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We investigate the physical half-shell T matrix for scattering by a smoothly screened

Coulomb potential. In particular, we study the Kowalski-Noyes half-shell extension func-

tion Fh, (p;k) in the limit that the screening radius a tends to infinity. For the Coulomb

potential the half-shell scattering cross section is a discontinuous (step) funct&on of the off-

shell momentum p at the on-shell point p =k. For the screened Coulomb potential (with

screening of the Hulthen form, for 1=0) we find that the half-shell cross section exhibits

almost a step behavior near p=k: Its magnitude varies dramatically in an interval, the

width of which is of the order of the inverse screening radius a. We discuss physical impli-

cations of this result.

NUCLEAR REACTIONS Half-shell scattering, Coulomb potential,

screening effects, Kowalski-Noyes half-shell extension function.

I. INTRODUCTION

In charged-particle scattering the long range of
the Coulomb interaction is a source of special diffi-
culties. These difficulties can be recognized already
in classical scattering. At positive energies classical
particles subject to a Coulomb or Newton force fol-
low hyperbolic Kepler orbits. At large distances
and large times, t~+ Oo, their trajectories differ in
an essential manner from the trajectories (straight
lines) of free particles with the same energy and the

same asymptotic velocity. This is clear from the

presence of a term logarithmic in t in the position

vector of a particle subject to the Coulomb or
Newton force. This term is due to the 1/r behavior

of the potential at large distances. Such a term is

not present for potentials which behave as r
u & 1, or potentials which are exponentially bound-

ed for r~oo.
In quantum mechanics the situation is similar.

When expressed in the coordinate representation the
scattering wave functions for charged-particle
scattering (i.e., at positive energies) exhibit an essen-

tially different behavior at large distances, com-

pared to scattering wave functions from short-range

potentials. This deviation from the short-range case
is seen more clearly if one works in the momentum

representation. In particular, the off-shell transi-

tion (T) matrix has a branch-point type singularity

in the on-shell point. Among others, this means
that the off-shell T-matrix elements have no on-

shell limits. By the introduction of suitably de-

fined Coulombian asymptotic states one neverthe-

less can define a physical scattering amplitude. If
only the Coulomb potential is acting this is the
Rutherford amplitude f'. Also, one can define a

physical half-shell scattering amplitude. It has a
singularity in its on-shell point, such that its on-

shell limit does not exist. Yet, the on-shell limit of
its modulus can be defined, but its value depends on
whether the off-shell momentum p approaches the
on-shell momentum k from above or from below.
The corresponding two limits can be very different.
Relatively little attention has been paid to this fact.
We note that this singular behavior occurs both in

the full T matrix, and in its partial-wave (p.w. ) pro-
jections.

In contradistinction, the T-matrix elements for
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short-range potentials are continuous functions of
the off-shell momenta in the on-shell point (both
for the full and the p.w. case). This fact is basic for
the so-called Kowalski-Noyes (KN) method. Us-

ing Muskhelishvili techniques, this method reduces
the singular p.w. Lippmann-Schwinger (LS) equa-
tion for T at positive energies to a nonsingular in-

tegral equation of the Fredholm type. A key in-

gredient (in each p.w. space l) is the KN half-shell
extension function EI„(p;k). It is defined as the ra-
tio of the half-shell and on-shell p.w. T-matrix ele-

ments. The KN method is convenient to calculate
scattering phase shifts.

In the present paper we shall study a smoothly
screened Coulomb potential. For finite values of
the screening radius a the KN half-shell extension
function is well defined. We investigate the limit of
unscreening, i.e., a~ oo. We shall use the particu-
lar type of screening provided by the Hulthen po-
tential. Its radial dependence 1/[exp(r/a) —1] al-
lows the investigation for S waves to be carried out
largely by analytic means.

In Sec. II we discuss scattering by the pure
Coulomb potential, acting in all partial waves, and
the singular behavior of various quantities at the
on-shell point. Section III briefly recalls how, in
the case of a short-range potential, Jost functions,
Jost solutions, and the KN half-shell extension
function are defined, in one partial-wave state l.
The pure Coulomb case in one partial-wave state is
discussed in Sec. IV. In Sec. V we have collected a
number of remarkable inequalities which involve
matrix elements of the transition operators T, and

T,~ for the Coulomb interaction. These inequalities
I

take an elegant form when we make a comparison
with the corresponding matrix elements of the
Coulomb potential V, . The KN half-shell extension
function cannot be defined in the usual manner for
the Coulomb potential. In Sec. VI we consider
some related half-shell ratios for this interaction.
The connection between the KN half-shell extension
function for our screened Coulomb potential, and
the half-shell ratio introduced in Sec. VI for one
particular I, is investigated in detail in Sec. VII.
There the limit that the screening parameter a tends
to infinity is considered. . Section VIII concludes
this paper with a discussion.

II. THE PURE COULOMB CASE

V, (r)=Ze /r = 2s/r=2ky—/r . (2.1)

The constant s —= —ky is real, s g0 corresponds to
attraction, for s &0 we have repulsion, and

I
s

I

is the Bohr radius. The energy-dependent dimen-
sionless parameter y is Sommerfeld's parameter,
and k is related to the energy E by the relation
E=—(k+ie), el0

The physical on-shell (Coulomb) T matrix is

We shall use the notations and conventions which
have been used and developed in Refs. 2 and 3. In
particular, we shall use the so-called (Coulombian)
asymptotic states

I
k oo+ & and the partial-wave

projected asymptotic states
I
kl oo+ &. Often we

suppr'ess the symbols I and + in this notation. Our
units are such that A=1=2m. The Coulomb poten-
tial Vis

&k'~ —
I
~. Ik~ &=&k'~ —

I v. I
k+&.

f'(k k') O'Qk, k'=kER+,
2

1 —y 2i~o

2rr 2k
1 —k k'

2

—& —I'r
(2.2)

2IO'0

HQ

L

4k 2

Q2

Throughout, we suppress the energy dependence of
the T operator T(E). Furthermore, we have intro-

duced the momentum transfer Q,

Q=k' —k, Q=
I

k' —k I, 0&Q &2k . (23}

In Eq. (2.2) f' is the Coulomb scattering amplitude,

l

and o.o is the Coulomb phase shift defined by

I (I+1+iy)/I (1+1 iy)=exp(2ioi)—. (2.4)

Cross sections cr and amplitudes f are connected by
a(x)=f'(x)f(x). Amplitudes are —2~ times the
corresponding T-matrix element.
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The physical half-shell

( p i T,
~

k co ). By using

r,
~
k~) =V,

i k+),

T matrix is
1 for p&k&0,

exp(rry) for 0&p &k . (2.10)

it can also be written as

( p i
T, i

k 00 ) = ( p i V, i k+ ), , (2.5)

where
i
k+ ), is the (Coulomb) scattering state at

energy k & 0. It has the simple form

(
~
T

~

k )= e " '~I (1+iy)q

Xlim[p —(k+ie)2]'r, p&k .
el0

(2.6)
Here the momentum transfer q has been intro-
duced,

q=p —k, q= ~p —k~,

ip —ki &q&p+k.
(2.7)

In the following we shall take the directions of p
and k' to be the same (p=k'). Their magnitudes, in
general, will be different. The potential-matrix ele-
ment

(p i V,
i
k) =kynq, p. Qk, (2.8)

(p —k )'r=e r(k —p )'r, if 0&p &k .

It is useful to introduce the step function 5,

(2.9)

is real for p & 0, k & 0.
Intimately connected to the long range of the

Coulomb potential are certain singularities of the
half-shell and off-shell Coulomb T matrix. These
singularities are branch points of the expression
(p —k)'r. They occur when the half-shell and off-
shell variables take their on-shell value. In fact, the
"on-shell limit" of the physical half-shell T-matrix
element (p

~
T,

~

k ac ) does not equal the physical
on-shell matrix element, in both cases p &k and p gk.
Both of these "limits" do not exist. The on-shell
limits for ptk and for peak of the modulus of the
physical half-shell r matrix do exist. However,
these two limits differ from each other, and they
also differ from the modulus of the physical on-
shell T matrix. Consequently, the two an-shell lim-
its (ptk and pik) of the half-shell scattering cross
section are not equal to each other, and neither of
them is equal to the physical an-shell scattering
cross section. The limits are readily calculated. We
choose the following convenient notation. Because
of the ie prescription (k stands for k+i e, et0), we
have

Furthermore, Co is the familiar Coulomb penetra-
bility factor

27TQ

exp(2~y) —1
(2.11)

For the pure Coulomb case, Eqs. (2.2) and (2.6) give

g,'"(p )=o '"(k'.k)co g Q /q (2.12)

Because q ~Q for p ~k, we have

lim ob,it=exp( —2my)lim o|,g|f
pJ, k peak

2~0 +on (2.13)

In Eq. (2.13) we have deleted the superscript Coul,
because it holds for any potential V=V, +V„
where V, is a short-range potential.

In Fig. 1, Co and, coexp(my) are plotted as a
function of k. For Coulomb repulsion (ky & 0) the
plk limit of osgf is smaller than o,„, whereas the
ptk limit is larger than 0.,„. For Coulomb attrac-
tion the reverse is true. Equation (2.12) shows that
the ratio of the half-shell and on-shell Coulomb
scattering cross sections consists of two factors,
Co 5 and Q /q . Only the first factor survives in

I j I I I I I I

10 100

kinesi

FIG. 1. Energy dependence of Cp and Cpexp(ny):
The upper curve gives, as a function of k, (i) Cp for the
case of Coulomb attraction; (ii) Cp& for Coulomb repul-
sion as long as k )p; and (iii) Cpg for Coulomb attrac-
tion as long as k &p. The straight line marks the value
1. The lower curve gives, as a function of k, (i) Cp for
the case of Coulomb repulsion; (ii} Cpg for Coulomb
repulsion as long as k &p; and (iii) Cpg for Coulomb at-
traction as long as k )p.
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lim ft(k, r)e '"'=1 .
r~~

The Jost function is defined by

(3.2)

l

I

I

I

I

I

I

!
I

I
/

l

II

I

fl(k)—:hm ft(k, r)( 2i—kr )ll!/(2l)! .
r~0

(3.3)

The off shell Jost solution ft(k,p, r) and the off shell
Jost function ft(k, p) have been introduced by Fuda
and Whiting: ft(k,p, r) is that solution of the so-
called inhomogeneous Schrodinger equation

(a) p/k

I

(b) p/k

k + d l(l +1) —V(r) ft(k,p, r)
I"

FIG. 2. (a) The step function 5 (full line) as a func-
tion of the off-shell momentum in the case of Coulomb
attraction, and (b) the case of Coulomb repulsion. Also
sketched (broken line) is the pseudostep function that we

expect to represent the case of a smoothly screened
Coulomb potential (cf. Secs. VII and VIII).

Coul(E Q2) Coul(E Q2)g 2y2 (2.14)

Note also that in half-shell scattering the magnitude
of the momentum transfer q=

~ p —k
~

can take
values larger than 2k, if p ~ k. Such large values of
q are inaccessible in on-shell scattering.

the on-shell limit. For p+k it is independent of p,
i.e., it is not dependent on how far one is off shell.
Instead, as shown in Fig. I, it is highly energy
dependent. Its (rather trivial) dependence on p is
shown in Fig. 2.

The other factor, Q /q, lies between 0 and
( —, + —,p/k) for all p, k &0. For fixed k k' it de-

pends on the off-shell variable p/k only. For p ~ k
it represents a suppression factor (between 0 and 1)
which is particularly effective in the forward direc-
tions. Note that if we consider the cross sections as
functions of energy and momentum transfer (in-
stead of energy and scattering angle) the following
relation between oh,'g'(E, q ) and o,„'"(E,Q ) holds:

=(k p)i prh—t'+'(pr), (3.4)

which satisfies the asymptotic condition

lim ft(k,p, r)e t'"=1 . -
(3.5)

f&(k,p) =—lim f&(k,p, r)( 2ipr—) i!/(21)! .
r—+0

For short-range potentials one has '

lim ft(k,p, r) =ft(k, r),
p~k

lim f,(k,p) =f,«),
p-+k

f&(k, p)=f~'(k, p) —(k and p real),

(3.6)

(3.7)

(3.8)

(3 9)

k ft(k p) ft(k p)——
(pi Tt ik)=

p impft(k)

(3.10)

As a consequence the KN half-shell extension func-
tion

(3.11)

Here ht'+' is the spherical Hankel function (in the
convention of Messiah, see Ref. 7). The off-shell
Jost function is defined by

III. THE SHORT-RANGE CASE
IN ONE PARTIAL-%'AVE STATE

The Jost ' solution ft(k, r) is that solution of the
radial Schrodinger equation,

k + — —V(r) fl(k, r)=0,d l (l + 1)
dT T

is real for p and k real,

. 1+1
k ft(k P) cc-

hs Pt f (k)

(p and k real), (3.12)

and normalized in such a way that

(3 1) FI„(k;k)=1 . (3.13)

which satisfies the asymptotic condition (in the con-
vention of Ref. 6)

Furthermore, we recall the pararnetrization of
(k

~
Tt

~

k ) in terms of the scattering phase shift 5l,
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)
mk

—2 i5I
e sin5~ .

mk
(3.14)

2 I 2

&p I
T„lk )= y. ' ''.kg', r +

p 2pk

—2 l 0'p p —k
Cp5e 'sin yln P

STD p+k
IV. THE PURE COULOMB CASE
IN ONE PARTIAL-WAVE STATE

f, I(k) =e"~" rI (1+1)/I (I +1+iy) . (4.2)

When V(r) in Eq. (3.1) has a 1/r behavior for
r ~ Do the definition of the Jost solution has to be
modified. For the Coulomb potential it can be tak-
en, according to Ref. 6,

lim f, ~( kr)exp[ ikr—+iyln(2kr)]=1 . (4.1)
fico

Explicit expressions for f, i(k, r) are known. ' For
the Coulomb potential, the off-shell Jost solution

f, ~(k,p, r) can be defined using the same definition
as in the short-range case, i.e., through Eqs. (3.4)
and (3.5). Also the Coulomb Jost function f, i(k)
and the off-shell Coulomb Jost function f, ~(k,p)
can be defined using the same definitions as in the
short-range case, i.e., through Eqs. (3.3) and (3.6),
respectively.

The Coulomb Jost function is known,

(p)0, k&0, peak) . (4.6)

Here Qor is the Legendre function of the second
kind.

V. EQUALITIES AND INEQUALITIES
FOR SOME RATIOS INVOLVING T, AND V,

& I
'

I
V,

I I &

(5.1)

For all physical values ofp'p this ratio satisfies

0& 9FI &1, p'&0, p&0, k&0,
in case of Coulomb repulsion, and

0& IA'I &1,

(5.2)

In Ref. 9 we introduced the ratio A' of the off-
shell Coulomb T matrix and the off-shell Coulomb
potential matrix

Furthermore the off-shell Coulomb Jost function
for I =0 is extremely simple

lf

f.o«p)= p+k
(4.3)

p —k

0&p'&k &p or 0&p &k &p',

I& I~
I

&Cp',

p'&k&0, p&k&0

or 0&p'&k, 0&p &k,

(5.3)

The on-shell limits (p~k) of the off-shell Jost
function and the off-shell Jost solution do not exist.
We have, for 1 =0,

(1/2)my
lim . f, ( ppk)=f, p(k) .
p k p+k I 1+iy

(4.4)

Many limiting relations involving Jost functions
and solutions, the limits p~k, r~0, r~co, and
the unscreening limit a ~ ap (cf. Sec. VII), are given
in Ref. 8. For the pure Coulomb potential the
physical half-shell Coulomb T matrix for l =0 is

&p I
T olk~&=&p

I Volk+&

f~p(k p+ie) —f o(k p+ie)= lim
el0 mpf, p(k)'

(4.5)

This leads to the following expressions,

in case of Coulomb attraction. (Inequalities marked
with a question mark are conjectures. )

By rewriting Eq. (2.6), thereby introducing the ra-
tio Ah, of the physical half-shell T matrix and the
half-shell Coulomb-potential matrix, we find

& p I T, I
k o)a

&pl v, Ik)

l 0'0=COe
p —k2 2 'y

2 (5.4)

The modulus of Ah, satisfies

I9Ph, l
=CpB, p)0, k)0, p+k . (5.5)

For completeness we mention the well-known result
that the ratio A,„,of the physical on-shell Coulomb
T matrix and the on-she11 Coulomb-potential matrix
satisfies [cf. Eqs. (2.2) and (2.8)]
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I ~.„, I
=1, k & o .

In Ref. 9, also

&p'I T i lp)

(5.6)

(5.7)

has been considered. For all physical I, one has

O(AI &1, p'y0, pgO, k&0

for Coulomb repulsion, and

(5.8)

0&
I
at

I
&1 0&p'&k &p or 0&p &k &p',

o&
I &i=o I

&Co'
.p'& k &0, p &k &0 or 0&p'&k, 0&p &k,

o& I~i l
&co'

(5.9)

2 I 2

wp 2pk
(5.11)

for Coulomb attraction. From Sec. IV it follows
that ~hs I p defined by

&p I T„Ik~}
, peak, (5.10)

p V,i k

I

amplitude

f'= —2ir ( k'oo —
I T, I

k oo )

and of ( k'
I V, I

k ) are not well defined, because of
the nonintegrability of these objects in the forward
direction, k' k= l, for k'=k. These difficulties are
well understood, ' '" and can be circumvented, as
was shown by Taylor, '

by the introduction of suit-
able test functions. We then may use

satisfies
(k~ —

I
Ti lkoo)- e

mk
(6.3)

—pCop&&h, i oexp( ioo) &C—p5,

p&0, k&0, peak . (5.12)

Here p=——v 'sinv= —cosv, where v is the first
positive zero of the spherical Bessel function j],
hence v=4.4934 and p =0.217. F ~

I
exp(2io i )

(6 4)

[In comparison with the middle member of Eq.
(3.14) we notice the absence of the term —1.] We
shall introduce for each physical I value the half-
shell ratio

VI. EQUALITIES AND INEQUALITIES
INVOLVING SOME HALF-SHELL RATIOS

We shall compare the physical half-shell T ma-
trix with the physical on-shell T matrix, for the
same k, k, and k'=—p, for the full Coulomb poten-
tial. Their ratio, I', h„

(pk'I T, I
ku) )

(kk'oo —
I
T, I

ka&)

2 2 k2 2

C,—ioQ P —k Q (6.1)
q 4k q

has no on-shell limit. We note that its modulus,

IF,,h. l
=Co&Q'~e', peak, (6.2)

again exhibits the familiar jump at the on-shell
point p =k, cf. Eq. (2.10).

The p.w. projections of the Coulomb scattering

For l =0 we find the half-shell ratio

F, h, e' Co—5—2i sin —yln P
p p+k

p &0, k &0, p+k . (6.5)

It has a fixed phase (modulo n), determined essen-
tially by o.o. It satisfies

2k . I o—C05 «E, i„exp(i era) & Cog
p p

(6.6)

Owing to the sine function in the right member of
Eq. (6.5), its modulus fluctuates more and more
rapidly between 0 and 2COSklp when p approaches
k. In Sec. VII we shall consider a smoothly
screened Coulomb potential. For such an interac-
tion the half-shell function Fh, is well defined [by
Eq. (3.11)]. We shall investigate this function ( for
i=o) in the limit of unscreening In partic.ular, we
shall investigate the limiting behavior of

I Fh,
=
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which is the ratio of the p.w. half-shell cross section
and the p.w. on-shell cross section.

where we have adopted the notation of Refs. 7 and
8.

VII. THE SCREENED COULOMB POTENTIAL
IN ONE PARTIAL-WAVE STATE

A =ik—a [—1+(1+2y/ka)'/ ],
B=ika[ —1 —(1+2y/ka)'r ]
cr= i—(p —k)a .

(7.4)

We shall consider the Hulthen potentia1

2ky/a
exp(r/a) —1

(7.1)

I

I (k )
I'(I+cr}1(1+A +8+a')
1 (1+A + cr)l (1~8+o )

'

I'( 1 +A' +8)
1 (1+A)1'(1+8)

(7.2)

(7.3)

for angular inomentum l='0. We often suppress l.
For a~00, V~ goes over into V, . Its shape is given
in Fig. 3 for various values of a. The off-shell and
on-shell, Jost functions (and solutions) are known.
We shall need

We study the limit of unscreening, a ~ ao, for fixed
k. For kazoo wehave

A+cr= i(—p —k)a +iy+O(1/ka),

8+cr = —i (p +k)a iy+—0 (1/ka },
A+8+cr= i (p—+k)a .

(7 5)

+I—
p( k) k~&/2 2l sing)

H, hs P~
p 2i sin5H

where

(7.6)

The (real) KN half-shell extension function, given
by Eq. (3.12), is

I

cr(A +8+cr) sinn(A +cr) sinn(8+o )

'

1/2

(A+o)(8+a) sinn. cr i smn(A+8+o)
1/2

A +8 sin%A s1Q7r8

AB n sinn. (A +8)

(7.7)

'p arafH(k p} 5H arafH(k} (7.8) I (z+a), p=za [1+0(z '}],
Note that 5H is the S-wave scattering phase shift
for the Hulthen potential. Using I"(z*)=I'~(z),
and

z~ao, !argz! &n, (7.9)

one easily derives [note that op ——argl'(I+iy)]:

5H -op —yln(2ka), ka-+ 00 . (7.10)

Iz
Ul
I—
C)

5
RADIUS

10

FIG. 3. Shape of the smoothly screened Coulomb po-
tential (Hulthen potential) for various indicated values
of ka. Also shown is the Coulomb potential itself. Ori
the scale of the figure it coincides with the curve labeled
ka =100.

In the limit of unscreening, for p outside the inter-
val (k b„k+6,}, b, fixed —positive and arbitrarily
small, one easily proves

hm H'"=Cpa,

p&0, k&0, pg(k b„k+6) . (7.11—)

Similarly,

lim y=yln p —k
a ~ P+k

p&0, k&0, p6(k —h, k+6,), (7.12)

follows from Eqs. (7.2), (7.8), and (7.9). Hence, by
Eq. (6.5},

lim 2i sin5~FH=h, ——e 'E, h,a~ co

p&0, k&0, p6(k —&,k+&) ~ (7.13)
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For p =k, the KN half-shell extension function
satisfies the normalization condition (3.13),
Flrs, (k;k)=1. For peak, F~=q, can take large
values, when sin50 is close to zero. For fixed k the
phase shift 5& is a decreasing (increasing) function
of a for large a in case of repulsion, y&0 (attrac-
tion, y & 0), cf. Eq. (7.10). For 5H ——+n m,

n=0, 1, . . . , FH=s, is unbounded for peak. This
happens at values of a which grow as const.
Xexp(nm/~ y~ ). Physically, this corresponds to a
vanishing on-shell cross section (Ramsauer-
Townsend effect) and a non vanishing half-shell

cross section.
In Figs. 4(a), (b), and (c) we show (p/k FH b, ),

which is essentially the ratio of the half-shell and
the on-shell cross section for the S-wave projected
Hulthen potential, for @=0.1, 1, and 10, respective-

ly, for various indicated values of ka. In all three
cases the abscissa p/k ranges between 0 and 2.
Note, however, that the (logarithmic) vertical scales
are different. The limiting behavior of the plots for
large a clearly obeys Eqs. (7.11) and (7.12). In all

three cases (y=0. 1, 1, and 10) we have considered a
repu1sive potentia1. For an attractive potentia1 one
obtains very similar results: The major difference is
that H' increases (rather than decreases ) by
roughly a factor exp( —n y) around the value p =k.

We observe that the number of zeros of FH=q, to
the left of p =k —6 equals the number of zeros to
the right of p =k +6„and that it is independent of
a, for large a. It is easily found to be
vr 'yln(2k ', ).

It is interesting to study the behavior of

2i sin5HE&=q, near the on-shell point p =k, as a
function of p, for large a. Equation (7.6) shows that
it comprises a positive factor H', and a factor
sing. In Table I we have collected a few values of
H' and qr on the small interval (k —~y~/a,
k+

~ y~ /a).
The sine in the corresponding Coulomb expres-

sion, Eq. (6.5), obviously has an infinite number of
zeros near p =k. The number of zeros of sing for
the screened Coulomb potential is limited. On the
interval (k, k+y/a), q& is (to good approximation)
symmetric about p =k+ —,y/a. Its variation left
and right of this point is

argI (1+iy)—2argl (1+ , iy)—.

Hence, the number of zeros of sing in each half of
the interval is

[n' 'argl (1+iy)—2m 'argl (1+ —,iy)],

i.e., independent of a. For large y this number is
well approximated by ym 'ln2+ —,.

For large a values q behaves as

y -oo—y ln(2ka), cf. Table I. Because

p =k+ —,y/a is a stationary point of y we observe,
with increasing a, the "birth" of two zeros of sing.
This occurs at values of a which grow as const.
)&exp(nm/~ y ~

). This is clearly illustrated in Fig.
5, for the particular case y=10. We show the inter-
val (k, k +y/a), for various indicated values of ka.
Plotted for each ka is the function

(k/p. FH s, ) =H S111 Ip/Sln 5H .

TABLE I. Behavior of various quantities for large values of the screening radius a, for various values of p near the

on-shell value p =k. Note that 00 stands for the S-wave Coulomb scattering phase shift, 0.0——argI (1+iy), whereas 0
stands for the off-shell variable defined in Eq. (7.4).

p =k —y/a

ly
2ly

—2ika +i y
—2ika

7Ty

tanhay

p =k (on shell)

ly
—2ika

—2ika —i y

—0.0—y ln(2ka)

=0

p =k+y/2a
1

ly2
1+ 2ly

1—2ika ——i y2
3 .—2ika ——iy2

1/2

-~y
sinhmy

-2argI (1+—,i y)
—yln(2ka)

-2argI (1+ 2 iy)
—argI (1+iy)

p =k+y/a
—ly

iy (2ka)—
—2ika —i y
—2ika —2iy

~y
sinhm. y

—00—y ln(2ka)

-0
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VIII. CONCLUSION

1.00 1.01 1.02
p/I&

I

1.03

For the pure Coulomb potential the on-shell lim-
its (p tk and p &k) of the physical half-shell T matrix
do not exist, because of singularities of the type
(p —k)'r. The on-shell limits of the modulus of the
half-shell T matrix do exist. However, these limits
(for ptk and pl, k) differ by a factor exp(n. y), and
neither of the two equals the modulus of the physi-
cal on-shell T matrix.

These phenomena may seem somewhat confus-

ing, and are certainly unfamiliar from the theory of
scattering by short-range potentials. Indeed, the
source of the difficulties lies in the long-range tail
(1/r) of the Coulomb potential. One may argue that
in nature the pure Coulomb potential does not oc-
cur, because there always is screening. For nuclear
interactions one may think of screening at atomic
distances. A related question is raised by observing
that in, for example„a nuclear scattering process
some energy on the atomic or molecular level is al-

ways transferred so that one always measures half-
shell (or even off-shell) scattering (rather than on-
shell scattering), although the amount that one goes
off shell is extremely small. Yet, in the first para-
graph dramatic effects are recalled, no matter how
far (how little) one goes off shell. We have studied
this question by considering a smoothly screened
Coulomb potential, and its unscreening.

Our paper has given arguments that, if one goes
off shell on the typical nuclear scale, the screening
effects on the atomic or molecular scale are imma-
terial: Strictly speaking one has a pseudostep func-
tion instead of the real step function 5, but the
"width" of the "step" will be negligibly small on the
nuclear scale.

In Sec. V we summed up a number of equalities
and inequalities for ratios of an element of the T
matrix and an element of the V matrix, for the
Coulomb case. We have not been able to find other
potentials for which the same, or similar, elegant re-

lations hold. Connected to these relations are the
(in)equalities satisfied by certain Coulomb half-shell
ratios, discussed in Sec. VI.

We have observed that the usual definition of the
KN half-shell extension function is not applicable
for interactions with a long-range tail, and the KN
method has to be revised. For potentials with a

FIG. 5. On the interval (k, k+y/a) we show (pFH=h, /k)2 as a function of p, for y= 10 (strong repulsion), and for a
number of indicated values of ka. Note that this is essentially the ratio of the half-shell and the on-shell cross section,

near the on-shell point p =k. The curves are normalized {by definition) to 1 at p =k. The horizontal markers on the vert-

ical logarithmic scale each indicate one decade.



HALF-SHELL SCATTERING BY A SCREENED COULOMB. . .

repulsive Coulomb tail this is not difficult, as will

be shown in a subsequent paper. ' In Sec. VII we
studied the KN half-shell extension function for the
S-wave Hulthen potential in the limit of unscreen-

ing, a~Do. The square of this (real) function gives
the ratio of the half-shell and the on-shell (p.w. )

cross section. For any p+k the function contains a
factor lisin5H which diverges for tt~oo, cf. Eq.
(7.10). It is very instructive to see the intricate
mechanism by which the remaining constituents
simulate and approach the half-shell ratio

F,'h, exp(io.o),
defined for the Coulomb potential, see Eqs.
(7.11)—(7.13} and Figs. 4 and 5. The Coulombic
step function 5, defined in Eq. (2.10), is intimately
connected to the singular behavior (p —k}'r. For a
screened Coulomb potential we observe a pseudostep
function, given essentially by Eq. (7.7). The width
of the interval around p =k in which this pseudo-
step function changes from one constant value to
another constant is approximately equal to (and cer-
tainly of the order of)

~ y~ /a. This verifies the
conjecture in Ref. 13, thereby providing a more pre-
cise estimate.

A characterization of the strength of the screened
Coulomb potential is given by its number of bound
states, when its sign is taken negative (y~ —

~ y ~

).
This number is

ntt ——[(2~ y~ ktt)' ]=[(2Q ~$
~

)' ] . (g. l)

It approaches ao when a~Do, in agreement with
the infinite number of bound states for the

Coulomb potential. Note that, although the zero-
energy phase shift, in agreement with Levinson's
theorem, increases as (2

~

s
~

a)', the phase shift at
energy k increases only as

~ y ~
ln(2ktt)+0(1), in

agreement with Eq. (7.10).
%Ye expect that the type of screening (Hulthen,

exponential, or otherwise smooth) is rather imma-
terial in the limit of unscreening as long as the
screening is smooth; see, for example, Ref. 14.
Also, because the Coulombic singularity (p —k)'r is
present for all partial waves, we expect pseudostep
functions to build up similarly for angular momen-
ta I &0, and for the case that the p.w. series are
summed, cf. Eqs. (5.4) and (5.5).

Many experimental processes are described in
terms of half-shell scattering amplitudes. Examples
are knockout reactions and other quasifree process-
es in particle and nuclear physics. Also in brems-
strahlung processes half-shell scattering occurs, and
the primary goal of many bremsstrahlung experi-
ments has been to obtain information on the off-
shell behavior of T matrices. In most of these prac-
tical cases one has p &k and Coulomb repulsion.
This means that half-shell scattering is suppressed,
compared to the corresponding on-shell scattering
processes, by a factor of Cv,' cf. Eq. (2.15). This is
a highly energy-dependent factor; see Fig. 1. Em-
pirically one has found a similar energy dependence
for the observed suppression: For quasifree scatter-
ing see, for example, Ref. 15, and for bremsstrah-
lung see Ref. 16, and a recent paper, ' in which the
factor Co was included to obtain agreement be-
tween theory and experiment.
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