained as a function of the
matter density and the incident projectile energy.
As. for the point nucleon density distribution for the
JLM calculation, we used Negele's density distribu-
tion obtained from fitting electron scattering data,
as in the JLM work. The solid curve shows the cal-
culation for Pb and the dashed curve shows the

Ca case. The results of the Brieva-Rook calcula-
tion are indicated by the points sparked with a cross
in the figure for Ca and Pb nuclei; the curves
connecting these points are only meant to guide the
eye. As is evident from the figure, the Jz/2 value
and its bombarding energy dependence are repro-
duced remarkably well by the JLM calculation.
The local density approximation used in the JLM
model seems to be effective for the Jz calculation.

The energy dependence and the density dependence
of the nuclear matter t matrix are directly reflected
in the JLM nuclear optical potential. On the other
hand, Brieva and Rook transformed the nuclear
matter t matrix in momentum representation to the
t matrix in the r representation using a suitable ap-
proximation. They then calculated the optical po-
tential for finite nuclei by applying the folding ap-
proximation. The calculations of BR explain em-

pirical results at 30 MeV, but deviate from the ob-
served values at higher energies. The origin of the
discrepancy between the BR calculation and the ex-
perimental data seems to be due to the approxima-
tion in their transformation to the r representation.

In Fig. 9 our Jz/A values listed in Table III are
plotted as a function of the target mass number.
Error bars in the figure were defined similar to the
error bars of (r )~, values in Sec. V but in this
case were deduced from the potential parameters at
X;„(V„)=1.2570 (best fit), so the error bars have
no statistical meaning. Although the observed
Jz/2 values scatter considerably, we notice the fol-
lowing global behavior around the average value of
Jz /3 =318 MeV. As the mass number 2 increases,
Jz/A decreases rapidly to the minimum in the Fe-
Ni region and then increases gradually towards the
Pb-Bi region. This global trend is remarkably
reproduced by the JLM model calculation shown by
the dashed curve in Fig. 9. According to the JLM
model, the effective interaction is density depen-
dent. In the lower-density region, the effective in-

teraction is stronger ' due to the smaller Pauli
blocking effect. The surface-to-volume ratio is
large in light nuclei. As the target mass number in-

400-

300-

JLM) .

360-

350-

~340-

330.

Mass Number Dependence of J„/A

E-= 65 MeV
p

200- (BR)-
I I I I

10 20 30 40 50 60 70 80 90 100 Ep( Mev )

320-

310-

FIG. 8. Volume integral values per nucleon of the
optical potential are plotted as a function of incident
proton energy. Open circles are Milan data for Ca,
and the double circle is a mean value over 25 targets at
E~=65 MeV. The solid dots and the crosses are values
calculated microscopically by Brieva and Rook, connect-
ed by curves meant to guide the eye. The solid and bro-
ken curves labeled JI.M are calculated values using the
procedure of Jeukenne, Lejeune, and Mahaux.

300-

I

50 100 150 200 A

FIG. 9. Volume integral values per nucleon of the real
central part of the optical potentials are plotted as a
function of the target mass number A. The definition of
the error bars is given in the text. The dashed curve is
the JLM model calculation for E~ =65 MeV.
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creases, the surface-to-volume ratio decreases as
A ' and the Jz/A value decreases rapidly. The
second gradual increase is explained in the JLM
model by the isospin dependent interaction and by
the velocity dependence of the effective interaction
(as the mass number increases, the velocity of the
projectile inside the nucleus decreases due to the
repulsive Coulomb potential. ) This global trend in

Fig. 9 is similar to the binding energy per nucleon
curve if we note that the Coulomb potential is in-
cluded in the binding energy calculation and the
velocity dependent effect is included in the Jz/A
calculation. The rapid change in Js/A values for
lighter nuclei evident in Fig. 9 is possibly evidence
of the density dependence of the effective interac-
tion.

IX. CONCLUSIONS

%e have systematically measured polarized pro-
ton elastic scattering from 25 targets at 65 MeV.
An optical potential analysis gave good fits to both
cross section and analyzing power data. By plotting
the mean square radius of the real central part of
the optical potential versus A, we have obtained
the global systematics of the MSR of the potential

(r )~,=(0.937+0.012)A ~

+(6.42+0.21) fm' .

Using the simple folding model and comparing
with charge distributions obtained from electron
scattering, we found that the effective interaction
range has a mass number dependence of the form

(r );„,=(4 24+0 24.).
+(0.132+0.013)A ~ fm

Assuming this mass number dependence of the ef-
fective interaction range, we have obtained root
mean square radii of the point nucleon distribu-
tions, which are in accord with the high-energy
LAMPF data and reflect the shell effect and the in-
dividual characteristics of the target nuclei.

For nuclei of A (5$, the Jg/A value decreases as
the mass number of the target increases. This rapid
decrease was interpreted as evidence of the density
dependence of the effective interaction. The JLM
model explains both the energy and A dependence
of J~ but cannot explain the value of (r )~, and its
A dependence.

On the other hand, the BR calculation reproduces
our (r )~, value but could not predict the Jz
values, especially the energy dependence of Jg. At
present, each of the two global theories could ex-
plain the experimental results only partially, but is
found to be an effective guide in clarifying nuclear
many-body dynamics.
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