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Comparison is made between the mass quadrupole coordinate collective model and an

appropriately extended version of the hydrodynamic collective model to ascertain whether

or not the former is an exact microscopic formulation of the latter. We find that, while

there are strong similarities, it is not.
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model, mass quadrupole collective model; comparison, theory.

I. INTRODUCTION

By any accounting, the Bohr-Mottelson (Refs.
I —3) (BM) collective model together with its exten-
sions and generalizations has had spectacular suc-
cess in describing the collective motion of a large
class of nuclei. It is therefore not surprising that
considerable effort has been expended in attempting
to derive the BM model, or something close to it,
from a microscopic starting point, Inevitably, such
derived models must be compared with the BM
model to establish contact between the microscopic
theory and the phenomenology. One of the more
recent attempts is the mass quadrupole collective
model (MQC) of Rosensteel, Ihrig, and Rowe. 4' In
the first of these papers the authors refer to the
MQC model as yielding corrections to the BM
model and in the second they refer to it as a micro-
scopic formulation of the BM model.

The coordinates used in the two models are not
precisely the same. The BM model coordinates are
those of the quadrupole expansion of the nuclear
surface, whereas the MQC model coordinates are
those of the mass quadrupole tensor including its
(monopole) trace. Therefore, in their usual formu-

lations, the MQC model has an additional degree of
freedom not possessed by the BM model. The BM
model can be extended to include an analogous
sixth degree of freedom which is usually restricted

by a constant volume condition. A slight variation
of the BM model in which a constant mean squared
radius is imposed in place of constant volume af-
fords the most direct comparision with the MQC
model, since this new constraint then fixes the
MQC monopole coordinate at a constant value.

Furthermore, in this special case, it is very easy to

derive a relationship between the five remaining
coordinates of each model.

To compare the two models term by term it is
necessary to express both in the same set of coordi-
nates. Any differences between the models are, of
course, independent of the choice of coordinates
used for this comparison. Furthermore, one can
compare the two models in any convenient special
case or limit. Should they prove to be not identical
in the special case they are clearly not identical in
general. We have chosen the case of constant mean
squared radius for simplicity of comparison.

The MQC model is philosophically appealing be-

cause of its microscopic connection and algebraic
nature. Much is made of the fact that the MQC
model is not restricted to small amplitude vibra-
tions as is the case with the usual formulation of
the BM model. The BM model kinetic energy can,
however, be fairly easily extended to allow for
larger amplitude oscillations. If the MQC model
were an exact formulation of the BM model for ar-
bitrary size oscillations, then an expansion of the
MQC model kinetic energy in terms of BM model
coordinates should agree with the BM model kinetic
energy in all orders. It is the purpose of this paper
to make that comparison. We chose to do so by
formulating both as classical models and we find
that they are identical only through terms of order
three in the BM coordinates. In the fourth order
terms the models are quite different.

In Sec. II we sketch the formulation of the BM
model to higher order in the BM coordinates and
their time derivatives. We also introduce the con-
stant mean squared radius condition which is some-
what different from the constant volume constraint
normally imposed. We show, however, that al-
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though neither condition implies the other, through
fourth order they yield the same kinetic energy ex-
pression. In Sec. III we derive the kinetic energy
for the classical MQC model and, for completeness,
present the quantum mechanical version as well.
Our quantized expression differs from that of Reft.
4 and 5 only in that we explicitly remove the center
of mass in our definition of the mass quadrupole
tensor. In Sec. IV we establish the connection be-
tween the coordinates of the MQC and BM models
in order to write the MQC model kinetic energy in

terms of BM coordinates. We then compare the ki-
netic energy expressions of the two models and
present our conclusions.

II. KINETIC ENERGY
IN THE BOHR-MOTTELSON MODEL

A. Coordinates and model conditions

We begin by reviewing the six-coordinate version
of the BM model. Throughout, we shall use the
conventions of Rose for Euler angles, rotation ma-

trices, spherical harmonics, Clebsch-Gordan coeffi-
cients, spherical tensors, etc. In a coordinate frame
fixed in the laboratory (lab) and centered at the nu-

clear center of mass (c.m. ), the radius to the nuclear
surface at polar angles 0 and P is written as

r=R(8, $)

=Ro 1+aooYoo+ g a„Ypq(8, $)

—f f frdV= ', R—2.
V

(3b)

dQ=sinOd0dg, (4)

can be straightforwardly evaluated as a function of
(aoo, a&) by using Eq. (1) and properties of the YLM.
We find

4 3 3aoo 3aoo 3v'5
V= —,~Ro' 1+ + + [aa],

4n. 4' 4~

1/2
aoo 3 5+ — +

4 4
aoo[aa]o

4m. 4m 4'

Either of the conditions (3a) or (3b) may be used to
eliminate apo in favor of the a&. The constant
volume (CV} condition has normally been the one
chosen, but the constant mean squared radius
(CMSR) condition permits a more ready compar-
ison with the MQC model. It should be noted that
for CMSR, both pp and V will be time dependent
whereas for CV, both are constants. The model as-
sumptions, together with a boundary condition con-
necting the fluid flow at the surface to the motion
of the surface envelope, are sufficient to completely
specify the kinetic energy, Tq~, as a function of the
a„and the a& da&——ldt whether one chooses to im-

pose the CV or the CMSR condition. We shall con-
sider both versions of the BM model and indeed we
shall show that through fourth order the kinetic en-

ergy is the same.
We first consider the elimination of aop. The nu-

clear volume V, given by

V= f f f r'drdn= ,
' f f R'(e, y—)dn;

This defines six laboratory expansion coefficients

aoo, a„which satisfy

aoo ——aoo, a„*=(—1}"a „,
because of the reality of R. These expansion coeffi-
cients become the generalized coordinates once cer-
tain further assumptions are made.

In the BM model, the nucleus is assumed at each
instant to fill a surface specified by Eq. (1). In ad-
dition, one assumes (i) constant total mass, M; (ii)
uniform mass density pp

——m/V throughout the nu-
clear volume V; and (iii) irrotational flow of the nu-

clear fluid. One can pass to a five-dimensional ver-
sion of the BM model by imposing one additional
constraint such as (iv) constant volume

V= —,

asap

or (v) constant mean squared radius

5
[[aa]2a 1o

4m 14~

[AB]J~——g C(Jg JgJ;MgMg1lf)Ag st BJ ~
M~ M~

to specify higher rank tensors constructed from ten-
sorsA and8. Thus

[aa]g~ gC (22J)p, v p, ,v}a~a~— —(7a)

and

The a& are properly labeled components of a second
rank spherical tensor, and we have used the nota-
tion
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[[uu]jul~. = X «&'2J;I il zv)
P~Pg

)& [aa]g„,a„, . (7b)

Note that Eq. (5) is exact and for the CV condi-
tion, Eq. (3a), becomes a cubic equation in app.

This could be solved exactly to find app as a func-

tion of the a&. Such a solution would not be in con-

venient form for our purposes. It is therefore some-

what simpler and very much more useful to note
that the expansion of app in terms of the a& requires
that all the terms of various orders in the a„must
be zeroth rank tensors. We shall call a term of or-
der k if it contains k factors of u& and/or a&, and

we shall use d'(k) to indicate terins of order k and

higher. For example, [aa]JM, [aa]JM, and [aa]JM
are all of order 2. We may then assume a form for
app and substitute this into Eq. (5). By equating the
coefficients of the independent tensors we find

5
4m.

1/2
5 2'-"12. 7

' 1/2
5 5

[[uuhu]p+ 24~'

1/2

[aa]p[[aa]2u]p +P(6) CV .

For the CMSR condition, one proceeds similarly by first evaluating

f f f r'dV= ,
' f f R'(8-,y)dn.

We find

(9a)

Rf f f r dV= ~ 4n+5v 4napp+ app +10app + app +(4n) ~
app

5 4n 4n
' 1/2

+ [aa]p 10@5+30 5

4m

' 1/2
2—[[«hulp 25

7~

1/2
25 2

7
I

' 1/2
25 2

oo+ 4
app +6'(4) . (9b)

app+ app + 10'(4n. ) app
30m 5 —3/2 3

4m

Equations (5) and (9b) are then used in the CMSR condition, Eq. (3b). We find
' 1/2 ' 1/2

app ———— [aa]p+ [[ua]qa]p+ d'(4) CMSR .7 5 45 1

2 4n 4m 14
(10)

B. Velocity and kinetic energy

Let v(r ) denote the velocity of a fluid element at

position r=(r, 8,$) in the laboratory frame. The
usual assumption is that v is irrotational. Thus v

satisfies
2

+ +~iver'~in(8 0» (13a)

One should note that q is independent of position
within the droplet.

The general solution to Eq. (12b) which is regular
at the origin is

V'X v=0,
as well as the equation of continuity

8
V (ppv)= ——pp.ai

Equations (11) allow one to write

v= —Vg ~

where X(r,8,$) satisfies Poisson's equation

0 CV

pp/pp CMSR

(1 la)

(1 lb)

(12a)

(12b)

where

A(' =(—1) Ai (13b)

The AI are determined by the physical boundary
condition that the nuclear fiuid does not escape the
surface given by Eq. (1). That is, the normal com-
ponent of v evaluated at the surface must equal the
normal component of the radial velocity of the sur-
face envelope. Thus, if N, e„, and v, denote an
outward normal vector to the surface, the unit radi-
al vector, and the fluid velocity at the surface point
R (8,$), respectively, then
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v, .N= —R (8,$) e, .N .
Ck

(14) 0
1

e, ——e, &(L g,'Br r
(15)

To form N we introduce

g (r, 8,$)=r —R (8,$)

and its gradient

in which L= —ir )( V is a purely angular operator.
Since g is constant on the nuclear surface, its gra-

dient at r =R(8,$) is normal to the surface. A
more convenient normal is

(Vg), = [e„—VR(8,4)] — e„+I e„XL+a&Yz&
R(8$)- R- - R . o

0

We use f, to denote the value of a function f(r, 8,$}at the surface point (R,8,$}. From the form of the gra-
dient operation in Eq. (15), and from Eqs. (12a) and (13a),

v, = — Re—, Q—A(~IR' 'e, Y(~+i QAi~RI 'e„XLY(~ . (17)

We then substitute Eqs. (16) and (17) into the bounda~ condition, Eq. (14), and use elemental prope~im of
the angular momentum operator L and the spherical harmonics to find

R+ QA—I~IR' 'Y(~+5Ro gR' (21+1)
1/2

X C (2IJ;000)W(II 22; 1J)[aAI ]Jar YJsr =R
~o

(18)

We want to use Eq. (18) to find the Ai~ to order 3 which will be sufficient to determine the kinetic energy to
order 4. From the form of Eq. (18) and the fact that C(21J;000)=0 unless I +J is even, the Ai~ have the fol-

lowing forms:

(i) Ai~ ——0, I odd;

(ii) Ai aa~5i2+——b [aa]I + g Cq[[aa]za]I +&(4), I even;
J

(19)

where a, b, b, and the CJ are constants to be determined. To evaluate q for the CMSR condition, we use

q =po/po ———V/V which follows from M =poV. We also use Eq. (5) for V and Eq. (10) for aoo. We then

have

15M 5 . 375 1[«]o-
4m Sm 14~

1/2

[[aa]2a]o+d'(4) CMSR

(20)

To determine the Ai~, we substitute Eq. (1'9) into Eq. (18}and use Eq. (1}for R. We also use Eq. (20) for q

and either Eq. (8) or Eq. (10) for aoo. By equating coefficients of the Y~* order by order, we find

1 5
~lm g +m~12+ 4 14

' 1/2
3 5[«]2 &i,2+

4g 02 14m'

1/2

[aa]4 5I4+ y Cg[[aa]ja]$~+d'(4},
J

(21)

where
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2
Cp ——— 2

C2 ———

Cp ——— V5 Cz=—129
560

187@5

280~

201 z 39M 5

1568m 3920m

1181 z —1509~5
1568m 392(hr

C4 ——

CV

Cp ——0 4 615 4 75 5

1568~R 0 1568~R 0 22
' 1/2

either CV or CMSR

(22)

C",=0 C2 ——0 C= — 75 5

4~R402002

%e are now in a position to evaluate the BM
model kinetic energy through order 4. The starting
point is the usual

TBM pov

TsM 5 . . 45 5
B' 2

[ ]' 4 14~ [[aalza]o

I

MQC model. The result is, remarkably, that for ei
ther the CV or CMSR condition,

=P' f f f VX. VXdV
2

127v 5 [[aalo[aa]olo

=—' f f ds. (XVX),——f f f XqdV,
2 S

where the last step follows from the vector identity

V [XVX]=VX VX+XV X

=VX VX+Xq

upon use of Poisson's equation. In the first
term, ds =ds eN is the outward normal surface area
element which may be written

R dQ
ds = e~ RdQ Vg ~,

——=RRodQN .
cp eN

Since ( VX), = —v, and v, .N=RR/Rp, we have

ds (XVX),= X,R'R dQ. —

Also q =pp/po is position independent, so for either
CV or CMSR,

TaM ————f f dQR RX, ——f f fXdV.
2 S

(23)

To evaluate TaM, we use pp
——M/V and use Eq. (5)

for V. We use Eq. (13a) for X with the At given by
Eqs. (21) and (22). In Eq. (1) and in the correspond-
ing expression for R, one must use Eq. (8} for aoo
for the CV condition or Eq. (10) for the CMSR con-
dition. We then express TaM/B' where

3MRoB'= (24)
8m 5

is the mass parameter which appears later in the

5515
[[aalz[aa]zlo

[[aa]4[aa]4]o+d'(5) .393M 5

784m

Note that CV does not imply CMSR nor vice versa,
but through 4th order they yield exactly the same
kinetic energy. Presumably, the expressions for the
kinetic energy must differ in higher order terms.
We now turn to the MQC model.

III. KINETIC ENERGY IN THE MQC MODEL

A. Coordinates

mT= gg x„z-
n=li =1

(26a}

in which x« is the ith Cartesian coordinate of the
nth nucleon relative to some arbitrary laboratory
frame origin; all nucleons are assumed to have the
same mass m. Alternatively, we may write T in

In this section we shall derive a classical version
of the MQC model. Our derivation is similar in
spirit to several which have appeared previously,
but is closest in form to that of Dzyublik et al.'
Unlike the BM model, the MQC model has a mi-
croscopic origin. Its six dimensionless collective
coordinates (a&,P) are defined in terms of individu-
al nucleon coordinates. Our starting point is the
classical many-body kinetic energy
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terms of momenta pn; conjugate to the x«as
1T= gp„; .

2m n

(26b)

We are going to consider two successive canoni-
cal transformations of Eq. (26b). In the first of
these we define

1 ~+c.m. ,i ~ ~ni ~ I =1,2, 3

Ql = qij g (Xni Xc m ,.i )(.Xnj Xc m ,j ). i. ~j
n

col ——unspecified functions of the x«; I =10,11, . . . , 3A,

(27a)

and the corresponding conjugate momenta

Pc.m. ,i i

Pl = ~ Ppgl &J

I =1,2, 3

1=4,5, . . . , 9

l =10,11, . . . , 3A .
(27b)

In Eq. (27a) the three X, ; are the Cartesian coor-
dinates of the center of mass relative to the chosen
laboratory frame. The six q,j. are the Cartesian
components of the mass quadrupole moment rela-
tive to a set of axes parallel to the laboratory frame
but centered at the center of mass. The remaining
3A-9 coordinates need not be specified, since all
terms in T involving the momenta P I are eventual-

ly discarded. Our definitions are parallel to those of
Ref. 4, except that we have specifically removed the
center of mass from the mass quadrupole moment.

Appropriate linear combinations of the q;j may
be found which transform under rotations like a
monopole (J=0) and a quadrupole (J=2) tensor.
These may be separately scaled as one likes. This
introduces our second set of coordinates which are
the MQC model coordinates (p) and a&,
ji, =+2, +1,0. They are defined by P„= P15

2V SmP
(29b)

in which (r„, 8n, Pn) are the spherical polar coordi-
nates of the nth nucleon in the center-of-mass coor-
dinate frame, and M =Am is the total mass of the
system. Rp is a free scaling parameter with the
units of length which we take equal to Rp of Eq.
(1). This choice is not mandatory but simplifies the
comparison of the BM and MQC models. As we
shall see later, the a& are related to, but not identi-
cally equal to, the a„of Eq. (1). p is a dimension-
less measure of the nuclear mean-squared radius;
for a uniform, spherical distribution of radius Ro,
p =1. The second canonical transformation which
we shall effect will replace [q,&,Pij ] by

[a„,x;K„,P„],wher. e Kz is the momentum conjugate
to az, and P„ is similarly conjugate to

(29a)
15

It is convenient to use [x,P„] rather than [p,P ]so-
that the second transformation is linear. The
momentum conjugate to p, P-, will be seen to be re-

lated toP by

and

A

mr„
3MRp

4 A

g mr„Y2q(8n, pn )
3MRp

(28a)

(28b)

We shall write final results for the MQC kinetic en-

ergy in terms of [a&,p;K&,P ]. -
The cz& and W& are properly defined second rank

spherical tensor components satisfying az
=( —1)"a

&
and E„'=(—I)"F „. From Eqs. (27)

and (28) we may display the second canonical
transformation in matrix form:

Ap

3 0 0

0 0 0
O —iv6 —v6

vs~
O —iv6 vS
0 0 0

—v'312

0

0 0
—v'3/2 i~6—

q32

0 q22

1

q33

0
—1 q3i

(30)
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B. Canonical transformations
and model conditions

If we denote an old set of coordinates and mo-
menta by [ql,pI] and transform to a new set

[QI,PI ], where the transformation is generated by

nfl(q)PI
I

then

BF
Ql = =f1(q»

aF ~fk(V)
Pl= pk ~

Bql k ~VI

(3 la)

(31b)

For a linear canonical transformation, we may re-

gard the qi, etc., as elements of column vectors.
There the transformations will be of the form

and

P=A 'p,

(32)

(33)

where A is the transformation matrix and A

denotes the inverse of the transpose of A. In matrix
notation an operator, 6', with the general form

pM(q)p
2m

then becomes

(34a)

PAM(A 'Q)A P
2m

(34b)

2

+ g Pkl+P„ terms
ni

under a linear canonical point transformation.
Our first canonical transformation is not linear

and we employ Eqs. (31) directly to rewrite Eq.
(26b) in terms of the [Ql';PI ] of Eqs. (27). We find

where

p 21
c.m ~ 2~ g c.m. J

J

1
TMQC = g [~kk'Ill'+ ~11'9kk'

2m k)I
k' & I'

+ folk'Qkl'+ ~kl' Ilk'] PklPk'I'

(35b)

T„ in Eq. (35a) denotes all terms containing at least
one factor of P I, possibly mixed with P;~ terms.
Thus we have obtained a clean separation of the
center of mass and have defined the MQC model
part of T. In TM«, if k &k' then qkk should be
read as qkk, and similarly for the other terms. If
we adopt the MQC model premise of truncating the
motion to the nine-dimensional collective coordi-
nate space (i.e., P„I=O) and view the remaining
motion from the center of mass, then T =TMQc.

Gulshani and Rowe have shown that for linear
irrotational flow the quantum conditions equivalent
to setting all P„ I to zero (which effects the trunca-
tion) are possible only in the limit of small ampli-
tude vibrations and rotations of a nearly spherical
nucleus. For larger vibrations there is a strong cou-
pling between the irrotational flow collective coor-
dinates and the vorticity degrees of freedom. One
presumes that if the hydrodynamic Bohr Hamil-
tonian were properly extended to include the
remaining many-body degrees of freedom, a similar
coupling to nonirrotational freedoms would be
found. However, our work is confined to a compar-
ison of the hydrodynamic and MQC models as
presently formulated, and hence these other degrees
of freedom do not enter.

The second canonical transformation is effected
by applying Eqs. (30) and (34) to TMQC and group-
ing the resulting terms as zero-coupled tensors.
Then Eqs. (29) are used to transform [x,P„] to

[p,P ]with the fin-al result

=T, +TMQC+T (35a)

1
TMQc p28'

1/2

[5 aE ]p+Ip [F ~ ]p+ [am ]p P+ P P-3S, g, 2 „„5,1 VS
8m 2m p

I' Sm
(36)

Here 8' is as given in Eq. (24) with M =Am, and
[7'aE ]p symbolizes [[%*a]2%']p. One should
remember that both Eqs. (35b) and (36) are classical
expressions and are the classical analogs of results

given in Ref. 4. One should also note that, as with
Ref. 4, there is no restriction to small amplitude for
the cz& or p.
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C. Quantum mechanical form of TMQc

Our goal is to process Eq. (36) further and make
a connection with Eq. (25), but for completeness
and for comparison with Ref. 4 we digress briefly to
present the quantum mechanical form of TMQc im-

plied by our classical form. In either Eq. (35b) or
(36), the classical expression has the form

6

TMQC = g Gll PIPI' (37)
2@i

Then we have

Pl =I QG 'Iigi
1

(39)

PPl

TMQC g G I!'QIQI' .
11'

(40)

This is the form appropriate for writing the general-
ized Laplacian so the kinetic energy operator be-
comes

where 6 is a function of the coordinates only. To
pass to the quantized form, we first rewrite Eq. (37)
in terms of the time derivation of the generalized
coordinates,

a
MQC 2 Q —

gg
ll'

gg
(41)

dgl 8TMQc 1=—Q GII Pi
dt BP1 m

(38}

in which 6=[6/detG]'~ .
When we apply this procedure to Eq. (35b) we

find

f2 8
TMQC g [~kk Cll +'~ll''9kk'+f)lk'gkl'+fikl'glk'] — (2& —2) g2' Bg Bq 2 (42)

One can achieve the same result by starting with the
3A-dimensional Laplacian [from Eq. (26b)]

fi 8T=- X~, ,

making the transformation of Eqs. (27) directly us-

ing the chain rule of differentiation, and then trun-
cating to the nine-dimensional collective coordinate
space by dropping all terms involving B/Bcoi. In
that case, in addition to TMQc, one also finds the
center of mass kinetic energy operator

8
2M

Our expression (42) differs slightly from that in
Ref. 4 due to our explicit removal of the center of
mass from the quadrupole tensor.

The quantum mechanical expression appropriate
to Eq. (36) is

I /2

TMQc Ip l~ ~ lp28' 8m
[rr !Ter ]p

5IX . 1 a
27T p ()p

in which re is to be interpreted as —ikey/ga„'.
Again this is the analog of the operator given by
Rosensteel and Ihrig corrected for removal of
center-of-mass motion. It can also be derived from
Eq. (42) via the transformations of Eqs. (28). In
making comparison with Ref. 4, their az and m.„
should be identified with our 5& and F&, respective-
ly, since their counterpart of Eq. (1) involves Y2p
rather than Y2&. That is, their a& transforms under
rotations like a Yz& rather than like a Y2& as does
our Ap.

D. CMSR condition imposed

~TMQcp=
a~

we have

5, 1 2~5
[a%*]p—+ P~,2' p 7T

%e now return to our main purpose, that of ob-
taining a CMSR version of TMQc which can be
compared with TBM. To this end, we will rewrite

Eq. (36) in terms of the a„and ap assuming a con-
straint which is the discrete counterpart of Eq. (3b).
As we shall see in Sec. IV this constraint implies

p=0 and p=1. Then, since

fPW5
( 3g 4 }

1 a a'
8m p gp gp

(43)

P = — [aF ]p (Ip=l)
10

P

for this special case. Thus for CMSR,

(44)
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TMqc=, [~ ~ lo—28'
35
8m

Now, the Hamilton's equation

' 1/2

(45)

which is exact. Equation (46) represents a set of
five coupled equations which could, in principle, be
solved for the 5*„ in terms of the cz& and a&. The
nonlinear result would not be particularly con-
venient for our purposes. Rather we seek an ex-
panded solution which, from the structure of Eq.
(46), must have the form

yields

~TMqc ~TMQC=(—1)"
B7Tjg 8TI p

~p=2&' a]ap+a2[aa]2p

+ ga»[[aa]~a]2„+ . .
J

(47)

' 1/2
1 2 )fC 7CX~=, ~ 7Tp-2B' v 5 2~

[arr ]p„

——[[a~* loa]zp (46)

We then substitute Eq. (47) into Eq. (46) and equate
coefficients of the independent tensors to find the
ak. Here, we require the result only to d'(4) and we
find

W5 5 7 55 25 5
Pp ——2B' ap+—

2 ~ 4 2&
[aa]2@+ [[aaloa]2@+ [[aa]2a]2p32~

+ Haa]4a]2@+ «4)45
8m.

(4&)

5 ~ 35 5
TMQC=28 4[aa]o+

114m

We then use Eq. (48) in Eq. (45) to write (CMSR)

55v 5 125
[[aa]2a]o+ [[aa]ofaalolo+

64
[[aal2[aa]2lo

327T 64m

+ [[aa]4[aa]4]o+8(5)
45 5

(49)

To co~pare Eq. (49) with Eq. (25), we need only
write the o.

& in terms of the u& for the CMSR con-
dition. This we do in the next section.

IV. COMPARISON OF T~gc WITH Tg~
FOR CMSR

I

and

a„= f f f pr F„(0,$)dV
0

, —' f f f r'r, „(e,y)av.
3R0 (50b)

A natural connection between the [P,a&] coordi-
nates of the MQC model and the BM model

[aoo,a„] is made by replacing the discrete sums of
Eq. 28 with integrals. These defining equations for
p and u&, now in integral form, may then be
evaluated using the BM model variables u00 and a&.
Thus

p =1 p=0 (CMSR) . (51)

For CMSR, the volume of the BM nuclear droplet
is found from Eqs. (5) and (10) to be

The CMSR condition, Eq. (3b), together with Eq.
(50a) yields immediately

V = —,mRo 1 — [aa]o+@(3)
4 3 15' 5

8m
(52)

(50a) Then, using Eqs. (1), (10), (50b), and (52) we have
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R 5

a„= 2
— I f I+ +pa„Yp, Y2qdQ

3R,' ~ 4m

=a~ —2
5

14m.

9~5 10 3vS
[aa]»— [[«lo ]»+ [[aa]~a]» + [[aa]4a]2p+ «4) . (53)

This establishes the relationship between the MQC and BM quadrupole coordinates when the constant mean

squared radius constraint is imposed. Finally, we substitute Eq. (53) and its time derivative into Eq. (49) to
obtain the desired result

TMQc 5 ~ ~ 45
2 ' 4

=—[aa]o—
1/2

5 . . 289~5 . . 8755
14m.

[[a' ]2a]o— [[ lo[a lo]o— [[a ]2[aa]2]o
112m 1568m

+ [[aa]4[aa]4]o+«5)366v 5

784m
(54)

Comparison of Eqs. (25) and (54) reveals that
while TMQC and THM are the same through 3rd or-
der, they differ in higher order terms. In 4th order,
the MQC model emphasizes the zero-zero or pair-

ing coupling more than does the BM model. The
really essential point is, however, that TMQc and

THM are simply not the same in 4th order. While it
is true that TMQc is derived without restriction to
small oscillations, and that the az are the com-
ponents of the mass quadrupole tensor in the BM
model, the MQC model is not an extension of the
BM model to arbitrarily large amplitude vibrations.
In that sense, TMQc is not a "correction" to THM as
was stated in Ref. 4, nor is the derivation of TMQC a
microscopic derivation of TH~ as stated in Ref. 5.

The question naturally arises as to whether the
MQC model represents other than irrotational flow.
It is easy to show that the MQC model implies
curl-free flow in the sense of Gulshani and Rowe.
That is, the restriction to only collective (q,j)
motion implies V„)&v„=O for each of the A parti-
cles. For a classical fluid, one would define the
fluid velocity "at a point, " v( r ), by averaging the
velocities of the individual particles with an ap-
propriate distribution function. This distribution
function would reflect the nuclear forces that cause
the Quid to form. V X v would then be defined in
terms of the limit of an integral of the v„over a
sphere. ' lt does not follow that V X v will be a
simple average of the V„)&v„. Hence V„gv„=0
need not imply that the associated collective v(r)
be curl free. Since we cannot uniquely determine
v(r)=(v„), we cannot assess whether such v, if
curl free, would satisfy the surface boundary condi-
tion. Both would be necessary to conclude that
v = vHM. The essential feature here is that the v„
lead to collective coordinates and to a collective ki-

netic energy, TMQC which can be meaningfully
compared to THM. This, of course, is what we have
done.

The MQC and BM models are simply different
models based upon different assumptions. It is
therefore not surprising that differences should sur-
face when the two models are subjected to close
scrutiny. It is quite remarkable that the kinetic en-

ergy expressions are equivalent through terms of or-
der 3. Based on Eq. (53) we had expected a differ-
ence in 3rd order. We have made our comparison
only in the CMSR limit applied to both models.
One could also compare them in the CV limit. By
imposing no constraints of this sort and therefore
retaining the aoo of the BM model, we could also
compare the full six-dimensional versions of each
model. However, if the model kinetic energies were

equal, order by order, in the general case, they
would be equal in any limit and vice versa. The
CMSR limit is useful because, in the MQC model,
the monopole p is not only decoupled from the
quadrupole motion, but indeed p is constant.

The strong parallel between the two models in the
form of the terms in the kinetic energy expressions
is largely due to two things. Time reversal invari-
ances and the tensorial nature of the a„and a&
force the leading term to be [E*E*]oor [rr'rr']o,
respectively, for TMQc and THM,

' also the next or-
ders must be [~'aW']o or [a*an']o. Secondl.y, our
choice of scaling of a„so that az ——a„ to lowest or-
der makes the correspondence complete. Had we
chosen to make the Ro of the MQC model different
from the Ro of the BM model, then T~QC in [p,a&)
would appear quite different from TSM expressed in

[aoo,a~]. But then the relationship between a„and
a& would be different and, in the end, it would
remain that when expressed in BM coordinates,
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TMQc —TBM through 3rd order.
If one wants to deal with other than small vibra-

tions within the Bohr-Mottelson model, it is neces-

sary to extend TBM to higher order as we have done
in Eq. (25) for either CV or CMSR. One could
proceed similarly for the unrestricted case by retain-

ing aoo as an active degree of freedom. For con-
sistency one should extend the potential energy W
to higher order as well. We have not considered
that here, but interestingly enough it is possible to
compute the surface area term of P to arbitrary or-
der. " Alternatively, one could use TMQC either
without restriction or by imposing one of CV or
CMSR. In the latter cases it would be necessary to
make a similar projection of the two-nucleon in-
teractions onto the collective coordinate space. The
means to do this have been introduced formally in
Ref. 5, but the details are likely to present consider-
able difficulty. Even after projection most of the
microscopic nature of the MQC model is retained

through the algebraic group structure of the model.
This structure would undoubtedly prove useful in
calculations, but whether the extended BM model
or the MQC model is the better phenomenological
description of nature would have to be decided by
comparison between experiment and the detailed
predictions of each model. It is well known that the
calculated value of 8' in the BM model is two to
three times larger than the value one would obtain

by fitting the model to experiment. Since B' of the
MQC model is the same as that for the BM model,
the MQC model would experience a similar diffi-
culty. However, by limiting the sums which define
the mass quadrupole coordinates to those nucleons
in the valence shells only, the MQC model could
perhaps eliminate this difficulty.
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