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Second-order perturbation theory is used to examine the effect of excluding the g boson

from the model space of the interacting boson model. Perturbative corrections are calculat-

ed in a paired fermion space (in a single j-shell approximation) and are mapped onto the in-

teracting boson model Hamiltonian using the imaging techniques of Otsuka, Arima, and

Iachello. The resulting renormalization of the boson parameters of the Hamiltonian to ac-

count for effects of the g boson depends strongly upon the numbers of valence protons and

neutrons, and remains significant throughout the half shell.

NUCLEAR STRUCTURE Interacting boson model, g boson, micro-

scopic calculation using perturbation theory, renormalization of boson

parameters.

I. INTRODUCTION

The phenomenological interacting boson model
(IBM) has been quite successful in describing spec-
tral properties of low-lying collective states in many
nuclei. ' The usual model space of the IBM includes
only s (L =0) and d (L =2) bosons; this so-called s
d dominance has been closely scrutinized in recent
literature. ' While the IBM bosons are presumed to
arise from correlated pairs of fermions, the micro-
scopic origin of the IBM is, nevertheless, not yet
well understood.

Otsuka et a/. recently described a possible mi-

croscopic, fermion pair origin for the s and d bo-
sons. A mapping technique was subsequently
developed by Otsuka, Arima, and Iachello (OAI)
which related matrix elements of boson operators to
matrix elements of fermion operators in a paired-
fermion space; this mapping procedure forms the
basis of other calculations which attempt to connect

the IBM to some underlying fermionic shell

model. ' Ginocchio and Talmi have also dis-

cussed the correspondence between boson and fer-
mion states and operators. Other approaches seek-

ing to justify and/or criticize the assumptions of
the IBM have employed quasiparticle formalism,
boson expansion techniques, ' perturbation
theory, "' and shell model calculations in severely

truncated paired fermion bases. '

In this paper we use second order Rayleigh-
Schrodinger perturbation theory to investigate,
from a microscopic perspective, the renormalization

of IBM parameters arising from the effects of g bo-
sons. This use of perturbation theory is consistent
with the assumption of s-d dominance; it is also
equivalent, in spirit, to the perturbative calculation
of Otsuka. ' We see consequential effects, due to
the renormalization, in all cases considered. Furth-
ermore, we reinforce the conclusions of McGrory'
and Otsuka' that the influence of the g boson de-

creases with increasing boson number.
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II. EFFECTS OF STATES EXCLUDED
FROM THE IBM MODEL SPACE

A. Background

The usual microscopic interpretation of the IBM
assumes that the proton-proton and neutron-
neutron interactions, H and H, respectively,

dominate the proton-neutron interaction, H „, so
that proton pairs and neutron pairs are first formed,
and these pairs subsequently interact via K~„. By
relating a particle pair to an IBM boson, one is led
immediately to write the following Hamiltonian Hs
for a system of interacting proton and neutron
valence bosons:

H~ ——H +H +H

C (2L +1)i/2[(dytt)(1. )(d d )(L)](0)
P 'P P P L 024 P

(2)

H~v=KQ Qv

Q =(dp + P, )"'+X (dP, )"' (4)

where the brackets and parentheses denote angular
momentum coupling with Clebsch-Gordan coeffi-
cients, e.g.,

(dg&)M' —g (22m mp))LM)d~ d~

The proton-neutron interaction H should in gen-
eral contain terms other than Q~.Q„; we discuss the
general form of H~ in Sec. III. Here we include

only the quadrupole-quadrupole part of H, the
standard assumption of the phenomenological IBM,
and the form used by Otsuka. ' The only nonzero
commutation relations between the s and d creation
and annihilation operators are

[de„&de„]=5~5„„[se&se]=5~ p&p'=n or v

culations, except in some group-theoretical limits.
We would like to account for the effects of g bosons
without including these degrees of freedom. In the
subsequent sections we apply second-order pertur-
bation theory to the calculation of renormalized
matrix elements of a fermionic proton-neutron in-
teraction connecting states made up only of L =0
and L =2 pairs of protons and neutrons, to states
which contain one or more I. =4 proton or neutron
pairs (G pairs). In Sec. III we discuss the renormal-
ization of the IBM Hamiltonian to take these
extra-model space effects into account. Section IV
contains our conclusions and some comparisons to
other relevant calculations.

B. OAI imaging technique

and p,p'= —2, —1, 0, 1, or 2. The quantities e, ,
P

ee, cr, Xz, and K in Eqs. (1)—(4) are variable
P P

parameters of the phenomenological IBM Hamil-

tonian. [In practice, only ee =es X X K, cl, ,
and cL, (L =0,2,4) are varied in fitting experimental

V

spectra. ] The operators n, and n~ count the num-
P P

hers of s and d bosons of type p (proton or neutron).
The boson Hamiltonian in Eq. (1) is formulated

under the assumption that the important degrees of
freedom in low-lying collective states can be
described using only s and d bosons, leading to a
dynamical symmetry (in the case of exact sym-

metries) governed by the group U(6) XU(2). ' If we
allow for the existence of proton and neutron g bo-
sons, we must expand this group structure to
U(15)XU(2). The number of boson-boson interac-
tion terms in the Hamiltonian which would then be
possible for the s-d-g system leads to intractable cal-

The calculation of the spectrum for a medium
mass nucleus with several valence protons and neu-

trons, in a full shell model basis, is intractable due
to the dimensionality of the Hamiltonian matrix
which must be diagonalized. The number of basis
states involved in even the lowest-lying collective
states can easily exceed a trillion. ' A shell model
calculation for such a nucleus requires a seuere trun-

cation of the basis to include a manageable number

of states. The effects of the states left out of the
model space on the states inside the model space
must be included. %'e have used perturbation
theory through second order to study the coupling
of excluded states to the states in a paired-fermion
model space. Prior to a description of that calcula-

tion, we present a brief explanation of the mapping
techniques of OAI.

The OAI method is a procedure for determining
the form and parametrization of boson operators
through the calculation of matrix elements of fer-
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The sums over j and j' extend over all active
valence orbitals.

The resulting states are then put into a one-to-one
correspondence with states in the boson space, con-
structed using the same number of proton and neu-

tron s and d bosons as the numbers of S and D pro-
ton and neutron fermion pairs. In practice, the
L =2 operators D& and D& are complicated by the
presence of a seniority projection operator, included
in order to obtain an orthogonal set of paired-

fermion states. The projection operator is the unit
operator if only one D pair of each type (vr or v) is
present. For a given fermion operator O~, the cor-
responding boson operator Os is determined by first
expanding Oz as a linear combination of products
of boson creation and annihilation operators, s~, s,
d&, d&

——( —)"d &, for example, a boson quadrupole
operator can be expanded as

qz
——a (d s +s d )' '+p (d d )'2'

+a,(d„s„+s„d„)"'+p„(d„d„)"', (7)

plus the terms of higher order in s and d operators.
The parameters a~, P~, a~ and P„ in Eq. (7) can be
found by requiring that matrix elements of q~ be-
tween given boson states be equal to matrix ele-
ments of the corresponding fermion quadrupole
operator qF, taken between paired-fermion states
corresponding to the boson states:

((n, n„)yJ
~
qs ~

(n, n„)y'J')

= ((—,N, —,N„)I J
~ QF ~

( —,N, —,N„)l"J'),

where n~ (n„) is the number of proton (neutron) bo-
sons and N /2 (N„/2) is the number of proton
(neutron) fermion pairs. The additional quantum
numbers y, y' and I,I" may be necessary to unique-

mion operators in a correlated fermion pair model
space. Otsuka et al. first build a model space us-

ing only S (L =0) and D (L =2) correlated pairs of
protons and pairs of neutrons. The states in this
model space are obtained by acting on the paired-
fermion vacuum (the inert core of the nucleus) with
products of Sf and Df creation operators, where

S = gaJ[ajuj ]& (0)

2 J

ly specify the boson and paired-fermion states,
respectively. OAI have investigated a "zeroth-
order" approximation in which the particle rank of
the boson operator is the same as the particle rank
of the fermion operator; they have found that for
number-conserving operators, the zeroth-order ap-
proximation for the boson operator yields satisfac-
tory agreement between the matrix elements in Eq.
(8). OAI assert that, in the case of number noncon-
serving operators, the equality expressed in Eq. (9)
can be maintained if terms of higher boson rank are
included in the boson operator. The OAI method is
a powerful tool which can be used to predict the
values of IBM parameters from a microscopic
many-fermion calculation. Ginocchio and Talmi
have investigated the OAI method, as well as other
correspondences between boson and paired-fermion
systems, in detail.

Because phenomenological IBM calculations have
been performed for many rare-earth nuclei spanning
the mass region with proton number Z=50 —82
and neutron numbers N =50—82 and N =82—126
(as well as several actinide nuclei), there has accu-
mulated a great deal of information on trends in the
empirical parameters of the IBM Hamiltonian. Ef-
forts to relate these trends to the underlying fer-
mionic shell structure using the OAI method have
been somewhat successful, '7 and improvements in
the fermionic models employed in these imaging
calculations are expected to produce better results. '

These investigations of the microscopic basis of
the IBM have progressed to the point that studies of
extra-model space effects have recently appeared in
the literature. "' ' One procedure that has been
used to examine the effects of boson degrees of free-
dom excluded from the s-d boson space is to treat
this problem in the paired-fermion space (e.g., in a
shell model calculation) and then map the result
into the boson space using OAI imaging tech-
niques. "' For example, in predicting the parame-
ters of the IBM Hamiltonian with the OAI method,
the matrix elements of some fermion Hamiltonian
are calculated; these matrix elements (in a paired-
fermion space) can be corrected perturbatively to
account for states outside the paired-fermion model
space. The corrected matrix elements can then be
used to renormalize the parameters of the boson
Hamiltonian. In this manner, the question of ex-
cluding states from the boson space becomes a
problem of excluding states from the paired-
fermion model space. In the remainder of this sec-
tion we discuss the coupling of states in an S-D
paired-fermion space to states which lie outside this
model space.
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C. Calculation of matrix elements

I 1() & =
I
(s:;s„")J=0),

I $2) =
I
(S D;S„")J=2,M),

A)3 & =
I
(S;S„" D„)J=2,M &

I @,)=
I (S: D.;S„" D„)J=L„M),

(L=0—4) .

(10)

These states are constructed using the paired-
fermion operators of Eq. (6), e.g.,

I y ) =N —'[((st )
~ Dt )( )(st) "]( )

I
())

(11)

The constant N2
' in Eq. (11) is included for nor-

malization of
I $2); furthermore, we have used the

boson number notation (lower case n's) to suggest a
correspondence to boson states with n proton bo-
sons and n, neutron bosons. States of interest out-
side the S-D model space contain at least one G pair
(S-D-G states):

I g&) =
I
(S;S„" G„)J=4,M),

I $6) =
I
($ 6;S„"v)J=4,M),

I g7) =
I
(S D;S," 6„)JM), (12}

I f())=
I
(S~ G~s„" D„)JM),

Iy, )=l(s: 6.;s„" 6„)JM),
where the G pairs are created through the operation
of Gq

In order to investigate extra-model space effects
in the paired-fermion space, we have calculated ma-
trix elements of the proton-neutron interaction, V~„,
coupling S-D states to states which contain one or
more 6 (L =4) pairs of protons or neutrons (S D G--
space). The interaction V „ is used here because
matrix elements of the proton-proton (or neutron-
neutron) interaction V~ (V~) between our states
vanishes, e.g.,

&6 D„l V ID D„)=0,
as a result of the scalar rank of V . Following Ot-
suka' we use an effective proton-neutron interac-
tion

fC(2) C(2)

where C' ' is the surface quadrupole operator and

f=1.5 MeV, appropriate for the shell Z =50—82.
The unperturbed S-D model states are

t ~JJ t t (4)(g»aja1'4 .
~X ('+5J1')

(13)

In the work presented here, we simplify our calcula-
tions by considering only single j shells, j and j,
for protons and neutrons, respectively. For the
mass region of interest (Z =50—82 and

31
N =50—82)j =j„=—,. In this single j-shell ap-

proximation, the pair creation 'operators become
simply

S = [a1aj ]t (0)

2

t 1 t
Dv —— [aiaj ]&2

(14)

t 1 t t (4)G~= [a,a, ]v'2
Otsuka' has used many degenerate orbitals in a cal-
culation of first-order perturbations of the wave

functions due to the g boson (the Feshbach method).
Our results are qualitatively similar to his.

Our goal is to compare matrix elements of V „
between states inside the S-D space with matrix ele-
ments of V~ which couple the S Dmodel -space

and the S-D-G space. In the zeroth-order approxi-
mation of OAI, only the low-seniority states given
in Eqs. (10) and (12) are necessary for the calcula-
tion of matrix elements of a two-body interaction.
Hence the states we consider here need contain at
most one pair of protons and one pair of neutrons
with L+0; the other pairs in our basis states are
i. =0 spectator pairs.

To split off these spectator pairs, we apply the
quasispin reduction formalism of Racah to reduce a
many-pair matrix element to a product of a two-

pair matrix element and a reduction factor which
correctly accounts for (most of) the Pauli effects
due to the S pair spectators. In the case of states
built from a single j shell, the quasispin reduction
formulas are equivalent to seniority reduction for-
mulas; for a detailed discussion of the quasispin or
seniority reduction formalism, the reader is referred
to Appendix 3 of Ref. 20. In Table I we show the
proton- and neutron-number dependence of all
nonzero matrix elements considered here. Having
extracted the seniority reduction factors, we write
an interaction matrix element as

Mk(=&4k I
v ~ I A&=&fkllv. Ilail)

= r(n, u, u',j )r(n„,v„,v'„,j,)

x &(u.J.;.„J,)JII V ll(v'. J.';v„' J.')J &,
(15)

where v and u' (v„and v'„) are the proton (neutron)
seniorities in the states

I g1, ) and
I g1), respective-
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ly, and the factors r(n, u, u', j) are those in Table I.
In the second equality above we have used the
Wigner-Eckart theorem~'

(JM ~oq '~ J'M'}=(J'KM'q
~
JM}(J~~O' '~[J'},

(16)

and the value of the Clebsch-Gordan coefficient
(JOMO

~

JM)=1. Owing to the separability of the
proton-neutron interaction V, the two-pair matrix
elements in Eq. (16) can be rewritten as

J J'2
&(u~J~ uv J.}JIIV~II&u~J~;u; J;)J&=(—}"'fJ, J J J&„(J~)[C~"~[J.')( ((C' '~~J'„)

V V

J
=(—) +'B'J,

J~2 2

J„J j

TABLE I. Seniority reduction factors.

r(n, v, u —2,j)= (n —v/2+1)'

X
2Q —2n —v+2

2(Q —v +1)

r(n, u, u,j)= Q —2n

Q —v

and Q=(2j+1)/2 .

1/2

r(n, 2,0,j=—)
31 r(n, 2, 2,j=—)

31
7

1

2
3
4
5
6
7
8

1

1.366
1.612
1.789
1.915
2.000
2.049
2.066

1

0.857
0.714
0.571
0.429
0.286
0.143
0

where J=(2J+I}'~ and B=47.9 MeV depends

upon the interaction strength f as well as j and j„.
The many-pair interaction matrix elements are cal-
culated by combining Eqs. (15) and (17) with the r
factors from Table I. The general form of the ma-
trix element in Eq. (17) is pictured diagrammatical-
ly in Fig. 1(a), with the angular momentum labels
from Eq. (17) shown. The proton (neutron) pair
correlation is denoted by a circular vertex on the
proton (neutron) lines. The wavy line connecting
the proton and neutron vertices represents the
separable proton-neutron quadrupole-quadrupole
interaction characterized by C~' and C„' '. Specta-
tor pair lines are not included in Fig. 1(a); Figs. 1(b)
and (c) show two diagrams representing "bare" (un-

I

perturbed} matrix elements whose renormalization
we will examine later.

D. Perturbation theory

In evaluating the coupling between the S-D space
and S-D-6 space, one could employ the Feshbach
method to correct the S-D wave function to first
order in V, use the perturbed wave functions to
calculate matrix elements of the fermion Hamiltoni-

an, and then map these corrected matrix elements
onto matrix elements of the boson Hamiltonian to
determine the renormalization of the boson parame-
ters. This technique has been employed by Otsuka
who found that the presence of L =4 pairs was not
important except near the closed shell. '

A program of relating the renormalization of bo-
son parameters to account for effects of states left
out of the s-d boson space, to the renormalization of
inatrix eleinents in a paired-fermion space (coupling
of S-D and S-D-G spaces) can also be accomplished

by calculating the second-order corrections to
paired-fermion matrix elements. These corrected
matrix elements are mapped onto matrix elements
of the boson Hamiltonian, thereby renormalizing
the boson parameters. We use this method, taking
V as the perturbing term. Figure 2(a) shows a di-
agrammatic representation of a typical second-order
process, written generally as

((J J„)Ji
V

i

(J' J„')J}

= g ((J J.)J
~
V~I(I.I„)J)

X ((I I„)J~ V

(18)
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Jv Dv Dv Jv
Sv Dv Sw Dv

S Dv

M„=()4) =(~) +D, Gv

Jv

(a)

Dv

(b)

Dv

(c)

J' J„'

(o)

Dv Dv Dv Dv

(b)

FIG. 1. (a) Diagrammatic representation of first-order
matrix element MkI. (b) First-order diagram for typical
seniority-conserving matrix element Mg. (c) First-order
diagram for typical seniority-changing matrix element

M43.

Dv Dv

Dv Dv

M44= (.)-(3 = (M.) + Dv+D~ Gv+4

D y D„ D Dv D Dv

(c)

The energy denominator hE above will be discussed
later. The matrix elements of V in Eq. (18) are
found using the results of the previous subsection.
The sum of a first-order diagram from Fig. 1 and

the appropriate second-order diagrams of the type
found in Fig. 2(a) is denoted M,J, with i,j =1, 2, 3,
4; Fig. 2(b) shows the sum of terms which corre-
sponds to

M43 —M43+ ((02)2
~
V~

~

(24)2)

((24)2
i V~ i

(22)2) .

The energy denominator in Eq. (18) is written as
hE =Ep —Hp, where the unperturbed Hamiltonian
1s

FIG. 2. (a) Diagrammatic representation of second-
order process. (b) Sum of diagrams for renormalization
of seniority-changing matrix element M43 (c) Sum of
diagrams for renormalization of seniority-conserving
matrix element, M44.

neutron energies are taken equal for simplicity. The
effect of the choice of eG on the calculated renor-
malization of matrix elements and the influence of
"dressing" the pair lines will be examined in the
next subsection.

E. Particular cases

Hp = E'g ng +6'D nD +6'G nG

+ez nz +eD nz +eG nG (20)

The single-pair energies used in Hp are E'g =6'g =0,
e~ ——e~ ——1.2 MeV, eG ——eG ——1.6 MeV, the D

and G pair energies are taken to be the energies of
the first two excited states of 52 Tes2. Proton and

In this subsection we discuss the corrections
through second-order of two particular matrix ele-

ments. The importance of the renormalization con-
sidered here will be made clear in Sec. III. In Fig.
3(a) we have plotted the ratio M44/M~ for J =2 in

~ f4) from Eq. (10) as a function of proton-pair
number and neutron-pair number. The matrix ele-
ment M44 is

M44 ——((S~ D~&S„" D„)J
~

V~„~ (S~ D~;S„" D„)J) . (21)

The renormalized matrix element M~ consists of
M44 and all possible corrections up to second order
in V, such that the intermediate states contain at
least one G pair; M44 is represented diagrammati-
cally in Fig. 2(c).

As Fig. 3(a) shows, the second-order correction to
M44 is dramatic except in the case of a nearly half-
filled proton shell, n =7. Even for this case, how-
ever, the neutron pair number dependence of
M44/M44 is still significant. The sizable renormali-

I

zation of the "bare" matrix element M44 suggests
that the effects of 6 pairs left out of the SD-
paired-fermion space can be quite large, depending
upon the number of pairs in the system. This result
is consistent with the findings of McGrory" who
has reported a diminished influence of the J=4
favored pair on low-lying, low-spin states as parti-
cles are added to a model nucleus.

In Fig. 3(b) we show the effect of the choice of eG
on the calculated renormalization of M44. Here we
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(a)
1.5G

1.25-
(a)

-2-

& 1.00-

» 0.75-

0.50

eG ='L6 MeV

a n~=1
0 n~=3
~ n~=5
x ng=7

(b) 1.25-

0-

-2
0

ee=2.2 MeV

I l i I

2 3 4 5
Neutron Pair Number

FIG. 3. (a) Ratio of renormalized matrix element M44

to unperturbed matrix element M44 vs proton and neu-

tron pair number, for single G-pair energy eG ——1.6 MeV.
(b) Same as (a), for eG ——2, 2 MeV.

H'=Hp+ V~~ . (22)

The first term in H' is just the unperturbed Hamil-

have used eo ——2.2 MeV, following a suggestion of
Wood2 that such a value for the single g boson en-

ergy is appropriate for a fit to the E =3+ band of
Er. The energy of the two-quadrupole-phonon

state would be E(4+)=2XeD=2.4 MeV, so that,
the choice of ea & 2.4 MeV for the collectiue, senior-

ity u =2 excitation seems plausible. Because our in-
terest is in the general influence of the magnitude of
eG on the perturbative corrections, we have not at-
tempted to obtain a more realistic value of the sin-

gle G pair energy. As Fig. 3(b) shows, the increase
of eG from 1.6 MeV to eG ——2.2 MeV makes the re-
normalization of M~ less dramatic, but the effect
of excluding the G pair from the paired-fermion
space is still apparent.

A second example of the renormalization of a
matrix element of V is shown in Fig. 2(b). In Fig.
4(a) we plot the ratio M43/M43 as a function of
proton- and neutron-pair number. The renormali-
zation of M43 is smaller in magnitude and of oppo-
site sign to the correction to M44, due to the pres-
ence of the S pair in the matrix element. Figure
4(b) is a plot of M43/M43 for eo ——2.2 MeV.

Following a suggestion by Pittel, we have also
calculated the second-order corrections using a
modified Brillouin-Wigner perturbation theory, in
which EE=Ep —H' and

q 1.00-

~~ 0.75-
eG= 2.2MeV

0.50 I I I I I I I

0 1 2 3 4 5 6 7 8
Neutron Pair Number

FIG. 4. (a) Ratio of renormalized matrix element M43
to unperturbed matrix element M43 vs proton and neu-

tron pair number, for eG ——1.6 MeV. (b) Same as (a), for
eG ——2.2 MeV.

tonian from Eq. (20). The addition of the diagonal

part of V to the single-pair terms from Hp serves
to "dress" the proton and neutron pair lines in the
intermediate state; this changes the second-order
diagram of Fig. 2(a) and would introduce some un-

linked diagrams beyond the second-order terms con-
sidered here. The modification of the unperturbed

energy of the intermediate state was done in an at-
tempt to partially account for the fact that the ener-

gy of the L =4, seniority u =2, paired-fermion state
should change as a function of proton and neutron
pair number due to interactions with other valence
pairs. We recognize the rather ad hoc nature of
this modification to the energy denominator and
realize that a microscopic approach to calculating
the unperturbed single-pair energies as functions of
valence pair number might be more suitable, but we
proceed using the modified H' defined above in or-
der to preserve the simplicity of our calculations for
this test. In Fig. 5 we show the result of calculating
M44/M~ with dressed pair lines in the intermediate
state. When the number of proton and neutron
pairs is not large (e.g., n or n„= 1 or 3), these ra-
tios are about three times lm'ger than those shown
in Fig. 3. This large ratio is due to a partial cancel-
lation of the single pair part of hE by the diagonal
part of V~. Given the ad hoc form of b,E in Eq.
(22) with its associated diagrammatical problems
and the influence of this modification on important
matrix elements, we prefer to use Rayleigh-
Schrodinger perturbation theory [hE from Eq. (20)j
for all of our calculations.
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(a)
III. RENORMALIZATION OF BOSON

PARAMETERS

0-

-2-

-5-

-6-

The OAI imaging technique has been applied in
conjunction with second-order corrections to
paired-fermion matrix elements of V, in order to
calculate the renormalization of the parameters of
the boson Hamiltonian. In the OAI method, matrix
elements of boson operators are constructed using
matrix elements calculated in a paired-fermion
space; renormalization of the fermion matrix ele-
ments to account for extra-model space effects re-
sults in the renormalization of the parameters of the
boson operator.

The IBM Hamiltonian is written as in Eq. (1),

Hg ——H +H +H

0

(b)

Here, however, we allow H~ i and H „to assume
the most general possible form for a scalar operator
consisting of one- and two-boson interactions,
which are constructed using boson creation and an-
nihilation operators with L =0 and L =2. The
like-boson interaction is (p=m or v)

Hpp e, (sp~p)(—0—)+as (d p'd p)(0)

-2
0

Neutron Pair Number

FIG. 5. (a) M44/M44 using modified Brillouin-signer
perturbation theory, eG ——1.6 MeV, to "dress" pair lines.

(b) Same as (a), for eG ——2.2 MeV.

+two-body terms
= &g ~g +&g ~d

P P P P

(24)+two-body terms,
where n, and nd are s and d boson number opera-

P P
tors, respectively. The completely general form of
the proton boson-neutron boson interaction is given

by

H = c) [(s s )' '(s, s„)' ']' '+c2v 5[(d d )'0'(s t s„)' ']' '

+c3~&l(s~sw)'"(dtd, )'"]'"+c4[(d s )"'(s„d„)"'+(s d )(2'(dts )"']"'

+ [(s~d~)' '(s„d„)'"+(d s )"'~ (d s )("](0)

+c6[(d d )' '(s„d )'"+(d d )"'(d„s„)"']''

+c7[(s~d~)"'(d„d„)"'+(d~s~)( '(d d )' )](0)

, 4

+ g y&(2L, +I)( ) g [(d~ )(1.').(dg~ )(L')](0) (25)
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+c3n nd + ' (26)

The OAI method is used to relate matrix elements
of V~ between paired-fermion states in the S-D
space to matrix elements of H „between corre-
sponding boson states in the s-d space:

(27)

where
~

lA ) corresponds to
~ p; ):

~
1(;)~ ~ p, ). QA.I

show that, in their zeroth-order approximation, one
need calculate only those matrix elements with pro-
ton and neutron seniorities U =0,2 and U, =0,2 (in
the S Dspace-) in order to parametrize a two-body
number-conserving operator. Hence, we have calcu-
lated matrix elements of H, between boson states
containing, at most, one proton d boson and, at
most, one neutron d boson; these matrix elements
are equated to corresponding S-D space matrix ele-

I

The first three terms of H „can be rewritten to in-
clude the number operators

A ' AH = cins n, +C2ng n,
V 'tr v

ci ——Mii/n n„,
c2 ——M22/n„Mi—i(n —1)/(n n„),
c3 —M33/n —Mii(nv —1)/(n n„)

c4 —M23/(n n„)'

c5 M i4/——(n ~n „)'~,
c6 M2——4/(n „)'~,
c7 M3——4/(n~)'1

(28a)

(28b)

(28c)

(28d)

(28e)

(28f)

(28g)

yL, ——M44 —M22(n, —I )/nv+M33(nv 1)/n—,L

where

+M„(n —1)(n,—1)/n n„, (2811)

ments of V . Thereare12 such matrix elements of
H which are nonzero. We obtain a system of
linear equations involving the 12 boson parameters
of Eq. (25). This set of equations can be inverted to
yield the boson parameters as functions of paired-
fermion matrix elements of t/', viz. ,

M44=((S~ D~&Sv D'v)J=L
I Vvv ~(S D;S„" D„)J=L), L =0—4. (28i)

It is clear from the above expressions that the ef-
fects which states left out of the S-D space have on
the paired-fermion matrix elements will appear as
renormalizations of the boson parameters of H „.
With the exception of Mii, all of the paired-
fermion matrix elements in Eqs. (28) have nonzero
second-order corrections due to 6 pairs outside the
S-D model space; hence, the parameters C2 7 and

yp 4 can be renormalized to take into account the
exclusion of the g boson from the s-d model space.

We have calculated explicitly the renormalization
of single d boson energies of the boson Hamiltoni-
an. We rewrite H~, singling out the relevant terms

Hg = ~s ns +~s„ns„+~d nd +~&„%„

+ci ns ns +C2nd n +c3n nd

(29)

Defining the number operators n =n, +n~ and

n„=n, +n~, we replace n, and n, in Eq. (29) to
obtain

Hg ——cin~nv+es n~+es nv

+ [Eg E+czn„—cl n„]n~-

+[E'd E+C—31l —C i 1l ]1lg

+(ci —c2 —c3)nd nd + (30)

where

+(ci —c2 —c3)nd nd + (31)

and

E =E +(c2 ci)n„=E—+(M22 —Mii), (32a)

'E —E + (c3 —ci )n =E,+ (M33 M]i ), (32b)

0 0
d ~s ~ ~v=6r —5

V SV'

The second terms in e and e„are

Ignoring the first three terms in Eq. (30) as unim-
portant for the calculation of excited states in nu-
cleus with given n and n„we write H~ as

Ha ——&~d +

M22 —Mii =bE = ((S D;—S„")J=2
~
V~

~
(S D;S„")J=2)

—((S;S,")J=0
~

V „~(S;S„")J=0), (33a)
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M33 M]] =he„= ((S~;S„" D„)J=2
~ V~„~ (S~;S„" D~)J=2)

—((S„;S„")J=0
i V„„i

(S~;S„")J=0). (33b)

Recall that Mk] (without a tilde) is an unperturbed
matrix element.

The renormalization of the single proton d boson
and single neutron d boson energies, e and e„,
respectively, occurs through the second-order
corrections to M2z and M33 to include effects of G
pairs. The renormalized values are

e~=e~+(M22™]]) =a~+.(M2g ™]]), (34)

—Ey+(M33 M]] ) =e„+(M33 M]] } (35)

The last terms in Eqs. (34) and (35) are renamed

M22 —M) )
——he

M33 —M)) ——he„.

(36)

(37)

The corrections he~ and he„ to e and e„are plot-
ted in Figs. 6(a) and 7(a) for eG ——1.6 MeV and Figs.
6(b) and 7(b) for eG ——2.2 MeV. The essentially
quadratic trend in he as a function of n„ for fixed
proton pair number n can be seen directly from
the expression

Le~=M22 ———0 —2n~

0 —2 ~
((D~S„)J=2

~
V~

~
(6 D„)J=2)

~
/eG . (38)

0-
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FIG. 6 {a) Renormalization of single d boson energy
vs proton and neutron pair number, for eG ——1.6 MeV.
(b) Same as (a), for eG ——2.2 MeV.

FIG. 7. (a) Renormalization of single d„boson energy
vs proton and neutron pair number, for @=1.6 MeV.
(b) Same as (a), for e~ ——2.2 MeV.
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(For the quadrupole-quadrupole interaction V~, used here, Mii ——M22 ——0.) As more neutron pairs are added,
the attractive second-order proton-neutron interaction pushes he toward more negative values. In contrast,
the second-order correction to e„is

0—n
be~=M33 ———n 0 —1

0,—2n,
~
{(SD„)1=2~ V~„~ (D~G„)J=2)

~

/eG .

For fixed proton pair number, the factor (0,—2n„)
causes be, to vanish identically when the neutron
shell is half filled. Physically, this means that the
strength of the proton-neutron interaction between

the states

~
(S~;S„" D„)J=2)

~

(S D;S," G„)J=2)

is "diluted" as more neutron pairs are added to the
system.

The renormalization of other terms in the
proton-neutron interaction H~„of Eq. (25) could be
examined in a similar manner; other workers are
currently undertaking a systematic study of such
extra-model space effects, utilizing a generahzed
seniority basis for many nondegenerate proton and
neutron orbitals. '

IV. CONCLUSIONS

In this paper we have employed the OAI imaging
method to map second-order corrections of paired-
fermion matrix elements onto corresponding boson
matrix elements. This perturbative calculation of
the effect of excluding the g boson from the IBM
model space led to an explicit renormalization of
the parameters of the boson Hamiltonian. Particu-
lar examples of the renormalization were discussed
in detail. We found that the correction terms de-

pended strongly upon the numbers of proton and
neutron valence pairs in the nucleus. An example
of this dependence is the ratio of the renormalized
seniority-conserving matrix element M44 to the un-
perturbed value M44. For the case of three proton
pairs, M~ varies from —450%o of M44 for one neu-
tron pair, to —30% of M~ for seven neutron pairs;
M44 vanishes identically for eight pairs, the half-
filled shell. The observed dependence on neutron
pair number is due solely to Pauli effects (spectator
pairs).

The decreasing importance of the L =4 degree of
freedom in the collective states has also been ob-
served by Otsuka' and by McGrory. ' These au-
thors conclude that the truncation of the boson
model space to include only states containing s and
d bosons is valid for low-lying, low-spin collective
states. Our calculations confirm their findings, pro-
vided that there are several proton and neutron
valence pairs in the nucleus. If n and n are small,
the coupling of the S-D states to states outside this
model space is so large that one mpst question
whether it is reasonable to use any perturbative ap-
proach to renormalize the boson Hamiltonian.
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