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Microscopic structure of an interacting boson model in terms of the Dyson boson mapping
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In an application of the generalized Dyson boson mapping to a shell model Hamiltonian

acting in a single j shell, a clear distinction emerges between pair bosons and kinematically
determined seniority bosons. As in the Otsuka-Arima-Iachello method it is found that the
latter type of boson determines the structure of an interactive boson-model-like Hamiltoni-
an for the single j-shell model. It is furthermore shown that the Dyson boson mapping for-
malism is equally well suited for investigating possible interactive boson-model-like struc-
tures in a multishell case, where dynamical considerations are expected to play a much
more important role in determining the structure of physical bosons.

NUCLEAR STRUCTURE Boson mapping, interacting boson model,

shell model.

I. INTRODUCTION

Although the success of the interacting boson
model (IBM) is well established on a phenomeno-
logical level, ' the same cannot as yet be said
about microscopic support for the model. In fact, a
better understanding of the conditions and assump-
tions required on a microscopic level in order for an
IBM-like picture to emerge will at the same time in-

dicate possible difficulties that the simple IBM
model might run into' and if it is possible to
remedy this by a straightforward extension of the
model.

An SO(8) fermion model recently proposed by
Ginocchio seems to give some microscopic support
to the IBM. In view of the special features of the
model one should, however, exercise some caution
in considering the results as giving direct support.
The most unrealistic feature of this model is the
complete decoupling of the S Dsubspace from-oth-
er shell model states.

Otsuka, Arima, and Iachello (OAI) (Ref. 7) con-
sidered a more realistic single j-shell (SJS) shell
model Hamiltonian for which the S-D subspace is
not decoupled from the rest of the shell model
states. Their method of introducing bosons may be
model dependent in the sense that it depends on the
success of the seniority scheme in a single j shell.
Even so, the OAI method is invariably cited in
support of a microscopically founded IBM.

In what follows we show that the Dyson boson
mapping (DBM) (Refs. 8—11) constitutes a frame-
work in which the goal of understanding the IBM

microscopically can be pursued with what we be-
lieve to be minimal effort. At the same time the
DBM formalism has at each stage of development
physical and mathematical transparency and justifi-
cation. The DBM method has recently been ap-
plied' to Ginocchio's SO(8) model.

While we aim here at illustrating the use and role
of the DBM in obtaining a microscopically founded
boson Hamiltonian for a realistic shell model fer-
mion space, our analysis also shows that for the SJS
case the OAI method is compatible with the DBM
in the quest of obtaining the "physical" bosons. At
this point it is already significant to note that the
structure of the bosons emerging from the OAI
analysis of the SJS model is at variance with the
often held view of "physical" IBM bosons, the
latter type being associated with nucleon pairs of
angular momentum 0 and 2 (s and d bosons) while
the former type can be viewed as seniority bo-
sons. ' This distinction emerges very clearly from
the DBM analysis of the SJS model in which the
seniority bosons are introduced in terms of pair bo-
sons in a way analogous to the procedure proposed
by Klein and Va11ieres. ' The fact that the struc-
ture of physical bosons can change drastically from
the SJS case (where kinematics is the determining
factor) to the multi- j-sheH (MJS) case (where
dynamics will play a much more important role) in-
dicates that the OAI analysis of the SJS model can-
not be considered as a general prescription for
deriving the IBM Hamiltonian.

The DBM method has, on the other hand, the ad-
ditional advantage that it can easily be extended
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from the SJS to the MJS case. Furthermore, the
structure of the physical bosons in the MJS case
will be determined by considerations similar to
those used in the SJS case.

The present paper is organized as follows. In
Sec. II the generalized DBM is briefly reviewed and
then applied to the SJS model in Sec. III, first for
the simple but illustrative case of a pairing interac-
tion and then for a quadrupole-quadrupole interac-
tion. Other approaches' ' to the present problem
are briefly discussed and compared to the DMB in
Sec. IV and in Sec. V a discussion of the results is
presented together with some ideas about an exten-
sion to the MJS case.

are transcribed by introducing coupled and collec-
tive boson operators defined by

8 = X ~j&mtjzmz
l
JM~B

m&m2

~ ~

( JMa ~ yJMog J1J2
J&J2

CzM~
—(C ), (2.6)

where IX&,~, ] is a complete set of two-particle wave

functions. The normalization

(2 7)

II. THE GENERALIZED
DYSON BOSON MAPPING

The DBM has been extensively discussed " and
illustrated in analyses of analytically solvable fer-
mion models such as the Sp(4) model' and
Ginocchio's SO(8) model. Here we only briefly re-
view the basic structure of the formalism.

The idea behind any boson mapping is to set up
an isomorphism between the fermion space and an
ideal space, the latter comprised of bosons or bosons
and ideal fermions, ' usually depending on whether
an even or odd fermion system is being considered.
For the even case with only one type of fermion the
generalized DBM is given by

ensures that the collective boson commutator

[CJM,CJ™~]=5m 5~ 5

holds. (See Appendix A and Ref. 11 for further de-
tails. ) We would like to stress again the economy of
the DBM which is free from the convergence prob-
lems facing other boson mappings. The nonunitari-

ty of the DBM leads to a non-Hermitian Hamiltoni-
an. Yet the Hamiltonian matrix represented in a
physical basis is Hermitian. (See also Ref. 10.)
Representation of the Hamiltonian in a boson basis
is preferable (and more in line with the procedure of
the IBM), but may involve the problem of overcom-
pleteness as discussed later.

g lg 2~R 12 g 12 g 13'24
34 ~

a 2a]~R12 ——B12

a a2~R2 ——8 823,1 1 13

(2.1)

(2.2)

(2.3) III. THE SINGLE j SHELL

[Biz,B"]=5i'5z' —5z'5i'

[Bizi834]=[8',8 ]=0,
(8, )t=B'z

(2.4)

where n =(j„m„),while a" and a„denote fermion
creation and annihilation operators in the original
space. The operators R are the images in the ideal
space of the corresponding bifermion operators and
the operators 8 are boson creation and annihilation
operators satisfying the boson algebra

A. General images of bifermion operators

For the single j shell there is just one ("collec-
tive") two-particle wave function for each J and the
Dyson images of the angular momentum coupled
bifermion operators

(3.1)

The vacuum state l0) in the ideal space is defined by
B~zl0)=0. (We use the convention of an implied
summation over repeated indices. )

Since physical bosons have good angular momen-
tum and are associated with collectivity of some as
yet unspecified kind, the bosons introduced above

AJM=( —)™AJM,

UM = [a'Xaj ]M

are readily found to be

(3.2)

(3.3)
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(A JM) BJM—2 g (J J J L )1/2 j J j [[8 1XB 2]LXB ]JM

J3 L J
(3.4)

(AJM)D BJM ~

(UM)D ——[8 'xBJ,]M,

where J=(2J+1) and a~ =(—1) aJ
From the structure of these operators it can now

be explicitly shown that the physical boson states,
namely those obtained by operating repeatedly with
(A )D on the boson vacuum state ~0), contain all
the information of the usual seniority scheme classi-
fication (see Appendix B), i.e., the coefficients of
the components of

[.. . [8 'xB '] 'x. . . ]Ji0)

in

[.. . [(A ') X(A ')D] 'X. . . ]'~0)

are just the two-particle coefficients of fractional
parentage (cfp's) or linear combinations of them.
(See also Ref. 19.) This is of course no surprise,
since the seniority scheme is just a way of ensuring

I

(3.5)

(3.6)

t

antisymmetrization, which in turn is the very basis
of the generalized DBM. [It will, on the other
hand, be very hard to obtain these cfp's from any
infinite boson mapping ("expansion"). ]

B. Pairing interaction

The pairing model has served as an illustration of
the OAI method, as well as an example of how and
why a non-Hermitian boson Hamiltonian can corre-
spond to a Hermitian fermion Hamiltonian. ' Al-
though the Dyson boson mapping was first con-
sidered within an SU(2) framework, ' ' the realiza-
tion was given in terms of only one type of boson
(corresponding to an s boson). The most general
realization, "however, contains other bosons too, as
is easily found from Eq. (3.4), now written as

r

0 J) Jg J3
v Q($+)D —S Q Ns 2g N—2J +— g (J,J2)'J '. . . '[8 'XB '] 'BJ,

J~o J J J
J3

vn($ ),=S,
0 g($, )D=Ns+ g N2J

J=l

(3.7)

(3.8)

(3 9)

where s =8 =, NJ
@GAMB

BJM—,—and 2Q=2j+1, while the fermion operators are S+ ——~QA
S =~QAOO, and S,= —,(NF —Q). (See Table I.) The most general Dyson image of the pairing Hamiltonian,
H =—GS+S, is therefore

Q

HD ———G Ns Q —Ns+1 —2 g N2J — g(BJ BJ)SS
&2Q

T

J) Jp J3
+ g (J J )'"' . [[8 'XB '] 'XBJ ]"S

J, ,J,J,@O
(3.10)

TABLE I. Notation for operators in fermion and boson spaces.

IBM or physical bosons

DBM or pair bosons

Fermion pair operators

Dyson images of pair operators

P = ~ IJ)$)s )dp)d:—dp)g~)g ). . .

S,S,D~,D",G~, 6", . . .

S —=~nA S —=~tlAoo Sz= —,(&» —&)
S+ =(S+ }D S =(S }D Sz =(Sz}g)



MICROSCOPIC STRUCTURE OF AN INTERACTING BOSON. . .

This Hamiltonian is clearly non-Hermitian when
represented in a boson basis. Since the Hamiltonian
matrix is, however, triangular, the exact eigenvalues
can be read off as

E (Ns») = GN—s(Q Ns—+1—&) . (3.1 1)

Note that the seniority is identified as v= gN~.
(In Refs. 7 and 13 only the number of d bosons are
identified with the seniority. This is certainly artifi-
cial in the pairing model, where all states without s
bosons are degenerate. )

It is, furthermore, clear that if we drop the last
two terms in HD the resulting Hamiltonian, now di-
agonal instead of triangular in the boson basis, will
still have the same eigenvalues. For the present ex-
ample it is therefore almost trivial that the finite
boson Hamiltonian corresponding to the fermion
one can be either Hermitian or non-Hermitian, if we
are only interested in reproducing eigenvalues.

A correspondence between eigenstates in the fer-
mion and boson spaces in the sense of Ref. 13, how-
ever, requires a non-Hermitian boson Hamiltonian,
the point being that "simple correspondence"'
would only result from nonorthogonal boson eigen-
states which in turn could not be obtained from a
Hermitian boson Hamiltonian.

This result is readily understood in terms of the
DBM formalism since the step that establishes the
"simple correspondence" is equivalent to represent-
ing the boson Hamiltonian in a boson basis, as op-
posed to representation in a physical basis; i.e., the
basis obtained from a fermion basis by replacing
each bifermion operator with its Dyson image. The
latter representation would yield a Hermitian Ham-
iltonian matrix and an obvious way of identifying
boson and fermion states, but the cumbersome pro-
cess of constructing the physical basis would nullify
any advantage of switching to the boson picture, as
already discussed by Hahne. ' In other words, one
can use the pair boson basis to span the true physi-
cal states without going through the complication
of constructing the image of the fermion basis. One
should, however, bear in mind that the boson basis
might introduce overcompleteness, as we shall
shortly discuss.

C. Quadrupole-quadrupole interaction

The Dyson image of the quadrupole-quadrupole
interaction

H« ——Z(U'" V'") (3.12)

can, of course, be written by using Eq. (3.6), giving

Ji J2 2 J3 J4 2
(H«)g)|= 4E g —(JiJpJ3J,)'". . . a'. . . [B 'XB, ]'[B 'XBJ4]'.

JiJ2J3J4 J J J J J J, (3.13}

Another possibility is to rewrite H~~ from its particle-hole multipole form into a particle-particle interaction,
namely

T

H« —— ENF —10+ ' . — 'A Ag20 (3.14)

and then forming the Dyson image from Eqs. (3.4) and (3.5). We now get

1 J J J J J
(H«)z)z ———10K —' . .

2
' B BzM+2P ' . .

2
' j j E3 [B 'XB '] .[B.qXB~ ]2g JJ2 J J 3

E] K2 I.

(3.15)
Since the Dyson mapping is nonunitary, the Hamiltonians in Eqs. (3.13) and (3.15) are not identical. (H«)D,
in Eq. (3.13) can be expressed as

~ ~ J1,'J J
(Hgg)Di ——10K —' . ' B BgM2Q J' J' 2

4J J 2 J J
+2+(JiJ2J3J4)'i ' 2 J] J2 2

~
' [B ' XB '] [Bg XB~ ]
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TABLE II. Non-Hermitian Hamiltonian matrix
of the quadrupole-quadrupole interaction —U U ob-

tained by calculating matrix elements ((B ' )~J
J2 2=0

I (H~)nz I
(B 2)~J =0) for j=

2
. This matrix has

one nonzero eigenvalue at —0.833 with the correspond-
ing eigenstate

I
t()=0 5 IS')—0»3 ID') —o.5

I
G') —o.6o1 II')

where the coefficients are just the numerical values
of the cfp's (j (J)j (J)0(

I j v=OJ =0) for j= —,

and J=0,2,4,6.

S
g) 2

62
I2

g2

—1.8750
1.3975
1.8750
2.2535

g) 2

0.6522
—0.4861
—0.6522
—0.7838

—0.6250
0.4658
0.6250
0.7512

I2

—0.7512
0.5599
0.7512
0.9028

which is manifestly Hermitian, unlike (H~~)D2,
which is non-Hermitian. These two Hamiltonians
are nevertheless equivalent and have the same spec-
trum. It is only when we consider a truncation that
the non-Hermitian Hamiltonian seems to present a
superior choice as discussed in Refs. 11 and 22, al-
though all aspects of this problem have not been
clarified in general cases.

For the present example the non-Hermitian
choice has some advantages (see Tables II and III)
even if we do not truncate, as we proceed to show.
Consider the case j= —,. From the seniority scheme

we know that there is only one four-particle 0+
state and if we construct all the possible physical
states, namely

[(2 )D)((A )D] IO); J=0,Z, 4,6,
we find that indeed only one state is (trivially)
linearly independent. However, we have already
pointed out that this type of construction becomes
very cumbersome, especially for large fermion num-
ber X, and that the boson basis simplifies matrix
element calculations considerably. The only prob-
lem is that the boson basis can be overcomplete —in
the example above, the boson basis consists of four
states, namely (St) IO), (Dt.Dt) IO), (6 6 ) IO),
and (I I )

I
0), and a diagonalization in this basis

will yield three spurious solutions. As far as the
recognition of these spurious solutions is concerned,
no general prescription is known to us (see also Ref.
11), but in the present example the use of (H&&)D2
facilitates this recognition, since all spurious solu-
tions have an eigenvalue that is either zero or corn-
plex. On the other hand, the Hermitian choice

TABLE III. Hermitian Hamiltonian matrix of the
quadrupole-quadrupole interaction —U' U obtained

Ji z
by calculating matrix elements ( (B ' )~J

=OI(Hoq)n~ I(B ) J=O) for J=—.Apart from the

physical eigenvalue at —0.833, the above matrix has
nonzero eigenvalues at 1.68, —2.69, and —4.67, show-

ing that the use of an {overcomplete) boson basis for the
Hermitian mapping of H~ introduces spurious states
which cannot easily be identified.

S
D2
62
I

S
—0.2500
—2.236

0
0

—2.236
—2.0377
—1.339

0

0
—1.339

0.8209
—0.5463

I2

0
0

—0.5463
—0.3787

(H&&~ yields spurious eigenvalues, which are diffi-

cult to recognize (see Table III).
Before we again pick up the trail to the IBM

which is formulated in terms of s and d bosons

only, we would like to point out that this possible
overcompleteness of a boson basis will emerge in

any scheme attempting to arrive at an interacting
boson model starting from microsopic considera-
tions. It may well be present even in a phenomeno-
logical boson model. Incorporating g bosons might
not generally be an improvement of the IBM, since
this extension would for some cases introduce the
spuriosities referred to above.

We now return to the problem of establishing a
boson Hamiltonian which ideally would yield the
exact shell model results for the low lying parts of
the spectra. It seems that the DBM formalism ad-
dresses this problem on a more favorable level than,
for example, the OAI method, in the sense that the
boson states are determined by the dynamics of the
boson Hamiltonian. In the OAI method, the con-
struction of the Hamiltonian is determined by a
specific choice of the basis states, which for the SJS
is determined by the seniority scheme. Once a bo-
son Hamiltonian is established it can be diagonal-
ized in a boson basis and any physical quantity can
then be calculated using the boson eigenstates.

A presupposed correspondence between boson
and fermion states can, of course, assist in establish-
ing a boson Hamiltonian (or other boson operator)
as in the OAI method, but since we maintain that
the microscopic structure of physical bosons (e.g., s
and d in IBM) can vary throughout the Periodic
Table, this approach seems to have limited applica-
bility without a priori knowledge of this correspon-
dence.
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v Q(S+)„„=S+0 Ns 2g N—zt—(3.17)

I.et us illustrate these ideas schematically as in

Fig. 1, where all the indicated operators are ideal
boson operators. The fact that the phenomenologi-
cal IBM is successful in many aspects suggests that
the transformation HD ~HiqM exists generally such
that the final truncation to s and d bosons is a good
approximation. The ultimate aim would be to es-
tablish a similarity transformation to accomplish
just this optimal decoupling of higher bosons. (See
also the discussion by Klein and Vallieres. '

) In
view of the present lack of knowledge of such a
transformation, the OAI method can be regarded as
a "brute force" method of accomplishing the same
aim. This method can be "translated" into the
DBM framework as follows. We know that a trun-
cation of the Dyson pair boson Hamiltonian to S
and D bosons alone is a poor approximation for the
SJS in view of the large mixing between boson
states and the fact that this mixing persists even for
states containing the maximum angular momentum
boson. (See Appendix B.) Since, however, seniority
is an almost good quantum number in the SJS, we
can attempt to associate the physical s boson with
the generalized seniority zero state and the d boson
with a seniority two state, as in the OAI method.

As an example of introducing seniority bosons in
the DBM we again turn to the pairing model of Sec.
IIIB. We have already indicated that while the
Dyson boson Hamiltonian (3.10) is non-Hermitian
in a boson basis, it is Hermitian and diagonal in a
physical basis (S+ )D

~

0). This observation is
equivalent to the use of the simple truncated form

instead of Eq. (3.7) to construct the boson Hamil-
tonian.

Another way of stating the equivalence is to note
that the "truncated" operator (3.17), together with
(S )D and (S, )D in Eqs. (3.8) and (3.9), satisfies an
SU(2) algebra, which is a sufficient requirement for
obtaining the true eigenvalues. One should, howev-
er, realize that the St in Eq. (3.17) cannot be associ-
ated with a pair of nucleons as before —it is now
rather a seniority boson s t.

When the interaction deviates from pure pairing,
the transition from the pair boson Hamiltonian (ob-
tained by the Dyson mapping) to the seniority bo-
son Hamiltonian is less clearcut. Let us formulate
the process by considering the "smallest" Lie alge-
bra to which the bifermion operators appearing in
the fermion Hamiltonian belong, assuming that this
algebra contains an SU(2) subalgebra. The DBM
establishes the boson images of the elements of the
larger algebra in terms of pair bosons with angular
momentum up to 2j —1. In particular, the image
of S+ will contain a "seniority part, " i.e., Eq. (3.17)
and additional terms as shown in Eq. (3.7). In the
pure pairing case we have discussed the fact that
neglecting the seniority changing part of (S+ )D still
produces a boson realization of the SU(2) algebra.
Whenever SU(2) is a subalgebra of some larger alge-
bra, this change from Dyson image to seniority im-
age of S+ will destroy the property of the remain-

ing Dyson images to form a realization of the larger
algebra. In order to retain this property these other
Dyson images will have to be redefined and this will
be determined by a similarity transformation 0 such
that

8 '(S+)i)0=(S+)„„. (3.18)

HF
DBM UKS

HD(S, D, G, ") = H (s,d, g, ")

QA
NCATION

HIBM ( s'd

FIG. 1. Schematic illustration of the interrelation be-
tween different Hamiltonians. The method of Ref. 7
(OAI) constructs the boson Hamiltonian by equating ma-
trix elements of the physical (seniority) boson space to
those of the fermion space. The Dyson boson mapping
(DBM) maps the fermion space onto the pair boson
(S,D, G, . . .) space. The physical bosons (s, d,g, . . .) are
then constructed from the dynamics (kinematics in the
SJS case) of the Hamiltonian H&. (For the SJS this
amounts to obtaining H»M from HD by the OAI
method. ) The UKS mapping from H~ to HqqM indicates
an unknown similarity transformation.

[In Ref. 23 this similarity transformation was, in ef-
fect, constructed for an SO(8) fermion algebra. ]

This brings us back to the OAI method, which
first establishes a correspondence between boson
states and fermion states with definite seniority and
then proceeds to determine a boson Hamiltonian
which will retain matrix elements in the seniority
scheme. The success of this approach is based on
the fact that in the seniority scheme matrix ele-
ments between states of larger N can be related to
those of smaller N through the number-dependent
factors that appear in reduction formulas. If we
therefore fix the IBM Hamiltonian parameters for
seniority 0, 2, and 4 states and include these num-
ber-dependent factors in H&BM, it will preserve ma-
trix elements of interactions diagonal or near diago-
nal in the seniority scheme for at least up to seniori-
ty 8 states, as illustrated by the numerical results in
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Ref. 7. We note that the number-dependent factors
above appear in the DBM when transforming from
pair bosons to seniority bosons. (See Ref. 23 and
Sec. IV.)

Returning to the DBM we conclude that the OAI
approach is equivalent to determining an IBM
Hamiltonian through the requirement

I
N —W I

(0[(S)g) '(D)g)" [Hg)(S,D, . . . ) [(S+)g '(D+)g' (0)=(o [& 'd '
(HtHM(&, d) [(&+) '(d+) ' [0),

where (D)~ is the Dyson image of the J=2 project-
ed seniority increasing operator (see Ref. 7). The
reason behind this equivalence to the OAI method
can be found in the fact that the physical states in
the matrix elements on the lhs are equivalent to
states with definite seniority (see Appendix B).

IV. COMPARISON WITH OTHER APPROACHES

Apart from the OAI approach, microscopic con-
siderations that could possibly support the IBM
have also been investigated in Refs. 15 and 16 and
we briefly indicate here their relation to the DBM
approach.

We first comment on the nuclear field theory
(NFT) approach by Broglia et al. ' where some em-
pirical diagram rules "still lacking a 'first principle'
derivation" are introduced. One of these empirical
rules involves the ad hoc introduction of the X-
dependent factors that typically arise in a transfor-
mation from pair type to seniority type bosons. It
seems, therefore, that the first principle involved
concerns this important distinction between bosons
and the possibility of transforming from one type to
the other. The necessity to introduce the empirical
rules in the NFT approach is nothing but a mani-
festation of the fact that NFT is formulated in
terms of pair bosons. Restricting the NFT calcula-
tion to pair bosons with J=0 and J=2 amounts to
truncation in the DBM to S- and D-pair bosons,
which we have already shown to be a bad approxi-
mation.

The approach by Suzuki et al. ' is much more
successful since their starting point is equivalent to
taking the seniority image (S+)„„in Eq. (3.17) as
the boson image for S+. As w'e have already shown
this would require a consistent similarity transfor-
mation on all the Dyson images of operators A
and AIM with J+0. There is, however, another way
out, namely the one taken by Suzuki et al. ' In-
stead of being required to introduce all the possible
pair bosons in the Dyson images of A and AJ~
with 7+0, one could prefer an ideal space descrip-
tion in terms of only one boson, namely the seniori-
ty s boson, together with any number of ideal fer-

mions. ' In terms of a mapping procedure this
would require a mapping of the closed algebra
formed by the fermion operators S+, S,S„aj,
and ajm.

The expressions given by Suzuki et al. ' can be
regarded as an accomplishment of this mapping
within a Holstein-Primakoff framework (see also
Ref. 24). Note that in Ref. 15 operators corre-
sponding to the ideal fermions satisfy a modified
ferrnion algebra. As shown in Ref. 11, however, the
mapping can be constructed by adopting the usual
fermion algebra for the ideal fermion operators and
absorbing the effect of the modified algebra in the
mapping. This is also the technical difference be-
tween the methods adopted in Refs. 18 and 24. The
Dyson mapping for the single fermion operators is
then obtained in terms of a seniority boson and
ideal fermions

aj ~AJ =a& p(Q X)+ s—tc
Jm ~ (4 1)

jm +~jm Cjm + QSCX P, (4.2)

aj =c~ —(c~ cj)pcj
' —1Ip= 0—g CJ c~.~ =(0—n)

(4.3)

(4 4)

N=Xs+n . (4.5)

The ideal fermion operators c satisfy the usual fer-
mion algebra and commute with the boson opera-
torss ands .

It is instructive that the mapping (4.1) and (4.2)
already contains the typical N-dependent factors as-
sociated with a seniority mapping. By using this
mapping together with the seniority mapping (3.16),
(3.8), and (3.9) for S+, S, and So, it is now possi-
ble to obtain an exact boson Hamiltonian in terms
of seniority s bosons and ideal fermions where the
seniority is now v=n. In order to obtain an IBM-
like Hamiltonian the ideal fermions have to be elim-
inated in favor of seniority d bosons and this can be
accomplished by again equating matrix elements in
the manner of OAI, as shown in Ref. 15. The ideas
expressed above can be schematically summarized
as in Fig. 2.
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Fermion Space

DBM DBM (or ref. 15)

Pa ir boson s Equivalence
Seniori ty s —boson

+
Ideal Fermions

rity Transform
or

OA I Method

IBM

Physical s, d bosons

FIG. 2. Schematic illustration of different possible

mapping routes from fermion space. to the IBM.

gives a unified, simple picture of low-lying nuclear
spectra by relying on the particulars of dynamical
nucleon correlations. It would be difficult to apply
the kinematically oriented OAI method in such a
situation, while the DBM will remain a useful mi-

croscopic tool in the derivation of the boson Hamil-
tonian. (See Appendix A and Ref. 25, where only
the lowest TDA bosons were used. ) (iii) Whatever
may be the case, the DBM presents an elegant way
of introducing shell model bosons (it can even be
useful in normal shell model type calculations
where no truncation is desired —viz. , the calculation
of cfp's in Appendix B). (iv) Ultimately there
might be different microscopic considerations sup-

porting an IBM in different nuclear mass regions.
In other words, the step that transforms

HD(S, D, G, . . . )~HI&~(s, d)

V. CONCLUSIONS

Returning to the schematic display in Fig. 1, the
following conclusions can now be drawn. (i) By in-

troducing the intermediate step of the DBM before
applying the OAI method to obtain H&z~, it is very
clear that the physical s and d bosons are not associ-
ated with fermion pairs of angular momentum 0
and 2 (as would be the case if we could just truncate

HD), but rather with seniority 0 and 2 pairs. '
(ii) This does not rule out the possibility that in the
multishell case (where seniority becomes less impor-
tant) the Tamn-Dancoff approximation (TDA) [or
random-phase approximation (RPA)] pair bosons
might already constitute the physical bosons. Only
in such a situation could the IBM be considered as
making fundamental progress in the sense that it

might be possible for different reasons under dif-
ferent circumstances. In the SJS investigated here,
the step above was guaranteed by the seniority
scheme, its reduction formulas, and the fact that in-

teractions such as the pairing, quadrupole-
quadrupole, or delta interactions are (almost) dia-
gonal in this scheme
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APPENDIX A: MULTISHELL DYSON MAPPING

Let us consider the effective Hamiltonian

HF=+EJaJ aJ + —,g VJ(j Ij2j3j4)([a '&&a '] [aJ,XaJ ] )

jm

of the multishell fermion system. The corresponding Dyson image Hamiltonian in the boson space is

(j j )JM (j,j,)J
HB P~JI~ ~(JIJ2)JM+ Z P ~JVIJ2J3J4)~ ~(j'j4)J

jlj2
JM

(Al)

J/
+ —,y ~J(JIJ2J3J4)/( —)

' ' (~1~2~3)'"~ j2 j2 ~2

J J3 J'

X([g JIJI (Xg J2J2 2]J'.[g Xg ]J')
(J J )J3 J3J4
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The dynamical bosons are, however, determined by the dynamics of the effective interaction. If the interac-
tion Hamiltonian (Al or A2) possess a few degrees of collectivity, e.g., low-lying phonon states, one can
transform the Hamiltonian (A2) into the collective coordinates which are given by Eqs. (2.5)—(2.7). Substitut-
ing Eq. (2.6) into Eq. (A2), one obtains the collective boson Hamiltonian in terms of the collective boson
operator. If only the dynamical correlation between nucleons is important, the collective boson Hamiltonian
can then be truncated to the collective bosons.

APPENDIX B: SENIORITY BOSON %AVE FUNCTIONS

The single j shell (SJS) Dyson mapping is given by Eqs. (3.4)—(3.6). In this appendix, we construct the
seniority image boson wave function. The two fermion states with angular momentum JM, namely

~j J,M &,

has the boson image R
~

0)=8
~

0). 8 is a shorthand notation for 8'~~', the nucleon pair boson im-

age. The four nucleon state with seniority quantum number u is given by

1

J' »M & =g
l
j'(Ji)j'(J~)JM &[j'(Ji)j'(Jz)J

I ]J"»]
where the [ ~ j ] is the cfp. The corresponding image in the boson space is given by

(81)

(Rx&&R )J™~0)=(8X8 ) ~~0) —2( —) g(J)JgKL)' j j Jg (8 ')(8 ) ~~0) .
E L J

(82)

The cfp of Eq. (81) can be read off directly from Eq. (82) (see Ref. 26). Similarly the boson state correspond-
ing to a six fermion seniority state is given by

(R I'X (R x)&R ~~ )
~

I
0) .

Since these operators are boson operators, the manipulation is somewhat easier. As a specific example, we
consider the seniority zero state

1/2

S X(S XS )i0)=
2g+1 2g+ I

U V

[ + + Io]"—
2(2' 1)(2j 3)

0'
QJ3[8 'X[S+R '

~0)]N
J3+0

(83)

where [S+S+
~
0)]N and [S+R '

~
0)]z are the normalized seniority 0 and 2 state, respectively. Thus the

coefficient in Eq. (83) is just the cfp of the six fermion system.
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