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Inelastic scattering and inelastic breakup of deuterons by nuclei

H. Amakawa*
Department ofPhysics, University of Texas, Austin, Texas 78712

and Department ofPhysics, University of Pittsburgh, Pittsburgh, Pennsylvania 15260

T. Tamura
Department ofPhysics, University of Texas, Austin, Texas 78712

(Received 12 April 1982)

Deuteron inelastic scattering and inelastic breakup calculations are formulated in the
framework of a simple three-body description, by using an adiabatic approximation. Ap-
plication is then made for 80 MeV deuterons, exciting the first 2+ state in "Ni. Similarities

and differences between the elastic and inelastic breakup processes are discussed. Compar-
ison with the predictions of the folding model is also made.
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I. INTRODUCTION

Evidence has been accumulated to show that the
deuteron-breakup mode plays an important role in
deuteron elastic scattering, ' in stripping reac-
tions, ' " and in two-step processes which involve
deuteron propagation in intermediate channels. '

Recently, we reported' on a calculation showing
that the breakup effect was also very important in
deuteron inelastic scattering, in that it reduced sig-
nificantly the inelastic scattering cross sections.
Most of the deuteron amplitude thus removed from
the inelastic scattering channel is expected to go to
the inelastic breakup channel, making the corre-
sponding cross sections appreciable. One of the ma-
jor objectives of the present paper is to give a quan-
titative estimate of the size of these cross sections.

It appears in order here to clarify the terminolo-
gy. In the present paper, we mean by deuteron in-
elastic scattering the process in which the target is
excited into discrete excited states, the deuteron that
leaves the interaction region remaining as a bound
deuteron. On the other hand, inelastic breakup is a
process in which the target is left again in a discrete
excited state, but the deuteron is broken up into a
proton and a neutron, and thus does not remain as a
deuteron asymptotically. (The deuteron elastic
scattering and elastic breakup processes are under-
stood similarly; in these processes, the target
remains in its ground state. ) Our inelastic breakup

is titus to be distinguished from the inelastic break
up considered by Baur and others. ' ' In their
work, the main interest concerned the continuum
spectrum of one member of the broken up pair; e.g.,
the proton singles cross section if the projectile was
a deuteron. The target, or more precisely the
target-plus-neutron system, can be left in any state.

%e treat the deuteron plus target system as a
three-body system, as is usually done. ' ' This
simplification largely neglects the many-body na-
ture of the target, but, even with this simplification,
it is still very difficult to treat our system rigorously
as a genuine three-body system. This difficulty is
enhanced, because, as shown below, the d-wave
breakup mode, in which the p n(proton-n-eutron)
relative angular momentum l equals 2, plays a signi-
ficant role. In the present paper, we thus use an
adiabatic approximation.

The adiabatic approximation here means to
neglect the deviation of the p nrelative energ-y from
its value in the deuteron, i.e., from the deuteron
binding energy. This approximation is expected to
be acceptable when the deuteron incident energy is
sufficiently high. The adiabatic approximation we
use is, in principle, very similar to that in the
pioneering work of Johnson and Soper (JS).' How-
ever, while we can include with relative ease the
1+0 breakup modes in our calculations, JS con-
sidered only the l =0 mode. Note, nevertheless,
that unless the deuteron energy is very high the two
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methods predict essentially the same cross sections
for stripping reactions, because the 1+0 modes do
not play a significant role in stripping reactions.

The formalism of the present calculation is
presented in Sec. II, which is divided into subsec-
tions A and B. In Sec. II A, we explain the adiabat-
ic coupled-channels (ACC) method, which treats
the elastic scattering and the elastic breakup reac-
tions, while in Sec. II8, we discuss the formulation
of the adiabatic coupled-channels Born approxima-
tion (ACCBA) method, which treats the inelastic
scattering and the inelastic breakup reactions. The
results of the calculations are presented in Sec. III,
and Sec. IV is devoted to concluding remarks.

II. FORMULATION OF THE CALCULATIONS

A. The adiabatic
coupled-channels method

%e assume a simple three-body model in which
the deuteron-nucleus collision system consists of a

proton, a neutron, and an inert target nucleus. In
the center-of-mass coordinates of the whole system,
the total Hamiltonian may then be written as

H=E„+V(r, R)+E„+U~„(r),

with

V(r, R)= Vp
rR+—
2

r+V R——
7l

Here r is the relative coordinate between p (proton}
and n (neutron), and R is.the coordinate of the c.m.
of the p+n system relative to the target. E„and
E~ denote, respectively, the kinetic energies associ-
ated with the r and R degrees of freedom. Vz is the
interaction between p and the target and similarly
for V„. Finally, v~„ is the interaction between p and
Pl.

The three-body wave function 0"+-'(K;;r,R) sat-
isfies the Schrodinger equation

(4)

If the spin-orbit interactions are also neglected, we may expend V(r, R) and 4'+-'(K;;r, R) in multipoles
(taking k as the p nrelativ-e momentum) as

V(r, R)=4n g Vi(r, R)[Yi(r)Yi(R)]oo, (5)

IEii + V(r, R)+E,+vz„(r ) E]%'+'(K—;;r,R)=-0, (3)

where K; is the c.m. momentum of the incident channel. The adiabatic approximation to this equation
neglects the excitation energies of the p-n relative motion. More precisely, the approximation is to replace the
E„+vz„(r ) part of the Hamiltonian by ed, the deuteron binding energy. If this is done, Eq. (3) is reduced to

jEz+ V(r, R)+ed —EIV'+-'(K;; r, R)=0 .

ql'+-'(K;;r, R}= gi (1mLM
~

JMg)(1'm'L'M'
~
JMg)

)Cgil'. il (E;;rR)Yz ir(R)YLM(E )
I Yp «)&& Yi (~)

I
.

In (6), (1mLM
~
JMz) is the Clebsch-Gordan coefficient. In (5},the square bracket means a vector coupling.

Therefore, for example,

[Y/(r)Yr (R )]J~ y(1mLM
~

JMJ)Y——/~(r)YIM(R ) .
m, M

We also note here that throughout the present paper we use for Yi~ the Wigner phase; thus our Yi~ iYi~, =
where Yg are the surface harmonics defined by Condon and Shortley. ' From (6), it will be clear that 1 (and
1') and L (and L') denote, respectively, the angular momenta associated with the r and the R degrees of free-
dom. We finally note that ql'+-'(K;; r,R) of (6) satisfies the following time reversal relation:

ql'++(K;;r, R)=%' '( —K;;r,R) .

If (5) and (6}are inserted into (4), the following coupled equations for X&.1.', ~l. result:
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(Kg+ I o(r,R)+ed &—)XtL-+„'tL, +g t'+ '
( —)'+ + &IL

1'L'
~0

X (IOA,O
l

I'0)(L OA, O
I
L'0) W(ILI'L'; J~)Vt„(r,R)Xt I, ', tz, (K;;r,R)=0,

where A, = [2k+ I]'i, and W(ILI'L'; JA, ) is the Racah coefficient.
The above coupled equations are to be solved with the boundary condition that

(8)

Xl'L';IL(Ki r R) ~ ~lr~LL''e FL (Ki }+Tl'L';IL(r)e (Gt. '(K R)+&'FL, '(K R))'
R —+oo

(9)

[K,+~~„(r ) ]Pd(r ) =~~gd(r ),
IK, +v~„(r)IQ-„(r)=ski|i-„(r),

(loa)

(10b)

with ek ——irt k /m, m being the nucleon mass. We
may rewrite the wave functions that appear in (10}
as

where I'L and GL are regular and irregular
Coulomb wave functions, and oI is the Coulomb
phase shift. The asymptotic form of Xii'. iL is
given by the complex conjugate of the asymptotic
form that appeared in (9).

At this stage it should be stressed that the cou-
pled equations (8), and hence the boundary condi-
tion (9), are defined for the R degree of freedom,
i.e., for the c.m. motion of the p+n system. The
relative coordinate r appears there just as a parame-
ter. However, it is in the spirit of the adiabatic ap-
proximation to interpret Ti I .iL (r) as an operator in
r space, and thus to take its matrix element between
two wave functions that describe the p nrela-tive
motions in the initial and final channels, thus ob-
taining the physical T-matrix element describing
the transition between these two channels.

The equations that describe the p-n relative
motion may be written as

)& toL oL PL (cos8)
i

(13a)

with

toL;OL o
Pd(r)ToL, ;or. (r)gd(r)dr .d i|t L (13b}

Equation (13b) is an example to show what is meant

by the projection of the TiL, tt, (r) matri. x upon the
eigenstates of the p nrela-tive motion. The toL.ot
coefficients represent physical T-matrix elements
such as are needed to describe the elastic scattering
cross section. In Eq. (13a), fz(8) is the Rutherford
amplitude.

The angle integrated elastic scattering cross sec-
tion [disregarding the contribution from fc(8}] is
given as

We are now ready to write the expression for the
differential cross section for the elastic scattering.
It is given as"'

dir"Idn=
i fc(8)+Ki ' y (2L +1)e

L

Pd( r ) =

[PAL(r)

lr] &oo(r"),

iiii, (r)=[(2ir)' '/(kr)]

(1 la)

(1 lb)

o"=g o"(L),
L

o"(L)= [4m IK; ](2L +1)
i to&. ot. I i

(14a)

(14b)

From (11a), it is clear that we assume that the deu-
teron is in a pure S state. The radial functions that
appeared in (11) are taken to have the following
orthonormality properties:

which leads to the reaction cross section

o'"=g o"(L),
L

(15a)

0"(L)= [477/K& ](2'L + 1)Im(toL .ol )—o(L) . '

f g(r)Pd(r)dr =1,

f Po(kr)Pg(r)dr =0,

f Pt (kr)gt(k'r)dr =5(k —k') .

(12a)

(12b)

(12c)

(15b)

This reaction cross section includes the elastic
breakup cross sections. The triple differential cross
section for the elastic breakup may be written as
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d cTy ~m2
d Q~ d QpdEp @gal

kpk„

k'z, ' g i 1 Le f Yl(k)YL (K)]Lotl"L.OL
I'LL'

(16a)

tl'L'1L J 41' (kr)Tl'L'IL(r)kd(r)dr . (16b)

In (16a), p, d is the reduced mass of the deuteron relative to the target. Since k = ( k» —k„)/2 and K=k»+ k„,
a choice of the two vectors k and K determines the angular and energy variables of the outgoing proton and
neutron. It is clear that (16b) gives another example of projecting the T(r) matrix upon the eigenstates of the
p-n relative motion.

By integrating (16a) over the proton momentum k», we find a form for the double differential cross section:

f z pi ' Le [Yl (k }YL (K)]Lotl L', OL dk» .
d Q„dQp p,&g,.

3

The momentum spectrum of the elastic-breakup cross section is expressed as

eldab = [4m /K; ]g (2L + 1)
I

tl'L'; oL I

k

An integration of (18) over k gives rise to a simple expression for the total elastic-breakup cross section as

&e"=[4««'lg(2L+1}I4«) I Tl'L', OL(y)
~

4d(r)dr

[4'/Kl ]—g(2L +1) J g(r)TOL;OL(r)pd(r)dr (19)

The s-wave breakup cross section, i.e., the I =0 term in (19), is proportional to the mean square deviation of
TOL.OL(y). Tile second term on the rhs of Eq. (19) is just the total elastic cross section given in (14).

B. The adiabatic coupled-channels

Born approximation method

In the present subsection, we give formulas that are to be used for obtaining the inelastic scattering and in-

elastic breakup cross sections. We treat the excitation in Born approximation, by using as a specific choice of
the distorted wave the ACC wave function obtained in the way described in the preceding subsection. We
shall thus call our method an ACCBA method.

The form factor to be used in the ACCBA calculation is given as a sum of form factors pertaining to the
excitations by proton and neutron. It is written

FM, ,M„(r R}=&C'L,M, I V»(r»)+ Vn(&n)
l @1„M„& (20a)

Vj(r;)=R;(dV1/dRt) gar»Yrq(r;); (i =p or n), (20b)

(20c)

In (20), pz M and pz M stand, respectively, for the intrinsic wave functions of the target in the ground and

the excited states, while 8; is the radius of the potential V;, and az„denotes the collective coordinate.
The form factor may be expanded as

FM, ,M„(r R) =1"'y'(Id~Army
I
la~a) yFAA(y R)[YA(y) YA(R)]y,

A,A

in which the factor Fl„A(r,R }has the following explicit form:

FlA(r, R)=i +

yves(AA/P)

g(imAO
~
ym)G„G1„

X g g;(r; )Pr
~
~

~

(cos8; )Pz
~

~
~

(cos8)d (cos8),
i=p, n

(21)

(22a}
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G =(—)( +' 'l '[( —
)

()!/(y+ [i' [)']'

g;(r;)=[PP;/j&](dV /dR;),

(22b)

(22c)

where 8 is the angle between r and R, 0; is the angle between r; and R, and P~ is the associated Legendre
function.

Note that the method used here in transforming between various coordinates is somewhat different from
, the well known method of Austern et al. With the latter method, the use of the macroscopic form factor of

(20) results in a singularity of the form R; r. In order to avoid this, we used the method of Landowne et al. '

This gave rise to an additional summation over m, which would not have appeared had the method of Austern
eI; al. been used.

The inelastic scattering differential cross section may be written as

inel E~~ ~
Tinel ~2. ~ ~~ f

dQ ' "' ' (2W')'K;(»&+I) '

TM"~ =f old(r)%' "(Kf,r,R)F~ ~ (r,R)%'+'(K;;r, R)g~(r)drdR.

(23a}

(23b)

In (23), pd is the reduced mass of the deuteron with respect to the target, while Kf is the momentum in the ex-
cited channel.

The inelastic scattering cross section, given by (23), is reduced after somewhat lengthy but straightforward
algebra to

dQ
=N(Iti/j&) g g( —) 'LtLf(L;OLfM

I
yM)

L,.
XG,, ~FL,, ~M ~(costi) f g( )Xoi,L,,( )p.~( )d I', (24a}

Xt 'I q (r)=[L;JI/(KK )]pi'+' + + 1'I"L'L"(1'01"0
~

AO)(L'OL "0
~

AO)

I' L' L
(+ )&f

X 1" L" Jf . 1'i I,- il (Kf&r&R)F.i~(r&R)

A y

(.+)L,
X&t L, ', ol. (K;;r,R)dR . (24b)

In (24a), the factor N is the same as that defined in (23a). In (24b) the { I factor is the nine-j symbol.
The expression of (24) is rather complicated. However, o'"" obtained by integrating (24a) over the angle 8

has the following very simple form:
2

o'""=4nN(2Ie+1) g f P~(r)XOL, t (r)P~(r)dr

The triple differential cross section of the inelastic breakup process may be written as

3 inel 2d ~b I m kk„
dQ„dQ dE (2~)'irt' K,(2I„+1)

with

Tg~'I"„——f Q'k(r)%' "(Kf,r, R)F~ ~„(r,R)%'+'(K;;r,R)fd(r)drdR.

A more explicit form to replace (26) is

(25)

(26)

(27}
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d 3 inel
Ob

d Q„dQpdEp
[krak„/(K;k )][isl(igg)]

2(2M )

Xg g( —) 'If1-fl-;(ifmfl-flf
I Jf~r)«l~f&r

~
1'M&)Gl, ~ GL, -M

M

Xpl (~ ~(cos8k)PL ~M ~(cos(9» ) f pl*(kr)Xl L J (r)p~(r)dr
~

(28)

The inelastic breakup cross section as a function of k is obtained by integrating (28) over Q„and Qz..
inel L 2

dk
=4nN(2Is+1) g f pi («)Xl L J (r)pq(r)«f fff

If this is then integrated over k, we obtain the (total) inelastic breakup cross section as

ob =4lr&(21s+1) 2 . 2 f pd(r) I+ifLfJf(r) ~
pd(r)dr

L.Lf IfJf

(29)

L,. 2

0d( @OL L ( )fd(r)drf f (30)

Note that the second term of (30) is the (total) inelastic cross section. Equation (30) is in fact very similar to
Eq. (19).

As we shall show in Sec. III, it is interesting to compare the results that are obtained by using the formulas
given above with those obtained by using the so-called folding-model method. Following Watanabe, 2 we con-
struct the folding-model potential as

&FM(R)= f yd(r)(&p+&„)qg(r)dr, (31)

where g~(r) was defined in (10a). By taking the scalar part of (31), we have the optical potential in the fold-

ing model, which can be used to construct the corresponding distorted waves XFM(K,R). The inelastic scatter-
ing T matrix of the folding model is then given as

TM M„——f X&M'(Kf, R) f fd(r)FM M„(r,R)p~(r)dr XFM'(K;, R)dR,

where FM M (r,R) was defined in (20a). Finally the folding-model inelastic cross section is

do'""/dQ=NQ
~

TM

(32)

(33)

This completes the formulation of the calculations of the present paper. In the next section, we shall
present results of such calculations.

III. CALCULATIONS AND THE RESULTS

We applied the ACC and ACCBA methods to
the scattering of 80 MeV deuterons by Ni. The
elastic scattering and the elastic breakup were treat-
ed by the ACC method, while the inelastic scatter-
ing ssiN( dd') sNi (2+;1.45 MeV) and the inelastic
breakup Ni(d, pn) Ni (2+; 1.45 MeV) were treated
by the ACCBA method.

The Becchetti-Greenlees potential was used for
Vz and V„. The potential parameters were chosen
for Ep Ep 40 MeV, i.e., for half the deuteron in-
cident energy. The spin-orbit interactions were
neglected. For the adiabatic inelastic scattering cal-
culations, we took the deformation parameter to be

P2 ——0.19, as in Ref. 25. Using the above parame-
ters and the DWBA method, we also have shown
that good fits to data ' are obtained for the inelastic
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proton scattering Ni(p, p') Ni (2+; 1.45 MeV) at

Ep ——40 MeV.
As noted earlier, we assumed that the (bound

state) deuteron was in a pure S state. However, for
the p-n continuum system we allowed the d-wave
(1=2) as well as s-wave (l =0) deuteron states.
Correspondingly, the multipolarity A, of the poten-
tial [cf. Eq. (5)] took on the values 0, 2, and 4. The
deuteron wave function Pd(r) and the s-wave con-
tinuum wave function $0(kr) were calculated
analytically by using the Yamaguchi-type separable
potential with a=0.2316 fm ' and P=1.45 fm
cf. Ref. 26. For the d wave, on the other hand, we
chose a simple free wave form;

$2(kr) =V2/m(krj )2(kr) .

lOQ

IQ
E

Ni (d, d') Ni (0& s, 2+, 1.45Mev)

Ed = BO MeV

Adiobotic 4 = 0+ 2

Equation (8) for ACC was solvmi at intervals of
0.25 fm from r =0 to r =20 fm. Since the excita-
tion energy of the target was much smaller than the
bombarding energy, we believe it is justifiable to ig-
nore the excitation energy and thus we used the
same ACC solution for both the elastic and the in-
elastic (1.45 MeV) channels. Throughout the
present work, the Coulomb breakup was not taken
into account, since its contribution is expected to be
very small.

We present first in Table I the angle-integrated
cross sections for the various reaction modes. All
the inelastic and inelastic breakup cross sections
given there are for the 1.45 MeV 2+ state. The
cross sections in the first line are those obtained
with the ACC and ACCBA methods, while those in
the second line were obtained by using the folding-
model method. Since the latter neglects the break-

up process, a comparison of these two lines gives a
rather clear idea on how the breakup process affects
the various cross sections.

One sees first that the breakup process reduces
drastically the inelastic cross section (from 16.9 to
10.7 mb), and the decrement 6.2 mb is practically
equal to 6.4 mb, which is the sum of the s- and d-
wave inelastic breakup cross sections (and is about
two thirds of the inelastic cross section). The signi-
ficance of the inelastic breakup is evident.

The breakup process also causes prominent ef-

O. l

O.OI

0 lo 20 30

FIG. l. Partial-wave cross sections of d +"Ni scatter-

ing at Eq ——80 MeV as a function of the incident angular
momentum of the deuteron, L;. Calculations were done
by ACC and ACCBA methods.

fects in the elastic and reaction cross sections. The
(folding-model) elastic cross section is reduced by
222 mb, and the reaction cross section is increased
by 96 mb. The elastic breakup cross section, 143
mb, is about 9% of the reaction cross section. For
the elastic breakup, the d-wave contribution is more
than twice the s-wave contribution. For the inelas-
tic breakup, however, the d-wave contribution is
only 1.3 times the s-wave contribution.

In Fig. 1, we show the contributions of the vari-
ous I.;, the incident angular momentum of the deu-
teron, to the angle integrated cross sections of Table

TABLE I. Integrated cross sections of d +' Ni scattering at E~——80 MeV in units of mb.
The cross sections in the first line are obtained by the ACC and ACCBA methods and those in
the second line are obtained by the folding-model method.

el &reset ~el( I~ 0 ) el( I~ 2) inel inel( Ii 0 ~
inel( Ii 2 )

Adiabatic
Folding

1351.6 1533.0
1573.5 1437.3

10.7
16.9

3.6
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58 , , 58
Ni (d, d') Nl (Og. s. ', 2, ~ 45MeV)

E& = SQMeV

———Folding
Adiobotic

Gk(MeV)
2 6 l0 20

I I ~ I I

100
I

l00

l0
E

0.5 l. 5

O. I

FIG. 4. Same as in Fig. 3 for the inelastic breakup.

0.0l
58 58

Ni (d, pn) Ni (0 g s, 2, l. 45 Mev}

10
Li

20
IQ

IO

MeV

FIG. 2. Same as in Fig. 1 except that the dotted lines
show the folding-model calculations. I

IQ

200

6'k ( MeV )

6 IO 20 60
I I I &

(

IOO
(

N

p
IQ

E

IO

IQ

b

IQ

Ioo
b IQ

0.5 l.O

k(fm I)
l.5

—
I

IQ

I I I I I I I I I I I I

FIG. 3. Elastic breakup cross sections of d+' Ni
scattering at Eq ——80 MeV as a function of the pn relative
momentum k. orb' is the sum of the s-wave breakup cross
section ob'(l'=0) and the d-wave breakup cross section
0'b(l' =2).

-80 -40 0 40 80 120

ep (deg}

FIG. 5. Double differential cross sections of the elastic
and inelastic breakup of d+ Ni scattering at Eq ——80
MeV.
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I. Those given in Fig. 1 are results of ACC and
ACCBA calculations. One first notices the similar-
ity between the L; dependences of 0" and 0'"", and
between o.b' and o.b"", in particular regarding the
slopes in the large L; region. It may also be
worthwhile to notice that the value L;=16 that
gives the peak contribution to o'"' and o.

b is
slightly less than the corresponding L; =17.5 for
Ob. The fact that the slopes for the large L; for the
breakup cross sections are only half as steep as
those for the scattering cross sections is not unex-

pected, since breakup can take place even when the
impact parameter is fairly large.

In Fig. 2, we show the L; dependences of the ef-
fects of breakup upon 0" and o'""by comparing the
results of the folding-model calculations with those
using the ACC and ACCBA methods. It is in-
teresting to note that while the reduction (due to the
breakup) of cr" takes place only for waves with

L; & 14, the reduction for o'""occurs for all L;.
We show in Fig. 3 the elastic breakup cross sec-

tion as a function of k, the p-n relative momentum.
The peaks of oi,'(l'=0), Oi,'(l'=2), and their sum
are located, respectively, at ek-2, 6, and 4 MeV,
where ek is the kinetic energy corresponding to k, as
shown below Eq. (10). The smallness of these peak
E'k values shows that the adiabatic approximation is
rather good here, although it becomes somewhat
worse for the d wave.

A similar presentation of the k (or ek) depen-
dences of the inelastic breakup cross sections is
made in Fig. 4. Now the peak ek appears at about

4, 17, and 11 MeV, respectively, for the s wave, d
wave, and the summed cross sections. An enhance-
ment of the larger ek region, compared with the
case of the elastic breakup, is clearly seen. Note
that the adiabatic method violates conservation of
energy, and this is why the cross sections do not die
out beyond 80 MeV.

In order to give an idea of the appearance of the
double differential cross sections, we present in Fig.
5 the proton angular distributions for the cases in
which the neutron angle e„was taken, respectively,
at 10' and 20'. lt is seen in both figures that the
proton distributions for the elastic breakup are
sharply forward peaked, while the peaking is signi-
ficantly reduced for the inelastic breakup, in partic-
ular for the larger 0„. These features faithfully re-
Qect the ek dependences of the cross sections
presented earlier in Figs. 3 and 4.

IV. SUMMARY AND DISCUSSION

In the present paper, we have not attempted to
discuss the fits to data of our calculations. Such a
discussion was already given in a previous publica-
tion, ' where rather good fits to data were achieved.
The present calculations were done within the same
framework as were the calculations of Ref. 15, and
in this sense may be considered realistic.

We have found a few rather interesting features.
We saw that the inelastic breakup accounted for
nearly two thirds of the inelastic cross section. It is
thus expected that the inelastic breakup cross sec-
tion summed over all the inelastic excitations of the
target constitutes a fairly large fraction of the total
reaction cross section.

We showed that the breakup cross sections have
rather long tails when seen as functions of the in-
cident angular momenta. We showed also that the
breakup effect uniformly reduces the (folding
model) inelastic cross section for all the partial
waves, while the reduction of the elastic cross sec-
tion is limited to higher partial waves. It is interest-
ing to compare these situations with that in strip-
ping reactions where it is known that the reduction
takes place only for lower partial waves.

The d-wave breakup favors higher values of the
relative p-n (linear) momentum, for both elastic and
inelastic cases. This shows that the adiabatic ap-
proximation may get much less accurate for the d-
wave breakup than it is for the s-wave breakup. It
is desirable to test the validity of this approximation
by comparing the results of the present calculations
with those obtained with fewer approximations.

We have presented a few examples of the double
differential cross sections, but unfortunately there
are no data available to compare with. To obtain
such data might be rather difficult, since neutrons
in a few tens of MeV region would have to have
their energies measured with a rather high accura-
cy.
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