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Assumptions underlying two models of collective nuclear motion
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The assumptions underlying the liquid drop model and the interacting boson mode, lj are com-
pared. These two models are inequivalent. However, only minor modifications in th.e original
assumptions are required to make these models different representations of the same underlying

physical processes.

NUCLEAR STRUCTURE Liquid drop model, interacting boson model,
underlying Hilbert space, quantum-classical correspondence.

There are now two seemingly complementary
models of collective nuclear structure: the geometri-
cal liquid drop model (LDM) presented in its
phenomenological form by Bohr and Motfelson in
1952 (Ref. I) (which constituted the basic philosoph-
ical underpinning of the entire study of collective
motion in nuclei) and the algebraic interacting boson
model (IBM).' It is natural to ask whether these
models are closely related, even identical, at a funda-
mental level. Several authors have argued that the
two models are identical or at least closely related. ' '
Others have argued that the two models are totally
unrelated. 9 Furthermore, comparisons have been
made also between the IBM and the quantum
mechanical five-dimensional oscillator [with dynami-
cal group IU(5)] (Ref. 10) and the particle-hole (pho-
non number nonconserving) model of Janssen, Jolos,
and Donau [also with dynamical group SU(6)]."'
The distinction between particle-hole and particle-
particle collective modes of excitation is by no means
clear or rigorous and has attracted some interest late-
ly 13

At present, there is no clear-cut agreement on the
relation between the LDM and IBM. In order to
resolve the relationship between these two collective
models, we undertake here a detailed comparison
between the underlying input assumptions at the
phenomenological level. This comparison is facilitat-
ed by their remarkably similar logical structure: the
underlying assumptions exist in 1-1 correspondence.
A detailed comparison of the input assumptions re-
veals that these models cannot be different represen-
tations of one underlying nuclear model. However, it
is possible to indicate precisely where and how these
input assumptions differ, and how the assumptions of
either the LDM or the IBM must be minimally modi-
fied so that the two minimally modified models may
eventually be shown to be different representations
of the same nuclear processes. This comparison
modification is carried out below, and summarized in
Table I.

0) Physical basis. The LDM is based on the oscil-
lations of a liquid drop around its equilibrium shape.
The IBM is based on the residual interactions be-
tween pairs of highly correlated nucleons.

(2) Physical bias. The startling point for the LDM
is classical continuum mechanics while that for the
IBM is quantum mechanics.

(3) Mathematical bias. The LDM is palpably
geometric; the IBM is unabash]. edly algebraic.

These three assumptions represent different prefer-
ences for the starting points of' these two models. If
the models can be made equivailent (assumptions
4—14 below), then the geometric and the algebraic
descriptions are only manifestations of the represen-
tation chosen, and surface oscillations a manifestation
of residual boson interactions.

The remaining assumptions are of a technical na-
ture, and will be modified as nel".essary to bring the
two models into conformity.

(4) Shell model inputs Our curr. ent understanding
of the "Bohr-Mottelson model" of collective nuclear
motion certainly includes shell model inputs to the
Bohr collective Hamiltonian. These are discussed ex-
tensively in Ref. 14. The original phenomenological
model, the LDM, used to derive the collective Ham-
iltonian, did not. It is this model that we are com-
paring to the IBM.

The IBM has two shell model inputs: (a) the non-
valence nucleons occur in an inert closed core; and
(b) the valence nucleons in even-even nuclei form
highly correlated pairs ("Cooper pairs"). We shall
modify the LDM by assuming that the liquid drop
contains a rigid spherical core of radius R, ("tidal
planet model" ).

(5) Starting point. The radius of thee liquid drop is
defined by the equation in row S, co'.)omn A, in Table
I. Nucleons in the IBM pair accordin, g to SB in the
table. This describes the pairing of n]acleons of angu-
lar momentum j,j' to form a boson o:f' angular
momentum J. We modify the LDM by replacing the
inequality R (e, P) ) 0 by R (tt, @)«,R,.
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TABLE I. Logical inputs to the Bohr-Mottelson liquid drop model of collective nuclear motion and the Arima-Iachello in-

teracting boson model of collective nuclear states.

ASSUMPTION

(a)

BOHR-MOTTELSON
LIQUID DROP MODEL

OF NUCLEAR MOTION

(b)

A RIMA-IACHE LLO
INTERACTING BOSON MODEL

OF NUCLEAR STATE

(c)

MODIFICATION S
AND

REMARKS

1 ~ Physical Basis

2. Physical Bias

3. Mathematical Bias

4. Shell Model

Liquid drop motion

Classical mechanics

Geometry

Cooper pairing

Quantum mechanics

Algebra

a. Inert closed core
b. Residual nucleon-

nucleon interaction

LDM: inert closed
core of radius R

5. Starting Point

6. Approximations
J=0

J=2

J=4,6, . . .

J = 3,5, . . .

R(6,4)-g a Y (e.g) &0
LM M M

pairing is strong

Quadrupole deformation
is important

Much less important than
L= 0, 2 terms

Represents nuclear
displacement

"i j(jj')J)
JI

jj

S Boson strongly bound

D Boson is important

Weakly bound or unbound

Requires different
oscillator shells

Requires different
oscillator shells

LDM: R(Q, +) & R

Include

Include

Usually neglect

Usually neglect

Usually neglect

7. Technical Condition
( )M

M -M

s~s~dtd = N

IBM: See 11

LDM: Is'I '2 ja I
o 2 ~ 2 2
o M M

8. Dynamics

9. Dynamical Variables

10. Phase Space

o 2 ~ o ~ 2

2 ~ 2
M' M

2 ~ 2
M M

H =g(s, s~, d, dt)

Z, Z ~ SU(6)/ U(5)

Z, Z ~ SU(6)/U(5)

Functions are
rotationally invariant

2 ~2

Describe a rank
1 Riemannian

symmetric space—
SU(6)/u(5)

11. Configuration
Space

12. Underlying Hilbert
Space

2
M

(C,glgl) [BU(6)/U(5);~IG I, N]

IBM: Choose a Lagrangian
submanif old G5

with coordinates
obeying condition lA

LDM: Z (C, Ir lgl; 'V )

IBM: & (C ~lgl: N)
LM

LI g] = —, fI g}6„(,)
13. Quantum-Classical

k kCorrespondence (I,g) —Q &„I&
—„j(;., v

l

Duality

14. Method of Solution
Solve Schrodinger-like

equation Diagonalize matrix

Construct
transformation

theory between two
representations
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(6) Approximations I.n the LDM, it is customary to
retain the quadrupole mode in SA and sometimes the
monopole (L =0) mode as well. The dipole mode
represents displacement of the drop's center of mass
and is generally neglected. Terms in SA with L ) 2
"can be shown to be of much less importance"' than
the monopole and quadrupole modes, and are gen-
erally neglected. In the IBM, odd J terms can arise
only from nucleons in adjacent opposite parity har-
monic oscillator levels. Such terms are much more
highly excited than the even J bosons constructed
from nucleons within a single oscillator level, and are
generally neglected. Nucleon pairs are strongly
bound in the J = 0 state, and more weakly bound in
the J= 2 state. States with J= 4 are unbound or
very weakly bound; those with J = 6, 8, . . . are un-
bound. " It should be noted that if one considers the
so-called "two fluid model" for the nucleus (neutron
and proton fluids) the L = 1 mode of excitation is
important (giant dipole resonance). However, this
mode lies outside the scope of the original IBM
where the distinction between protons and neutrons
are not made.

(7) Technical conditions In the L. DM, the c-
number amplitudes obey the reality condition 7A. In
the IBM, the s- and d-boson operators obey a unitary
condition 7B, where N is half the number of valence
nucleons. These conditions are not comparable. The
LOM must obey some kind of unitary constraint
while the IBM must obey some kind of reality con-
straints. The unitary condition is imposed on the
LDM by requiring the liquid drop oscillations to be
volume (density) preserving. This places one condi-
tion on the six amplitudes: f (ao, a~) = 0. If the
liquid drop radius is written in the form R =E + ao
+a~ Y~, then in the second order the amplitudes
ao, a~ obey the constraint given in 7C, and the liquid
drop volume is conserved to second order' in the
amplitudes ao, a~, rather than the first order as in the
original liquid drop model where ao = 0.' This is
essentially the classical limit' of the IBM unitarity
constraint 7B. The condition on the IBM parameters
analogous to the LDM reality constraint 7A mill be
discussed under point 11 below.

(8) Dynamics. The most general LDM Hamiltoni-
an function is a superposition of functions construct-
ed in a rotationally invariant way from ao, a~, ao,i~.
At the operational level, such a general function

f (ao, an't, ao, ass) is usually truncated beyond terms of
degree 4. The most general IBM Hamiltonian opera-
tor is a superpositon of operators constructed in a ro-
tationally invariant way from s,s,d„,d„. At the
operational level, such a general operator
g (s,s,d„,d„) is usually truncated beyond terms of
degree 4. Despite these suggestive similarities in
construction, the dynamics of the LDM and the IBM
cannot be compared until the equivalence of the
underlying kinematics has been established. Once

done, the secondary issue of related comparison of
the dynamics can be considered.

(9) Dynamical variables. The coordinates for the
LDM are the six complex amplitudes ao, a~ subject
to the reality condition 7A and the normalization
condition 7C. There are thus five independent real
coordinates. The five corresponding velocities round
out the ten dynamical variables for the LDM. The
IBM, as an algebraic model, was originally devoid of
dynamical variables. However, the presence of the
dynamical group SU(6) together with the occurrence
of only the fully symmetric representation (N, 0I of
SU(6), requires that the associated geometric space
be the coset SU(6)/U(5), "a compact ten-dimen-
sional space whose coordinates parametrize the SU(6)
coherent states' and are the dynamical variables for
the IBM.

(10) Phase space. For the LDM, this is the com-
pact ten-dimensional space described above. This
Riemannian space is symmetric, has rank 1 (by per-
mutation symmetry), "and has a symplectic and an

imaginary structure. The compact ten-dimensional
Riemannian symmetric space of rank 1 is uniquely
SU(6)/U(5). " For the IBM, Feng and Gilmore'0
have shown that the SU(6) coherent state parameters
obey Hamilton's equations of motion under the
quantum-classical mapping.

(11) Configuration space For .the LDM the five in-
dependent coordinates parametrize configuration
space. For the IBM, since the coherent state parame-
ters obey canonical equations of motion, any Lagran-
gian submanifold '

CL',~ may be chosen as configura-
tion space. The particular choice of Lagrangian sub-
manifold wi11 be governed by the form of the IBM
Hamiltonian and the requirement that in its classica1
limit no higher than quadratic momentum terms oc-
cur. Coordinates for this Lagrangian manifold can be
chosen to satisfy a reality condition of the form 7A.

(12) Underlying Hilbert space The set of. square in-
tegrable (gt) functions on the compact configuration
space C' with five independent parameters ao, a~
constitutes the usual Hilbert space Z2(Cs;4~g ~) for
the LDM. The measure d~g

~

on this space is deter-
mined from the Riemannian metric gl& on C . For
the IBM, the Hilbert space consists of the square in-
tegrable functions on SU(6)/U(5) with respect to the
natural measure 4~ G ~, where G~„ is the metric in-
duced on SU(6)/U(5) from the Haar measure's on
SU(6) for the fully symmetric representation (N, 0I
of SU(6):22[SU(6)/U(5);V~ 6 ~;N]. Hilbert spaces for
both models are modified as follows. For the LDM
the parameter v is introduced. This is the ratio of
fluid outside the solid core to the liquid drop volume.
The parameter v stratifies the original LDM Hilbert
space. The invariant subspace of interest is
2'(C', v'~g ~;v). For the IBM, consideration is re-
stricted to square integrable functions which are
nonzero only on the Lagrangian submanifold CL5~ of



26 RAPID COMMUNICATIONS 769

SU(6)/U(5) with respect to the metric g& on CLst in-
duced from G~„on SU(6)/U(5): gz(Cq~M, d~g ~;N ). It
is natural to make the identification v = 2N/A.

(13) Quantum cl-assical correspondence A. t this
point the parallelism exhibited in the preceding points
breaks down, and is here replaced by a duality. In
order for both models to have a classical and a quan-
tum counterpart, the IBM must have a classical limit
while the LDM must be quantized. The classical lim-
it' of the IBM is obtained by taking its expectation
value ((N, Z~X~N, Z)) in the SU(6) coherent state
representation. '0 Quantization of the LDM with pair-
ing plus quadrupole interactions proceeds as follows.
The dynamical group 6[SU(6)] has Lie algebra
g[SU(6)] which is spanned by basis vectors e; with
commutation relations [e;,et] = C&e&. Let v' be local
variables on the manifold G dual to the generators e;.
Then the quantization condition is given in 13A of
Table I

In the usual quantization procedure' the classical
kinetic energy is replaced by the differential kernel

~g )
'/z8~"")g ('/'8„(Laplace-Beltrami operator). "

The validity of this quantization prescription has been

questioned by Kumar and Baranger, 24 since it +as
developed by Pauli z' for curvilinear coordinates on Eu
clidean spaces, and the pairing plus quadropole model re-
quires a quantization procedure valid for curves spaces
However, the result remains valid for curved spaces also,

since the Laplace-Beltrami operator described above is
the unique second order partial differential operator in a
Riemannian space which is invariant under all
isometrics. '

It should be pointed out that in comparing two
quantum mechanical models, it is not sufficient to es-
tablish equivalence at the operator (commutation re-
lation) level. It is necessary also to establish
equivalence at the Hilbert space (representation) lev-
el. The present and previous points establish these
two equivalences.

(14) Method of solution The .eigenvalues and
eigenvectors for the IBM are easily determined by
matrix diagonalization. The LDM is solved by
quantizing the classical Hamiltonian and solving the
resulting Schrodinger-like differential equation.

Under the changes proposed in the table, the two
models are different representations of the same
underlying physical processes. They are related to
each other by a similarity transformation of a type
previously proposed, where the domain of integra-
tion is restricted to the embedded Lagrangian sub-
manifold.
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