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The nucleon-exchange contribution to backward-angle p-d scattering is evaluated as a
Feynman diagram, in which the d-n-p vertex function is obtained from recent numerical
solutions to a bound-state Bethe-Salpeter equation. Comparisons are made to experimental
cross section and polarization data, as well as to previous relativistic and nonrelativistic cal-

culations.

NUCLEAR REACTIONS Backward-angle p-d scattering and polari-
zation. Relativistic and negative-energy effects. Bethe-Salpeter equa-

I. INTRODUCTION

Backward-angle p-d scattering has been the
source of hope and of disappointment in recent
years.! The existence of a large-angle peak in the
GeV energy region implies that the dominant phys-
ics might be described by the exchange of a neutron
between initial and final deuterons,” thus suggesting
that one could measure directly the high-
momentum components of the deuteron wave func-
tion. Furthermore, it was found that the nucleon-
exchange contribution to the p-d tensor polarization
at 180° is directly proportional to the D-state wave
function,® thus suggesting an even more sensitive
way to probe high-momentum components of nu-
cleons and excited N*’s in the deuteron.

The realization of these ideas has been rather
discouraging. There are theoretical analyses®>
which indicate that the nucleon-exchange picture is
not necessarily the dominant mechanism. The re-
sults of experiments are also not encouraging for
such simple pictures, particularly in the case of the
tensor polarization, where a null measurement® con-
tradicts directly a prediction of large alignment ef-
fects due to the deuteron D state.

There have been a number of other mechanisms
proposed as important for backward p-d scattering
(see, for example, Ref. 1). Apart from the impor-
tance of other mechanisms, several authors’—!°
have investigated the possibility of relativistic ef-
fects in the nucleon-exchange diagram itself, includ-
ing the contribution of the negative-energy P
states,”—° as well as the transformation of the wave
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tion.

function from the deuteron rest frame to the three-
body center of mass.”!° In Ref. 10, the nucleon-
exchange diagram was reexamined as a Feynman
diagram, with the particular aim of examining the
effect of the center-of-mass transformation on the
spin components of the d-n-p vertex function, and
in turn the predicted tensor polarization. The in-
variant amplitudes in the d-n-p vertex function were
identified with nonrelativistic wave functions in the
deuteron rest frame, by comparing relativistic
positive-energy Dirac spinor matrix elements with
those of nonrelativistic Pauli spinors. It was found
in Ref. 10 that the restriction to positive-energy
spinors in identifying the invariant amplitudes leads
to inconsistent results, even at low energy, particu-
larly in the tensor polarization; i.e., the relativistic
extension of a nonrelativistic tensor D wave involves
coupling of positive- and negative-energy states.
The question of relativistic effects thus remained
unresolved, awaiting a more consistent calculation.
In this paper, we present such a consistent calcu-
lation of the nucleon-exchange contribution to
backward p-d scattering. The invariant amplitudes
in the d-n-p vertex function are given in terms of
numerical solutions to the Bethe-Salpeter equation,
in which both positive- and negative-energy com-
ponents are present. The inconsistencies discussed
in Ref. 10 are thus avoided. We recognize that nu-
cleon exchange is probably not the exclusive
mechanism for this reaction. Instead, our goal is to
isolate the important ingredients for a consistent
relativistic calculation to which one may then wish
to add many other contributions. In Sec. II we out-
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line the ingredients of the calculation, and in Secs.
III and IV we discuss the results and draw con-
clusions.

II. DISCUSSION OF THE METHOD

Unless otherwise specified, the notation of Ref.
11 is used throughout. Using the kinematics shown
in Fig. 1, the nucleon-exchange contribution to the
elastic p-d cross section is

do m? 1

dQ s (47)?

| A | L (1)
where m is the nucleon mass, s is the total center-
of-mass energy squared, and

M =i(p")\T(q;d)[(k—m)T]7'T(q";d")u (p),
k=d—-p'. (2)

I" is the 16-component d-n-p vertex amplitude in
the product space of two nucleon spinors, and
F=7°T")°. Since the external nucleons are on the
mass shell, each amplitude T" can be described by
only four independent functions'?

[(g;d)=&, /", (3)

Fh=14(q;d)y*+ %B(q;d)q”

’

+ [F(q;d>y“+;1l—e<q;d>q”1

k+m
2m lC
(4)

where £* is the deuteron polarization vector and C
is the charge conjugation matrix.

In the present work, the invariant amplitudes 4,
B, F, and G are extracted from recent solutions to
the Bethe-Salpeter equation for I'.!* The kernel
consists of single exchanges of 7, €, 8, p, and
mesons, as well as pions coupled to a pseudovector
vertex. This kernel sucessfully reproduces nucleon-
nucleon phase shifts below the production thresh-
old,'* and the meson-nucleon vertex cutoff mass has

p—> fs—— 4’

A K

d—fs—— > 0’

FIG. 1. The nucleon-exchange diagram, illustrating
the kinematics used in the text.

been adjusted so that the observed deuteron binding
energy is reproduced.

The aforementioned solutions are expressed in
terms of channel amplitudes in an angular-
momentum/helicity basis.!>!® If one particle is on
the mass shell, then the four channels which contri-
bute are >ST, 3DT, !PT, and *P7, corresponding to
the usual S and D states, and the negative-parity P
states which arise from negative-energy components
of the off-shell nucleon. These channel amplitudes
can in turn be related to the invariants 4, B, F, and
G. The details of this procedure are given in Ap-
pendix A.

At this point it is worth mentioning that the
channel functions and the invariant amplitudes de-
pend upon |q | and g, the nucleon relative energy.
While the value of g, is kinematically fixed by the
external momenta, it is never zero and is real,
whereas the Wick-rotated Bethe-Salpeter solutions
are functions of |q| and ig,. Nevertheless, one
can analytically continue the channel functions
from imaginary to real relative energy by iterating
the bound-state equation with the Wick-rotated
solutions inserted into the integral. The result of
this procedure for the deuteron is that there is very
little difference (<5%) between evaluating the
channel functions at the appropriate value of g,
and simply setting go=0. The calculations reported
here employ the latter choice.

To obtain the cross section, one evaluates the am-
plitude .# in Eq. (2) and sums over all proton and
deuteron polarizations in Eq. (1). The tensor align-
ment A (6)=V"2t,,(6) is obtained by calculating

dUo
dQ

doy, do, do_
a0 T 40 Taa |’
5)

where (4, —, 0) are the available polarizations of
the incoming deuteron. The results of the trace
algebra for the cross section and tensor polarization
are given in Appendix B.

A0)=1-3

III. RESULTS

The backward angle p-d elastic cross section pre-
diction for the nucleon-exchange diagram evaluated
with Bethe-Salpeter d-n-p amplitudes is shown in
Fig. 2. The predicted tensor polarization at 180° is
shown in Fig. 3. The agreement with the data is
still rather poor, thus implying that even a con-
sistent, relativistic calculation of the nucleon-
exchange diagram is insufficient to describe the re-
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FIG. 2. Elastic p-d differential cross section as a func-
tion of the relative momentum ¢ in the nucleon-exchange
diagram. The solid line represents the calculation using
the full Bethe-Salpeter calculation; the dashed line
represents an old-fashioned calculation using the Bethe-
Salpeter S and D states only. The data are the same as
those cited in Ref. 10.
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FIG. 3. Elastic p-d tensor alignment at 180° as a func-
tion of laboratory proton energy. The curves are the
same as in Fig. 2. The data are those of Ref. 6.

action.

Furthermore, one can draw conclusions about
certain features of the d-n-p vertex function by
comparing to less complete calculations. First, the
contribution of the lower-component P states is very
small, giving a maximum partial cross section of
0.1 ub/sr, and affecting the tensor polarization only
by small amounts at 2 GeV incident proton energy.
Recent three-dimensional calculations by Buck and
Gross'’ indicate that the P-state component of the
d-n-p vertex function can be enhanced by using
pseudoscalar in place of pseudovector pion cou-
pling. To study this in our case, we have generated
new P-state components perturbatively from the
positive-energy amplitudes using one-pion exchange
with pseudoscalar coupling. The results using these
new amplitudes are shown in Figs. 4 and 5. The
cross section increases considerably due to the P-
state components, while the tensor polarization be-
comes significantly smaller. The latter result comes
from the dominance of the 3P, amplitude, which
has a tensor polarization signature of + 1, whereas
1P, has —2 and 3D; has —1. It should be noted,
however, that this enhancement of the P state may

1000 : , , :
E |00: _1
3 - ]
ES ]
/
SE' i l: A\ :
N 10 - \\ .
2 R AGOA ]
wiq | “
b ui \\SSI*’ 3Dl only (PS or PV)
gt A\ ]
£ \ \
— : i
N \ \ ]
- \ ]
i \ 1
L \
\
0.1 1 1 1 ] 1
| 2 3 4 5
lg] (fm™)

FIG. 4. Elastic p-d differential cross section for
Bethe-Salpeter amplitudes obtained using pseudoscalar
pion exchange. The solid line represents the full calcula-
tion and the dashed, dashed-dotted and dashed-double-
dotted lines represent the contributions of the 3St, 3D,
3P, and !P; channels, respectively.
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FIG. 5. Elastic p-d tensor alignment for Bethe-
Salpeter amplitudes obtained using pseudoscalar (solid
line) and pseudovector (dashed line) pion exchange.

well be canceled in backward p-d scattering by in-
cluding certain contact terms which arise from
pseudoscalar coupling by chiral symmetry.'®
Furthermore, the coupling between positive and
negative energy states in the Bethe-Salpeter equa-
tion with a pseudoscalar interaction is so large that
it yields very poor agreement with nucleon-nucleon
phase shift data.!* Clearly, a strong suppression of
the negative-energy amplitude is needed to improve
the fit. As a consequence, this may lead to signifi-
cantly smaller P-state components in the deuteron.

Second, the relativistic calculation with Bethe-
Salpeter amplitudes predicts observables which are
qualitatively similar to, but quantitatively different
from, old-fashioned calculations which use S- and
D-state wave functions, relativistic kinematics, and
two-component spin functions. As a direct test, one
can identify old-fashioned S- and D-state wave
functions from the Bethe-Salpeter channel ampli-
tudes using the relations

wo(q)=0¢(3S,)/Z ,
w,(q)=¢(3D,)/Z , (6)
Z=(16mMp)""(2E,—Mp) .

The relative three-momentum gq is evaluated in the
deuteron rest frame. The old-fashioned expressions
for the cross section and polarization are

™ %:3[q2+mE]2[QpEp/(Qp+Ep)]2
2 2 2
X[wo“(q)+w, (q)]*, o
V2 —
A(180°)=[2 2wo(q) wz(q)]wz(q).

woX(q)+w,(q)
From Figs. 2 and 3, we observe that the old-

fashioned and exact Bethe-Salpeter calculations are
qualitatively similar, although the cross sections
differ by a factor of 3 and the polarizations differ
somewhat for relative momenta g ~m /2. These re-
sults imply that spin-dependent boost effects are
small, but that spin-independent boost effects can
modify the cross section substantially at higher en-
ergies. The old-fashioned Bethe-Salpeter results are
also similar to those obtained from old-fashioned
calculations using the Reid! or Paris?® potentials,
because the wave functions w; (q) are quite similar
in all three cases.

A closer examination of our results also indicates
that negative-energy components still play an im-
portant role in the relativistic calculation, even if
the P-state contributions are small. While the am-
plitudes F and G are generally considered to
represent negative-energy effects in the deuteron, we
note that G is not zero even when both P states van-
ish (cf. Appendix A). If G is arbitrarily set to zero
in the relativistic calculation, then we reproduce the
results which one would get by using the procedure
of Ref. 10, namely by ignoring the amplitudes F
and G, and by identifying 4 and B in terms of S-
and D-state wave functions. Thus, the inclusion of
lower-component effects through the amplitude G
provides the remaining boost effect in the cross sec-
tion and is crucial for calculating the tensor polari-
zation in a consistent manner, even though the
boost effects for 4 (6) are small.

We can now summarize the role of relativistic ef-
fects in the nucleon-exchange diagram. By far the
most important element is the use of the relative
momentum variable g in the deuteron rest frame,
rather than the variable A in the three-body center
of mass as noted by Noble and Weber.* It then ap-
pears that the results using the full Bethe-Salpeter
amplitude with pseudovector pion exchange can be
reproduced by identifying the amplitudes 4, B, and
G in terms of the wave functions wy(g) and w,(q),
using Egs. (6) and (A6). Using the wave functions
of the Reid or Paris potentials in this manner would
also give similar results. The boost effects, correct-
ly included in the relativistic calculation, affect pri-
marily the cross section magnitude and not the ten-
sor polarization. On the other hand, the P states
can be very important if pseudoscalar pion coupling
is used, but it is not clear that this result is con-
sistent with chiral symmetry or nucleon-nucleon
scattering data.

IV. SUMMARY

We have calculated the nucleon-exchange contri-
bution to backward p-d elastic scattering as a rela-
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tivistic Feynman diagram. The d-n-p vertex func-
tions are described in terms of recent numerical
solutions to the bound-state Bethe-Salpeter equa-
tion. As is the case for the nonrelativistic calcula-
tion, the agreement with the experimental cross sec-
tion and polarization data is still rather poor, indi-
cating unambiguously that the nucleon-exchange di-
agram alone is not sufficient to describe the physics
of backward p-d scattering. However, apart from
the disagreement with experiment, we can use the
exact nucleon-exchange calculations to test various
approximate relativistic and nonrelativistic calcula-
tions. Assuming that the correct relativistic
kinematics is used, the main relativistic effect is a
normalization factor due to a boost of the d-n-p ver-
tex function from the deuteron rest frame to the
three-body center of mass. Spin-dependent boost
effects are much less important. However, the rela-
tivistic calculation depends crucially upon
negative-energy contributions for consistent results.
The P-state contributions are very small or very
large when pseudovector or pseudoscalar pion ex-
change is employed in the Bethe-Salpeter equation,
though the pseudovector results are preferred for
several different physical reasons.

ACKNOWLEDGMENTS

One of us (B.D.K.) wishes to thank Professor F.
Gross for several helpful discussions. He also ack-
nowledges financial support for this work from the
U.S. National Science Foundation.

APPENDIX A:
INVARIANT AMPLITUDES

In this Appendix we give expressions for the in-
variant d-n-p amplitudes 4, B, F, and G in terms of
numerical solutions for angular momentum channel
functions ST, °D?, 'PT, and °P7.

2L +1

172
; |

<1>""’ J(@=3 <LOS%

a

PkAk

where the d function follows the notation of Ed-
monds.?! The channel index a= 1, 2, 3, and 4 cor-
responds to ST, *Df, 'PT, and 3Py, respectively.
These channels can be projected by setting m =0,

AR
5N

It is convenient to work with a helicity spinor
basis defined along the z axis as follows:

1
u;(q)= 29 N, X;,

vn(g)= 1 N, X_, , (A1)

where E, =(g*+m?)'/2, A= +1 is the helicity, and
X, are the usual Pauli spinors. The normalization
N,=[(E,+m)/2E,]'"*

differs from Ref. 11 by a factor of (E, /m)/2,

We consider the deuteron in its rest frame The
nucleons have momenta p* and k¥, where p —E
k¥ is off shell, and P=—k=q. We then deﬁne
helicity spinors for each nucleon

U (pr=uz (@)
U&;’(p)=v_kp(—q) .
Ui (o =u_y, (—q),
Ui (k)=vy, () ,

where p=+1 denotes a positive- or negative-energy
state, and A=A, —A; is the total helicity. If P
makes an angle 6 with the z axis, the rotated spinors
are obtained via the transformation

R(0)=exp(—if0,/2) .

The angular momentum channel functions are
obtained by projecting the 16-component vertex
function onto this helicity basis:

o (@=TURET™g;:d) UK, (A3
Prcrk

where (m) is the deuteron polarization. Decompos-
ing @ into states of total L, S, and J, we get!®

S%>d"n’)£(—9)¢( 15 1 ,g00), (A%)
2

Pp=A, =1, and letting (o, Ax)=(+,+), (4-,—),
(—,+), and (—, —), on both sides of Eq. (A3). This
yields the following relations:
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2 0

m q (k°—E)
Py 4 py 2

EA+mEB+ 2m
_ 1 2o pp_ 3 3
A+2E(k E)F=— ¢(Sl \/_qS(Dl),
q q q 0 (31201
EA+EB+2m2(k +E)G=—(7)""¢('Py),
—A4_(k°+E)F=(3)%(’P)) .
Py E(k+ JF=(3)""%$(*P,

1
—§¢(3sl)+—ﬁ¢(3pl) ,

(A5)

Inverting these relations gives the desired expressions for the invariant amplitudes

)1/2_._._2._@E_

Py,
q(k°+E) oCPy

F=(3

k

1 1 3 m
A=7¢(3sl)+78¢(31)1)+(;)"2 . [ko

E—
E

2E +m
E

¢(3S )+ —=

1
2 \/§

2
G=—(I%)’"+—E7 (4 +B)— () 24(1P))
q

_9
E

¢y — (1L

#(’Py) ,

(A6)

k°—E
ol ¢(3P

The channel functions have been obtained by solving the homogeneous Bethe-Salpeter equation. To be con-
sistent with Egs. (1) and (2) in the text, the normalization of the solution is chosen such that

SP,=1,
n

with

1 0 0
Pn=m‘; f_wdpa. fo p’dp

where we have used the notation of Ref. 13.
S(p,p4,n) is the channel-decomposed two-nucleon
propagator. The “probabilities” P, for our solution
are found to be P(D1)= 4.8%,
P(D7)=—6Xx10"%%, P(P;)=—2.5%X10"29%,
and P(*P;)=—8.8X1073% (note that there is an
error in Table II of Ref. 13).

APPENDIX B: TRACE CALCULATIONS

In this appendix we present the results of the
cross section and polarization calculations. The un-
polarized cross section is

a
——S( P45
g~ PP+ n)lE 1/2M,,

(A7)
EXCERIES (A8)
[
dO' 2
dQ (4r )2 SPE,,‘:SMI B
where
2 | = Fapg  k—m)~ T
spins spins
X EvF "Vu(p)
XzT(p)é;,*/”’[(k—m)‘l]T
X &, 7 u(p') . (B2)

The unprimed (primed) quantities refer to the in-
coming (outgoing) deuteron, and the £ are deuteron
polarization vectors boosted to the three-body
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Qt=q"—d"q-d)/Mp*,
p*=p"—d*(p"d)/Mp*,

z;;;ga:_gya'*'dyda/MDz' (B3) .. . . .
spins as well as a similar pair obtained by reversing

primed and unprimed quantities. We then con-
struct a special four-vector

center of mass, with the property B4)

We now define projected vectors
1

2
s zAz(zp,;_ap;,)JrBZQ L b, +24BQ, + AF(2P,, —3p/, + 3k, )+BGQ —(p+k,)

AP ‘AGmBF [(pk)Q, —(Q-k)p,]

+(AG +BF)(Q, + Q

[2 P"k)k, —6(p"-k )k, +(m?—k?)(2P,, —3p,,) +6m?k,, ]

4 2
+G? Q4[2p Ky +(m?— k), +2m%, ]

+FG /Am>[4m (Qp' )k, +4m(Q-k)k, +2m(m*—k»)Q,] . (BS)

The vector S, is obtained by reversing primed and unprimed quantities, with k u =k, Finally, we construct a

Lorentz scalar

+3m

2(p’-k) _3 (p"°k) +BG££ (p'-k) m
m m m? m

T§3mA2+B2Q2/m2+2AB—(% +AF

. on'’ 2
+(4G +BF) ‘ka’ N ‘Q”f’ U+ lam(Prk)—6m 'k )+ 3m (k24 m )]
+Gz4 4[2m(p k)+m(k2+m2)]+ 3[2(k2+m NQp')+4m*(Q k)] . (B6)
The spin sum is then
S | A | P=42m (k2 —m)] (k> —mH)[T?—(S-S)]+2[mT —(k-S)]*]} . (B7)

spins
For the tensor polarization, we need only calculate 2§ st | A |7 2 where only the i incoming deuteron spin is
not summed, having been fixed at its longitudinal value, §(°) (0,0,0,1) in the rest frame.
We define an additional four-vector

CFY2
U, EA2[2(§'p')§,,+p,',]+B2(Lm2Qp,', +24B(g-£)E,
a2y
FAFLAE D6, +p,— k1 +BG L[]+, ]
+(4G +BF)<q-§)[§M+i%;L)k#]+(AG _BF>H§[<kop'>§#—(§-k)p;]

2
[4Ep'NE Kk, +2(p" Kk, +2(Ep" N m?—kD)E,+(m? —k)p), —2m 3k, ]
4m? » u u B ©

(&, . ,
+G2—Z7n%[2(p ey +(m2—k2)p), +2m %k, ]

+FG£q—.§3—)[4m(§~p')k“ +4m(&-k)k, +2m(m 2-—kz)gfu] . (B8)
4m
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and an additional scalar

£)? . -p'
VE—mA2+B(qnf) +248Y4 §1ffp L aF

LE\2 o'
+BG‘Lmzi[ﬂ‘_’fl+m +(AG +BF)(q-E)

F2
4m?

+
)2
+ 62 L (2 (o' k) +m(k 4 m )]

+FG‘—4‘1—'5}[2(§-p'>(k2+m2)+4m2(§-k)] .
m

The tensor alignment is then

A=1-3No/(N, +N_+N,),

where
N,
—_— l-/”lz/ I‘ﬁlz’
N +N_+N, 5%' spizns
and

S || =—42m(k*—mD)] (k2 —mD[TV —(S"-U)+2[mT — (k-S)][mV —(k-U)]} .

&3

[4m(E-p')Ek)+2m(p"k)—m(k®+m?)]

AepEk) | Gep) _ml
m

m
(k-§) 4 (&p")
m m
(B9)
(B10)
(B11)
(B12)
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