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Potential inversion For scattering at Axed energy
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An inversion scheme proposed recently by the authors is successfully applied to various cases
of neutron-nucleus scattering. The results are compared with those of other inversion methods.

NUCLEAR REACTIONS Inverse scattering problem at fixed energy, nonrational
representation of scattering function; applied to complex nuclear potential.

In this Communication wc apply the solution to the
inverse scattering problem at fixed energy, recently
obtained by two of the authors, ' to reconstruct the
optical potentials for QcutroQ scattcrjng from thc nu-
clei '60, 40Ca, and 58Ni over a wide range of energies.
We also reconstruct, by this new method, the poten-
tial employed by Coudray2 to test the Newton-
Sabatier inversion scheme' at 10 and 50 MeV.

The method' solves the inverse scattering problem

for a class of scattering functions which represent
nonrational modifications of the rational functions of
h, 2(X = I+ —,) considered in the "Bargmann" inver-

sion method of previous work. 4 It promises to be an
efficient method for constructing potentials from
scattering functions in practical cases.

The (in general, nonunitary) elastic scattering func-
tion S(h. ) at fixed energy is given as a ratio of two
determinants (n, m =1, . . . , W),
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and S (X) is the scattering function of a reference
potential V(o)(r). in all but pathological cases one
can arrange the fitting parameters o. , p„such that
all
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the simplified form
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for real ). This is the simple, rationa1 parametriza-
tion of our previous "Bargmann" inversion scheme. 4

The local, I-independent complex potential V (r )
uniquely associated with the scattering function (1) is
determined iteratively in the form

V(r) = V~(r) V„(r) = V„ 1(r)+ V(")(r),
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where Lz~"~ is the logarithmic derivative of the "regu-
lal' solution to V„(r), which satlsf les tlM Rlccatl

with V ~=0 and
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FIG. 1, Gaussian potential of Eq. (8) (—), Recon-
struction from the scattering function: at 10 MeV, present
inversion method (———) and Ref. 2 (———); at 50 MeV,
present inversion method (——) and Ref. 2 ( ).
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TABLE I. Collision data and potential parameters of potentials 1 to 5 taken from Ref. 5.

Pot.
Elab

(MeV) Az Ap I'o& I'o2

23.4
52.5
52.5
48.0

100.4

160
16O

160
«Ca

64.4134
35.136
35.136
42.983
29.0173

0.9242
1.2324
1.2324
1.1435
1.1962

2.3288
3,1055
3.1055
3.9107
4.6303

0.8578
0.7294
0.7294
0.7391
0.7892

0.0
0.0
3.0831
5.2476
7.6992

0.0
0.0
0.0
0.9730
0.0

1.3142
1.5694
1.4571

3.3116
5.3673
5,6403

0.4518
0.4558
0.5117

+(L, &"l)'+1-,—' — " --0 (7)

with appropriate boundary conditions' (p = kr ).
As a first simple application of our rn thod we fit-

ted the function $ (A. ) of Eq. (1) to the (numerically
calculated) scattering function of the Gaussian poten-
tial

V (r ) =—14 exp[ —(r/3. 5)']

employed by Coudray2 for a test of the Newton-
Sabatier inversion method3 at the energies E = 10 and
50 MeV. A good, although not exact, fit was ob-
tained in both cases, using three pairs n„, P„
(N =3). The results for the reconstructed potential
of Eq. (4) are shown in Fig. 1 and compared with the
input potential of Eq. (8) as weH as with the results
obtained by Coudray. ' As in Ref. 2, we find that the
agreement between input and reconstructed potentials
improves with energy; nevertheless, even at the low

energy of 10 MeV, the result of the present method
appears quite acceptable. Only minor discrepancies
show up at short distances. We expect that these
could be removed by making an improved fit to the
scattering function using W & 3.

All the other applications are modeled on optical
potentials for proton scattering from '60, 4oCa, and
58Ni taken from Ref. 5. However, we neglect the
Coulomb potential and therefore effectively consider
neutron scattering. The case of proton scattering will
be dealt with in a future publication. The potentials
to be reconstructed by inversion are all of the form

V (r ) = —Vf ~ (r) —I'8'f 2(r) —I'8'qg 2(r)

where ft 2(r) is of the usual Woods-Saxon shape and
g2(r) =—4a2f, (r). The parameters of these poten-
tials are given in Table I. The energies vary from
23.4 to 100.4 MeV.

In Pig. 2 we show the results of the inversion for
real input potentials. The fits of the parametrized
scattering function S(h, ) of Eq. (1) to the input
scattering function, although not perfect, are certainly
within the customary experimental errors. The xs
values of these fits are of the order of 10 2 to 10 3.

We note that the potential 1 (W = 3, ys' ——3.5 x 10 ')
is fairly well reproduced by the inversion, with some
discrepancy at short distances. In the case of poten-
tial 2 we have inverted two different fits to the
scattering function, with X = 4, X '=-0.45 x 10 and
Xs'=0.69 x 10 ', respectively. As expected, the
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FIG. 2. Real potentials 1 and 2 at 23.4 and 52.5 MeV,
respectively (--- -). Reconstruction of potential 1 (———);
reconstruction of potential 2 with Xs =0.45 & 10 (——~ )
and Xs2=0.69+10 3 (

FIG. 3. Complex potential 3 for n +160 at 52.5 MeV
(—). Reconstruction with xs2=0.47 & 10 3 ( ~ ~ ) and
Xs2=0.16& 10 3 (———).
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FIG. 4. Complex potential 4 for n + Ca at 48.0 MeV
( ). Reconstruction with X&

——0.31 x 10 (———).

reproduction of the input potential improves when

Xq decreases, approaching perfect agreement. It is
instructive to compare these results with those ob-
tained by Munchow and Scheid, who employed a
modified Newton-Sabatier inversion method. In con-
trast to Ref. 6, the potentials yielded by the present
scheme do not exhibit any violent oscillations at
short distances nor any singularity at the origin (cf.
also Ref. 7).

Figures 3 to 5 show the results of the inversion for
various complex potentials. Figure 3 gives the poten-
tial 3 for n + ' 0 scattering at 52.5 MeV, as well as its
reconstructions using a three-pair fit to the scattering
function (N = 3, gs' ——0.47 && 10 ') and a six-pair fit

(N = 6, Xs'=0.16 X10 3). In the latter case the
reconstructed potential practically coincides with the
input potential. In Fig. 4, we compare potential 4 for
n + Ca scattering at 48.0 MeV with its reconstruc-
tion using a fit to the scattering function with N =3
and X~ =0.31X10 . Even for this relatively large
value of xz there is only a small discrepancy near
the origin for the imaginary part. Finally, in Fig. 5
we compare the input and reconstructed potential 5
for n + ' Ni scattering at 100.4 MeV corresponding to
two different fits of the scattering function with

N = 3, X~ ——0.67 x 10 and N = 4, y~2 = 0.34 x 10
respectively. Again, agreement improves with de-
creasing X~'.

We have demonstrated that the present inversion
scheme is quite successful for neutron-nucleus
scattering over a wide range of energies. The results

6

FIG. 5. Complex potential 5 for n +58Ni at 100.4 MeV
( ). Reconstruction with X& =0.67x10 (———) and

X~ =034x10 (——).

compare favorably with those obtained by other
methods proposed in the literature. ' ' Our recon-
structed potentials are quite smooth and as expected,
improve when the fit of the parametrized scattering
function (1) to the exact scattering function of the
input potential is made more accurate. There is no
singularity at the origin, as in other methods. It is
interesting to note that the parametrization (1) of the
scattering function has the same form as the scatter-
ing function implied in the Newton-Sabatier scheme'
(for a finite number of fitted phase shifts). Howev-

er, it can be shown, in analogy to Ref. 8, that the
scattering function of Eq. (1) is never identical to
that of Ref. 3. This is to be expected, since we have
seen that the reconstructed potentials of the scheme'
and of the present method generally have quite dif-
ferent features. The present method is readily imple-
mented numerically. The determination of the
parameters a, P„ is efficiently carried out through a
combined use of the approximate rational interpola-
tion formula (3) and a least squares routine for the
function (1). Once the parameters are found, the
iterative calculation of the potential (4) is straightfor-
ward. Applications to charged particle, in particular,
cx particle and heavy-ion scattering, are now being in-

vestigated.

The authors thank B. Bohne for programming and
carrying out some of the calculations.
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