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Relativistic three-body calculations are presented for the real part of the m-' 0 scattering
length. The effects of the nucleon binding and the exclusion principle are studied in the
framework of a covariant three-body model {pion, nucleon, and core) of the optical poten-
tial. The present theory is a natural generalization of the optical potential model of Celen-

za, Liu, and Shakin who consider only the single-triangle diagram, ignoring the nucleon re-

scattering. We find that the nucleon binding and the exclusion principle each have a large
effect on the scattering length. However, the combined effect of both taedium corrections
is much smaller. Depending on the model for the mN t matrix, the single-triangle diagram
alone accounts for 15%%uo and 33% of the scattering length. With medium correction includ-

ed, these numbers are 25% and 40%, respectively. Finally, we determined the s wave
strength parameter Bp in a phenomenological p term.

NUCLEAR REACTIONS Three-body model, nucleon binding effects,
exclusion-principle corrections, pion-nucleus optical potential, pion-' 0

scattering length.

I. INTRODUCTION

One of the intriguing aspects of the low energy
pion-nucleus interaction is the repulsion in the s
wave, which is not well understood. The usual
first-order optical potential models strongly un-

derestimate this repulsion. ' One obvious reason is
the omission in the lowest-order term of higher-
order contributions involving pion interactions with
more than one nucleon. A second reason is that ap-
proximations such as the fixed scatterer, closure,
and impulse approximation, which are often made
in the evaluation of the first-order optical poten-
tial, may not be adequate. This is of particular im-

portance at low energies, since there the first-order
term is the result of a rather delicate balance be-
tween attractive and repulsive mN partial-wave con-
tributions. Clearly, approximations are even hard-
er to avoid in the evaluation of the higher-order
contributions. Therefore, it is important to estab-
lish at least the first-order term in a reliable micro-
scopic way. That being done, one may pin down in-
teresting higher-order effects phenomenologically
from the discrepancy between the first-order contri-
bution and the experimental data.

The inadequacy of the fixed-scatterer approxima-
tion in the extremely low-energy regime has been
demonstrated clearly in a very recent investigation
by Bhalerao and Shakin. These authors used a co-
variant optical potential model including a full in-

tegration over the Fermi motion and a proper (rela-
tivistic) three-body subenergy choice in the elemen-

tary mÃ t matrix. They found that this treatment
leads to a desirable increase in the s wave repulsion
as compared to the more standard fixed-scatterer
approaches. The optical-potential model used by
Bhalerao and Shakin clearly represents a significant
improvement over the fixed-scatterer theories.
However, medium effects such as the nucleon bind-

ing and the exclusion principle in the intermediate
scattering state are not included in it. A priori,
there is little reason to assume that these effects are
unimportant. In fact, large repulsive corrections
have been reported in the literature as coming from
the exclusion principle. This effect is often includ-

ed by means of a second-order term in the
multiple-scattering series. Unfortunately, however,
most evaluations of the exclusion principle effects
are carried out in the framework of the fixed-
scatterer or closure approximations, which leaves no
room for a consistent handling of the nucleon-
binding correction. This is a serious shortcoming
since the nucleon binding and the exclusion princi-
ple are to be considered as two sides of the same
coin in the following sense: If the nucleon binding
in the intermediate scattering state is ignored, no
Pauli-principle violating states enter the description.
Pauli-principle corrections, e.g., through a second-
order optical potential, are superfluous in such
cases. If one aims at incorporating the nucleon
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binding and the exclusion-principle effects con-
sistently, one has to embark on nothing less than a
three-body treatment (pion, nucleon, and core) of
the optical potential. ' In previous studies we have
applied a three-body model in a calculation of the
m- He scattering length. Indeed we found a repul-
sive correction from the exclusion principle. Al-
though this increased repulsion was partially com-
pensated for by an attraction from the binding ef-
fect, the overall result of both medium corrections
was shown to be repulsive.

In this work we present a study of the n. '0-
scattering length. This quantity is known quite well
from the Is level shift and width in pionic ' O. We
will apply a covariant three-body theory for the op-
tical potential. In the limit of absent nucleon re-
scattering this theory reduces to the covariant for-
mulation used by Bhalerao and Shakin. Further-
more, we add a p optical-potential term to our
parameter-free first order optical potential to deter-
mine the higher-order effect parameter Bo from a
fit to the m-' 0 scattering length. This way of
determining Bo avoids the difficulties discussed re-
cently by Seki et al. ,

' and encountered in purely
phenom enological studies, where the first-order
term is also parametrized.

In Sec. II we briefly review the covariant three-
body model as developed in Ref. 9. The calcula-
tional scheme used in the application to ' 0 is
presented in Sec. III. Finally, Sec. IV contains a
discussion of our results.

II. COVARIANT THREE-BODY MODEL

The first-order optical potential in a physically
sound definition accounts for pion scattering from a
single bound nucleon, which experiences the nuclear
medium through the binding interactions and the
Pauli principle. It can be formulated as a three-

I

body object if an independent-particle shell model is
used for the nucleus. This was first pointed out by
Revai. " The three-body formulation, contrary to
the usual essentially two-body descriptions (impulse
approximation) or one-body descriptions (fixed-
scatterer approximation), allows for a consistent in-
clusion of the nuclear dynamics. In its most general
form the three-body model is not very practical,
since one would have to deal with integral equations
in two continuous variables. To arrive at a practical
model, we proposed in a previous investigation the
use of separable forms for the ~N and nucleon-core
(NC) interactions. In particular, for the subthresh-
old energy domain (e.g., pionic atoms) the assump-
tion of separability should be reasonable for the NC
interaction because here one expects a clear domi-
nance of the bound state poles in the NC t matrix.
Using separable interactions allows for a quasi-
two-body treatment, which is a good starting point
for numerical calculations of the optical potential.
Furthermore, as is discussed in much detail in Ref.
9, the quasi-two-body formulation is very suitable
for incorporating the requirements of relativistic co-
variance using the Blankenbecher-Sugar reduction
technique. '

Assuming an independent-particle shell model,
one can write the first-order optical potential matrix
as UJ";(k ', k;w), where the superscript b denotes the
hole state and the subscripts i and j are the initial
and final single-particle states, respectively. The i'
momenta and total energy are given by k ', k and m,

respectively. The optical potential in this notation
is given by

Up, (k ', k;w)=Xb"Ubb(k ', k;w) .

%e also introduce a more simple auxiliary matrix
U~;(k', k;w) for pion bound-nucleon scattering in
which both the Pauli principle and the required
ground state exclusion are ignored. Then U and U
are related by the coupled integral equation

If

U~;(k', k;w)=U~;(k', k;w) —Xi
'f, Uji(k', k";w)Gi(k";w)U~;(k", k;w),

(2') 2E (k") (2)

I

By means of Eq. (2) we can eliminate the
exclusion-principle violating transitions and nuclear
ground state transitions, which are implicitl~
present in the auxiliary matrix UJ;. . This matrix UJ;
satisfies a set of coupled quasi-two-body equations
if separable mÃ and NC interactions are assumed,
as illustrated in Fig. 1. In general, UJ, can be ob-
tained by solving these equations. However, in the

~b
present case of subthreshold interactions, UJ, is

and E~ and E~ are the energies of the pion and nu-
cleus in the particle-hole states b, l, respectively.
For each hole state b such a set of equations holds.

Gi (k ";w)=b-„1 - 1

2'"(k") w+ E(k") Ei(k")— —
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FIG. 1. Illustration of the coupled quasi-two-body

equations for the auxiliary optical potential matrix U~;..
In U,; the nucleon interaction with the core in the inter-
mediate system is taken into account (binding correction).
Notice that Uj, , contrary to UJ";, may contain prohibited
transitions to the Pauli blocked states or the nuclear
ground state in the intermediate system. The dashed, sin-

gle, and solid lines refer to the pion, nucleon, and core,
respectively. The double and dashed lines refer to the in-

teracting nucleon-core and interacting pion nucleon
states, respectively.

found more directly by summing iterated triangle
diagrams. This is shown in Fig. 2. A crucial step
in covariant treatments applying the
Blankenbecler-Sugar reduction technique' is the
mass-shell prescription of the particles and quasi-
particles. We take the nucleus on the mass shell at

/1

FIG. 2. At subthreshold energies we may calculate U~;.

by summing iterations of triangle diagram contributions.
In the impulse approximation only the single triangle dia-

gram is taken into account. The additional contributions
where the pion is on-mass shell in the intermediate states
represent binding corrections. The crosses denote which

particles are taken on the mass shell.

the external lines and the pion at the internal lines
(see Fig. 2). The important advantage of this choice
is that it produces the correct nonrelativistic reduc-
tion. As is illustrated in Fig. 3, the summation
over the iterated triangle diagrams contributing to
the optical potential can be carried out in two steps.
The corresponding equations are

dk"
Xz, (k', k;w)=Vi', " (k', k;w)+g I 3

Vji"' (k', k",w)Gi(co~)Xii(k", k;w)
(2m) 2E (k") (4)

and

tl

Uz, (k', k;w)= Vj", (k ', k;w)+g 3 Vji' (k ', k ";w)Gi (co~)Xil(k", k;w) .
(2m) 2E (k")

Here Gi is the propagator for the on-mass shell pion and interacting NC system

Gl (~il) = (~il —W ) l —(iii+ —W )I, b &QNc I
I & & j

I QNC&
(2m ) 2Mi ~+ —Ec,b(QNc) —EN(QNc)

and V~ with a=I, II, III are the three triangle diagram contributions with different mass-shell prescriptions.
They are of the following generic form:

~b-, - dk"
Vjl (k ikiw) 3 ~„Pji(QNciQNcil/i~l/)tjl'(QnN&Ql/Ni~cb) .'

(2n ) 2Eci, (k ")

The quantity pz, is given by

b ~i b
Mj EN(QNC) EC b(QNC) b, - Mi —EN(QNC) EC b(QNC)

PJl (QNCi QNCi~i/i~i/) = Pji(QNciQNc)
~i/ EN(QNC) Ec,b(QNC) ~ —EN(QNc) —Ec,b(QNc)

and pj-,- is the covariant density operator

pj';(QNc QNc)=t64~qW &N(QNc)Eci(Q )ENc(QNc)ENcb(Q c)lN' &QNcI'&&1 I QNc& .
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FIG. 3. Graphical representation of Eqs. (4) and (5) in

which we sum over the iterations of triangle diagrams.

In Eqs. (7)—(9), Q ~ and QNc are the relative two-

body momenta. Furthermore, tj., is the elementary
m.N T operator. In the absence of unambiguous
prescriptions for off-mass shell models for gt, we
will approximate it by an on-mass off-energy shell
T operator. Such a procedure also underlies the co-
variant impulse approximation of Refs. 4 and 5.
The subscripts ji remind us that mX partial-wave
decomposition should agree with the initial and fi-
nal single-particle states i and j. Adopting conven-
tional three body notation, the quantities co and

tocb are the invariant quasiparticle masses for the
interacting NC and ~N systems, respectively.
When the pion is on the mass shell, co becomes

co =[(w —m ) —2wT ]'~~, (10a)

where T is the pion kinetic energy in the mA center
of mass. If, on the other hand, the nucleus in the
particle-hole state I i, b j is on shell we simply get

b
cow Mi (10b)

In Eqs. (6)—(10) M~~ is the invariant mass of the
nucleus in the particle-hole state I i,b I. Notice that
the fractions in Eq. (8) are equal to unity if co is
given by Eq. (10b). In V this is the case for both
the initial and final states giving p=p. Therefore,
V is just the optical potential in the covariant im-
pulse approximation which has been discussed ex-
tensively in the work of the Brooklyn College
group. ' The present theory represents a natural
generalization of their scheme, also taking nucleon
scattering into account. In Sec. III we consider the
application to the m-' 0 scattering length.

merical calculations we have assumed degenerate 1s
and lp orbits. While the neglect of the Coulomb in-
teraction and the spin-orbit force should not be too
serious for a light nucleus such as ' 0, it does allow
for a separation of the orbital and spin-isospin
dependent part of the wave functions. With this
separation one can treat the spin-isospin degrees of
freedom in the coupled equations algebraically us-

ing the same methods as in Ref. 8 for the case of
He. The sum over the four intermediate single-

particle states I in Eqs. (2), (4), and (5), which differ
only in their spin or isospin parts, can be carried out
trivially since the invariant mass Mi is identical for
such states. Instead of matrix elements in the
single-particle basis, we then consider matrix ele-
ments between the spin-isospin saturated four
nucleon states. This reduces the dimensionality of
the coupled set of equations and the number of
times we have to solve them by a factor of 4. This
procedure can be carried through for spin-isospin
symmetric nuclei if we restrict the summation over
the single particle states l in Eqs. (4) and (5) to
states which are occupied in the ' 0 ground state.
We ignore, therefore, virtual single-particle transi-
tions to, e.g., the 1d or other excited levels. Howev-
er, because of the small m /MN ratio, one expects
that coupling effects involving NC states with dif-
ferent orbital quantum numbers are small. This
brings us to our second approximation, viz. , the
neglect of such couplings also between the occupied
» and lp orbitals. With the separation of orbital
and spin-isospin degrees of freedom and the neglect
of orbital couplings, the evaluation of the ir-' 0 op-
tical potential has strong similarities to the previ-
ously studied n.-"He system, the major difference
being that there are now four different orbital
states: one for the 1s le@el,

&»
I QNC~ ~ ls( I QNC I

)(4~)

and three ip level states

&Ip p IQNc~ ~1@( I QNcl )I'li, (QNc),

III. CALCULATIONAL SCHEME

The general form of the theory outlined in Sec. II
requires the solution of very large sets of coupled
integral equations for each of the A hole states.
Fortunately, this immense task only applies to the
unnecessary complicated case of completely nonde-
generate single-particle levels with a significant
amount of NC partial-wave coupling. In our nu-

differing in the magnetic quantum number p. In
the calculation of the m-' 0 scattering length we
have to consider ~N S waves as well as P waves of
which there are six in total. (Because of the Fermi
motion, mX P waves play a role even when the pion
is at rest with respect to the nucleon. ) The pro-
cedure to find the optical potential is now as fol-
lows. First we have to calculate the three triangle
diagram contributions Vg (TJL), with a=l, II, III
[see Eq. (7)], for each of the four orbital states
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denoted by 8 and the six mN partial waves, which
are specified by the n.N isospin T, total angular
momentum J, and orbital angular momentum L.

Equations (2), (4), and (5) lead to three equations for
each NC orbital state 8 and mN partial wave TJL.
In an abbreviated notation

Xs(TJL}=Vg'(TJL)+ Vsn (TJL)GsXs(TJL)+ g Vg (TJ'L')GsXs(TJL),
4CJL.CP ~ J',L'QL

(1 la)

Us(TJL) = Vs(TJL)+ Vg'(TJL)GgXs(TJL)+ g Vg'(TJ'L')GsXs(TJL),
JL T T J',L '+L

(1 lb)

Us(TJL) = Us(TJL) — Us(TJL)Gs U~(TJL) —g Us(TJ'L')Gs Us(TJL) .
4CJL.Cg 4' J'L~L

(1 lc)

The coefficients Cr and Cql. are readily obtained
1

from the spin and isospin algebra. For T =—, and
3 1 2—,if Cr ———, and —,, respectively, and Cjr ——1 for2y T 3

1 2 . 1

~N S waves, and for P waves —, and —,, if J= —, and

—,, respectively. The factor 4 comes from the num-

ber of nucleons in each spin-isospin saturated orbi-

tal state B. Equations (lla) —(llc} have to be
solved and finally the 4)& 6=24 contributions

U~( TJL) should be added,

Uopt =&s&rsl. Us(TJL) . (12)

This procedure is still quite involved. In particular,

I

the numerical evaluation of the 3)&4)&6=72 trian-
gle diagrams Vg(TJL}, which requires a three-
dimensional integration over the recoil momentum
[see Eq. (7)], is very time consuming. Therefore, we
have applied one further simplification. It consists
of replacing the three different 1p level density ma-
trices

&QNcl lp, e&&V lp IQNc&

in Eqs. (6) and (7) by a single "spherical averaged"
density matrix

&QNc I
lp & & lp I QNc&av= 3 &g & QNC I lp IJ & &p lp

I QNc& .

For a harmonic oscillator wave function this gives
+

4

&QNC I
lp & & ip I QNC& g exPI (QNc+—QNC)~2~N~I

3n n (M~.co)

(13)

(14)

The use of the spherical averaged density matrix to-
gether with the spherical symmetry of the nuclear
Hamiltonian allows one to work with equations for
the 12-nucleon state

I lp &, rather than with equa-
tions for each of the three 4-nucleon states

I
ip,p &

separately. With this final modification, 8 in Eqs.
(lla) —(llc) either refers to the ls shell or the lp
shell. [Notice that for the lp shell the factor 4 in
Eqs. (1 la) —(1 lc) should be replaced by a factor 12.]
In this way the number of integrals and integral
equations is reduced by a significant factor of 2. At
this level of approximation, we have solved the re-

sulting integrals and integral equations rigorously
with standard numerical procedures.

IV. RESULTS AND DISCUSSION

Let us first summarize the ingredients that are
used as an input in the calculations. From inspec-

I

tion of Eqs. (6) and (7) one observes that the basic
nuclear structure input isgiven by the ls and lp
shell wave functions R i, (

I QNc I
) and R ii, (

I QNc I
)

together with the averaged single-nucleon separa-
tion energies E&, and E». The masses of the core
Mc~ with a 1s or 1p hole state follow from

Mcg ——Mg —M~ —Eg .

We have assumed harmonic oscillator (HO) shell-
model wave functions with different oscillator
parameters ao and a& for the 1s and 1p shells.
These parameters are adjusted to fit the experimen-
tal charge form factor according to the procedure
described in Ref. 14. A center of mass correction
has been taken into account. The values for the HO
parameters and separation energies are collected in
Table I. Furthermore, a model is required for the
off-shell m.N t matrix. We applied two well-known
models in our calculations. Firstly, we considered
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ao (fm)

a) (fm)

E&, (MeV)

E)I, (MeV)

1.76
1.62

39.7
13.5

TABLE I. Summary of the ' 0 input used in the cal-
culations. These are based on harmonic oscillator shell-
model wave functions. ao and a~ are the respective 1s-

and 1p-shell oscillator parameters. E~, and E~~ are the
respective 1s- and 1p-shell separation energies.

Utt(TJL)=Vg(TJL) .

Notice that the impulse approximation result is not
modified by the use of the spherical-averaged densi-

ty matrix [Eq. (13)]. Secondly, we performed a cal-
culation in which only the nucleon binding is taken
into account, ignoring the exclusion requirements
(coming both from the Pauli principle and the re-
quired ground state exclusion). Here one uses the
binding correction (bd)

TABLE II. The real part of the m-' 0 scattering
length in 10 fm. LMM and SZM denote the respective
models for the off-shell AN t matrix. The impulse-

approximation result is denoted by ia. In bd and ex, the
binding correction and exclusion correction, are taken
into account. For mc both of these medium corrections
are included. The experimental result is taken from Kol-
tun and Myhrer (Ref. 6).

ia
bd
ex
mc
Experiment

LMM

—76
—59

—182
—127

—548

SZM

—179
—82

—328
—218

the very popular separable-potential model of Lon-

dergan, Moniz, and McVoy (LMM) (Ref. 1S),
which is based on inverse-scattering theory using

the CERN theoretical phase shifts. ' Secondly, we

used a separable parametrization constructed by
Schwarz, Zingle, and Mathelisch (SZM). ' This
model has been applied in md calculations by several

groups' ' and in our previous investigation of the
m- He system. For the P33 SZM give two descrip-
tions. We have applied the model based on their
Eq. (9), in which the position of the b, resonance is
fixed at the experimental value. ' For the S3i and

S~~ we took the parameters obtained by Rinat
et a/. ' in a fit to the recent m.N phase shifts from
Rowe et al. , using the SZM model. Furthermore,
as in our ~- He studies, we kept the LMM model
for the small P waves (Pii, Pis, and P») to limit
the computation. These partial waves have only a
minor effect on the results. (Partial wave Born
cross sections in the impulse approximation at sub-
threshold energies for these partial waves were
found to be a factor of typically 10 —10 smaller
than for the dominant Si i, Ssi, and P33 )

Results for the m'-' 0 scattering length (real part)
are displayed in Table II. We have investigated
four cases. Firstly, we considered the impulse ap-
proximation (ia), taking

Us(TJL) Ug(TJL) . (16)

Furthermore, it is of some theoretical interest to
consider also the results obtained by using the ex-
clusion correction (ex)

Us(TJL)=Vg(TJL) (17)

and subsequently solving Eq. (11c). In this approxi-
mation one ignores the binding effect. Finally, the
full calculation was carried through, taking both
medium corrections (mc) into account. The scatter-
ing lengths were evaluated from the effective-range
expansion to the s wave scattering amplitude, which
we calculated by solving the relativistic Lippmann-
Schwinger equation with the optical potential as the
driving term. '

Qualitatively, the results are in agreement with
the previous findings for the m.- He case. We find
consistently larger values for the negative (repulsive)
scattering lengths by using the more modern SZM
model as compared to the older LMM model.
Furthermore, we obtain a significant reduction of
the s wave repulsion from the nucleon binding and
a clear increase from the exclusion requirements.
For the overall result in which both medium correc-
tions are taken into account, we do find a net in-

crease in the repulsion. However, this increase is
not so large as what we found previously for the n

He system. In the present investigation we can ac-
count for 15/o of the required repulsion from the
impu1se approximation with the LMM model, and
25% if the medium corrections are included. Using
the SZM impulse approximation we get 33% and
40%%uo with the medium corrections taken into ac-
count. This is to be contrasted with the ~- He case
where we had 44% for the LMM model and even
75%%uo for the SZM model with the medium correc-
tions included.

Clearly, a large discrepancy still exists between
the first-order contribution and the experimentally
established s wave repulsion, even if medium effects
are included. Various mechanisms have been pro-
posed in the literature to explain this repulsion. A
very recent suggestion was made by McManus and
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Riska. ' These authors found large repulsive effects
from the intermediate excitation of virtual isobar-
hole pairs in a "second-order" optical potential.
(They referred to this mechanism as a medium
correction. However, it is quite distinct from the
medium corrections in the present discussion. ) No-
tice that their second-order term, for which they ap-
plied a Fermi-gas estimate, actually corresponds in
the independent-particle shell model context to the
second iteration in Eq. (11c),which is predominant-

ly a Pauli-principle correction term. An adequate
evaluation of repulsive mechanisms such as virtual
isobar-hole pair excitations ' requires a level of so-
phistication in which dynamical correlations can no
longer be ignored. However, at present there is no
generally accepted, consistent scheme for a micro-
scopic analysis of higher-order effects such as
dynamical correlations, pion absorption, configura-
tional mixing, etc., which lead to complicated inter-
mediate np nh st-ates with n & 1. (In the three-body

model we only take into account the intermediate
states with n =1.) Usually, one applies a p
parametrization to incorporate such higher-order ef-
fects. ' The parameters appearing in it may eventu-

ally be understood on a microscopic basis. Some ef-
forts in this direction are described in Refs. 22 —24.
It is quite important in such a phenomenological
approach that the uncertainties in the first-order
term are minimal. It has been shown recently by
Seki et al., ' that the results from pionic-atom opti-
cal potentials in which the first-order term is also
parametrized are not very reliable because of strong
correlations between the parameters in the first-
order and second-order parts. Therefore, it is of in-

terest to determine the s wave parameters in the p
term by adding such a term to our parameter-free
first-order optical potential and adjusting the p
parameters to the experimental n.-' 0 scattering
length. %'e have applied the momentum space for-
mulation of Liu and Shakin'

U"' ( k'k )=BQ 2M& 1+ f expI i( k ——k'). rJp (r ),
Mg

(18)

TABLE III. The real and imaginary parts of the com-
plex mA S-wave absorption strength parameter So in
units of m, as obtained by fitting to the m-' 0 scatter-
ing lengths. LMM and SZM denote the respective
models for the mN t matrix.

LMM
SZM

ReSp

0.13
0.11

ImBp

—0.06
—0.07

where p( r ) is the nuclear matter density and Bo is
the complex s wave strength parameter as defined
in Ref. 25. The results for the real and imaginary
parts of 8 are listed in Table III. It is interesting to
observe that the values for 80 are in agreement with
the results obtained by Liu and Shakin in a fit to
the differential cross section for low energy ~-' 0
scattering. ' For T~ =40 MeV they found

Bo——(0.11—i0.008)m

In their calculation the medium corrections were ig-
nored. However, as we have seen, these appear to
be relatively unimportant. Therefore, this agree-
ment demonstrates that the present optical potential
adjusted to pionic ' 0 data can be extrapolated to
scattering energies.

Some word of caution is in order with respect to
the interpretation of Bo. In view of the approxima-
tions which are still involved in our calculations,
one cannot claim that Bo derives its contributions
exclusively from the higher-order effects.
Nevertheless it seems unlikely that a more detailed
treatment will lead to very different results. Our
major simplification, the neglect of orbital cou-
plings, can be justified as follows: (1) Effects from
couplings between orbitals which are occupied in
the ground state are suppressed by the Pauli princi-
ple. (2) Couplings to other orbitals are relatively
unimportant in the pionic atom limit, where the
dominance in the NC interaction of the bound
states which are occupied in the ground state is
maximal.

The main conclusion from our three-body calcu-
lations is thus that the nucleon binding and ex-
clusion requirements each have a significant effect
on the m-' 0 scattering length. However, the
overall correction from both medium effects is rela-
tively small. A large discrepancy remains between
the first-order prediction including medium correc-
tions and the experimental value for the scattering
length. This indicates the importance of more com-
plicated mechanisms involving multiparticle-hole
states in the intermediate system.
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