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The off-shell t matrix is expressed as a sum of one nonseparable and one separable term

so that it is useful for applications to more-than-two-body problems. All poles are involved

in this one separable term. Both the nonseparable and the separable terms of the kernel

Gp t are regular at the origin. The nonseparable term of this kernel vanishes at large dis-

tances, while the separable term behaves asymptotically as the spherical Hankel function.
These properties make our expression free from defects inherent in the Jost- or the K-

matrix expressions, and many applications are anticipated. As the application, a compact
expression of the many-level formula is presented. Also the application is suggested to the

breakup three-body problem based on the Faddeev equation. It is demonstrated that the

breakup amplitude is expressed in a simple and physically interesting form and we can cal-
culate it in coordinate space.

NUCLEAR REACTIONS Off-shell t matrix with one nonseparable ',

and one separable term; many-level formula; three-body breakup ampli-

tude; the Faddeev equation in coordinate space.

I. INTRODUCTION

The t matrix plays a central role in the scattering
theory. We are interested in expressing the t matrix
in a form that is useful to various applications.

In the early days of studying three-body prob-
lems, ' the Yamaguchi separable potential played
an important role, since this potential reduces the
Faddeev equation, which is a two-variable integral
equation, to a one variable integral equation. This
has stimulated some efforts to find a more sophisti-
cated separable potential or fully separable expan-
sions of the (off-shell) t matrix. However, since a
local potential cannot in principle be expressed as a
finite sum of separable terms, such an approach
would not be adequate to be applied to a most so-
phisticated level of calculations of a three nucleon
system. Our contemporary computer is big enough
that we can perform three-body calculations
without expressing the t matrix as a complete sum
of separable terms. In fact, we have solved the
three-body bound states with a partially separable t
matrix (PST). '

Of course, the use of the t matrix is not confined
to a few-body problem. Let us state the general
background and the requirements in finding a PST

with desirable properties.
If we try a full expansion of the t matrix by a

complete orthonormal set of functions, the numeri-
cal calculation will become more and more inaccu-
rate with the increasing number of nodes. In prac-
tice, we are forced to truncate the expansion with
no guarantee of convergence. Even when a seeming
convergence is obtained, often it only means a very
slow convergence. In such a case, the truncation is
made before we come to a true convergent value.
One may say that an expansion by a complete set of
functions is mathematical physics of an earlier time
and with the computer age one should try to explore
other ways.

First of all, we require that (I) the t matrix be ex
pressed as a sum of one separable and one nonsepar
able term. The restriction to only one separable
term is due to a purely practical reason, but is very
important in preventing the increase of dimen-
sionality in application. The inclusion of one non-
separable term is inevitable for a local potential.
Let Go be the two-body free Green's function and V
the two-body p'otential. Then the two-body t matrix
satisfies the Lippmann-Schwinger equation

t = V+ VGot .
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Suppose that Gpt is expressed in terms of nonsepar-
able functions A, B, and C and a function F as

Gp (2)

Substituting (2) into (I), we find that the t matrix is
expressed as

t=V(A+1)+V~B)F(C
~

.

This is the form satisfying requirement (I). There
are several ways of expressing the t matrix as PST.
Well-known examples are the K- and the Jost-
matrix expressions. However, a simpleminded
iteration of the IC-matrix expression as the Neu-

mann series often diverges. Of course, the use of
such a divergent series is not desirable in applica-
tions. We have to remove the element causing this
divergence. Fortunately, this can be done, if we re-

quire that (II) no dangerous pole be involved in A, B,
and C. By the dangerous pole, we mean those poles
which lie on the real momentum axis. This require-
ment means that all dangerous poles are contained
in the function F in a manner that the poles of F are
not on the real momentum axis, but shifted to some

points on the complex momentum plane.
When this expression of the t matrix is used in

the Faddeev equation, the separable term serves as
the zeroth order term and the nonseparable term is
treated as the perturbation. Since the separable
term is the main part of the t matrix, the conver-

gence of the whole calculation is almost clear
ab initio In fact, .this was the case for the bound

state."
The Jost expression of Gpt that is useful in a

two-body problem is not at all useful in a three-

body system. This is because both the separable
and nonseparable terms of the Jost expression of
Gpt suffer from the singularity at the origin. To
avoid such a difficulty, we require that (III} the

functions A and B should be regular at the origin.

This requirement is very important because in ap-
plications we use the separable and the nonseparable

terms separately.
Further, to facilitate the calculation of the break-

up amplitude taking into account the exact asymp-
totic behavior of the wave function, we require that
(IV) the operator A should vanish at large distances
and the function

~
B) should asymptotically behave

as the spherical Hankel function. Then, since we

can reduce the overlap of the spherical Hankel
function with a certain function to a tractable form
as demonstrated in Sec. IV, we can avoid a difficul-

ty of numerical calculations at large distances, when

Eq. (2) is used in a scattering equation of a more-

than-two-body system. This greatly facilitates an
accurate calculation of the breakup process.

We anticipate various applications of the present
expression of the t matrix. For example, if we use it
in the reaction theory, we can express the many-
level resonance formula in a simple form. Also, the
present expression is extremely suitable for calcula-
tions of the breakup process in the coordinate space.
The present paper is an extension of the previous
preliminary studies, ' and at the same time serves
to pave the way for a more complete treatment of
the three-body scattering problem.

In Sec. II, first we study the general way of con-
structing PST and then discuss the Jost- and K-
matrix expressions. Then, we present the most use-

ful expression of PST. Some applications are sug-

gested at the end of the section. In Sec. III we
demonstrate how PST of Sec. II is applied to the
three-body breakup channel. In Sec. IV we summa-

rize the results. In the Appendix, some equations
are proved.

Gp ——Gp+ ~a)(b
~

. (4)

Here, Gp is a Green's function satisfying the same
equation as Gp,

Gp 'Gp ——1 (5)

but subject to boundary conditions which are dif-
ferent from Gp. The second term ~a)(b

~
is a

separable operator. The separation (4) is not

unique. Examples will be given shortly.
We define the matrix L and the wave matrix 0

by

L = V+ VGpL = VQ

where
1

1 —GpV

If we subtract Eq. (6) from the Lippmann-
Schwinger equation (1), we obtain

t=L+(I —VG, } 'V
~
a )(b

~
t,

=VQ+VQ ~a)(b
~
t,

= VQ i VQ
i
a ) (b

i
VQ .

1 —(b
)

VQ )a)

II. PARTIALLY SEPARABLE T MATRIX

A. General theory

The t matrix satisfying requirement (I) may be
obtained in the following manner. Suppose that
the Green's function Gp is divided into two parts
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If we use this result on the left hand side of Eq. (1),
we get

Gpt =0 I—+0
i
a ) (b [ V& .

1 —(b
~

VQ ~a)

(9)

Equations (8) and (9) take the forms of Eqs. (3) and
(2), respectively, satisfying requirement (I). It is
then obvious that for requirements (I), (III), and
(IV) to be satisfied at the same time, the Green's
function Gp used in A, 8, C, and F of Eqs. (2) and
(3) should be different from Gp. Comparing Eq. (2)
with Eq. (9) and making use of Eq. (7), we see that
requirements (III) and (IV) are alternatively ex-
pressed as:

(III') The Green's function Gp and the function

~

a ) should be regular at the origin

(IV,') The Green's function Gp should uanish at
large distances from the origin

(IVb) The function
~

a ) should behave asymptoti
cally as the spherical Hankel function.

Let us write known examples of Gp. With the
spherical Bessel (Neumann) function jt(kr)[nt(kr)],
we obtain the spherical Hankel function by

This Green's function is used in the E-matrix ex-
pression. The Green's function g satisfies (IV,') but
not (III'), whereas PGp satisfies (III') but not (IV,').
Therefore, we should introduce another Green's
function, if we require (III') and (IV') to be satisfied
at the same time. Before we present a new expres-
sion of the t matrix, let us briefly review the Jost-
and the E-matrix expressions of the t matrix.

B. Jost expression

With the Green's function (14), we define the Jost
matrix J and its wave matrix m by

J= V+ VgJ= Vco,

and

1

1-gv (18)

In this case, PGp(r, r') corresponds to Gp in Eq. (4).
This Green's function is defined by

PGp(r, r') =k[ ni(«j)t(«')8(r —r')

+jt(kr)n/(kr')8(r' r)]—. (16)

ht+'(kr)= nt(«)+—ijt(kr) . (10) In terms of J and co, the t matrix and the kernel Got
are expressed as

With the step function

8( ) i
1 fol X)0
0 forx~0,

the usual Green's function Go is written as

Gp(r, r')= —k[hi'+'(krj)(i«') (8r—r')

+j i(kr)ht'+ (kr')8(r' r)] . —

(12)

Equation (12) can alternatively be expressed as

Gp(r r )=gi(r, r') khi («j)—t(«) (13)

where we have defined a Green's function gi(r, r')
that corresponds to Gp in Eq. (4) by

gt(r, r') = —k[ nt(krj)t(kr')

jt(kr)ni(kr ')]8(r' r)—. (14)—
This Green's function is used in the Jost expression
of the t matrix. Another expression of Gp(r, r') in
the form of Eq. (4) is to decompose it into the prin-
cipal value Green's function PGQ(r, r') and the ima-
ginary part

GQ(r, r') =PGQ(r, r') ikjt(krj )/(kr') . —

t =J Ji kh'+')-
1+k J~J~h~+'

and

(19)

C. K-matrix expression

With the Green's function (16), we define the E
matrix and its wave matrix co by

Gpt=(tp 1)—co—
~

kh'+') 1 (j~J,I+«J i
J ih'+')

(20)

where
~
j) and

~

h'+') stand for the spherical
Bessel and Hankel function, respectively.

It is known that the Jost function
1+k (j i

J
i

h'+') has zeros in the lower half of the
complex k plane, while J does not involve any pole.
Thus, expression (19) satisfies requirement (II). The
Green's function g satisfies requirement (IV,'). As a
result, Eq. (20) satisfies requirement (IVb), and
hence (IV). However, since g does not satisfy (III'),
requirement (III) is not satisfied. This is a serious
defect of the Jost expression of the two-body t ma-
trix, preventing applications to more-than-two-body
problems. Besides this difficulty, the matrix ele-
ment (j i

J
i

h'+') is not always defined for cou-
pled partial waves. '
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and

E =V+ VPGpK= VPo,

1

1 —PGp V

Then we obtain the expressions

(21) In the present paper, we make use of those Sturm-
Liouville states whose eigenvalues become unity or
very close to unity at some energy. When we write
g„(n = 1, . . . , N), it means that the Sturm-
Liouville functions belonging to this set, normalized
as

t =It t&—
I
kj &, .„. . &j I

lt1

1+ik j E j
and

(23)

Got=(to —1) it—0
I
kJ & . &J IX .

1+ik&J Irc IJ&

(24)

Since PGo satisfies requirement (III'), expression
(24) satisfies requirement (III). Since PGO does not
satisfy requirement (IV,), requirement (IV) is not
satisfied. However, this is not a serious problem. A
serious problem of Eqs. (23) or (24) is that E can be
infinity at some points on the real momentum axis.
[See Eq. (39).] This defect prevents the application
of Eq. (23) to a problem of a more complicated sys-
tem.

&J I VI1(„&=—X„, (n=1, . . . , N) . (26)

(Later, we use the Sturm-Liouville function also be-

longing to this set, but normalized in another way.
In this case, we use the notation g„.) Let us intro-
duce the function g by

n=1

where o.' 'is given by

gN —1

n(N)
&n

g(J„—X )

mQn

a1 ——1.(1)

(27)

(28)

Using this function, we define the Green's function

D. A new expression

We define the Sturm-Liouville function g„and
the corresponding eigenvalue A, n by"

g=PG +oI~&&jl

If we define the wave matrix co by

1

1 —gV

(29)

(30)

PGoVQ„=A,„1(„(n=1, . . . , oo) . (25)
I

we can express the matrix t and Gpt as

1t = Vco —Vto
I P+tkJ &

(1—A,„)+ik&J
I

Vrd
I J&

n=1

&j I
vs, (31)

1
GOt =co—1 —co

I
0+tkJ &

ff (I —~.)+ik&j
I

V~
I J &

&jl vco. (32)

Clearly, these expressions satisfy requirement (I). The case N =1 is important for a low energy nucleon-
nucleon interaction. This case has already been treated in Ref. 8.

In deriving Eqs. (31) and (32), we have used the following important relations

N —1 N

1+&j
I

V~
I
4&=1+&jl V[1+ g (iV)'1

I 4&=?I(1—~. )
n=l

(33)

(gV)'I P„&=0, for h&N and n =1, . . . , N . (34)

fg„Vg dr=5„(n, m = 1, . . . , oo ), (35)

Equations (33) and (34) are proved in the Appendix.
In Eq. (34), the function i)'j„satisfies Eq. (25) and is
normalized as

which is written for simplicity as

(36)

The difference of the functions P„and P„ for
n = 1, . . . , X is only the normalization factors.
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Since Eq. (34) is satisfied, the equation

(gV)'I P&=0 for 1)N (37)

zation factors of p„and 1(„by N„, i.e., p„=N„g„,
we get

is valid.
From the orthonormality (36), we obtain the clo-

sure relation

(g v)
I P. & =~.(

I P. &
—

I P & ) .
&n

By the repeated use of this equation, we obtain

(42)

y v
I e. &&0. I

= y. I e. & &0. I
v= 1 . (38)

n=1 n=l

Now, we shall show that Eq. (31) satisfies re-

quirement (II). If g were PGO, Eq. (30) reduces to
Eq. (22), which is written by Eq. (38) as

9=1+PGp VB

=I+PGOV g I P„&&/„ I
Vco

n=1

K„—=(gv)"
I q„&&/„ I

v

I 4&1&4. I
V.

n E=p n

(43)

At this moment, we are unable to prove the absolute
convergence of the infinite series in Eq. (41). But it
is very likely since the norm of the operator E„ is

la"„I and

=1+ g A,„ It/i„&&/„ I
vco

n=1

If A,„becomes unity at E=E„,i.e.,

A,„(E„)=1 (n =1, . . . , N),

(39)

(40)

0& IA,„+i I
& IA,„ I

&1(n)N+1) .

By equations (25) and (27), the function 1t is regu-
lar at the origin, and so is the Green's function g by
Eq. (29). Therefore, g satisfies requirement (III')
and Eq. (32) requirement (III).

Finally, let us show that the Green's function g
vanishes at large distances from the origin. Equa-
tion (25) behaves asymptotically as

the matrix 6 is singular at these energies.
We can avoid this difficulty if we use g as the

Green's function. The wave matrix co is expanded
as

1
cos(kr ——,lm. )

&j
I

V
I 1(„&=A,„ lim it „.

(44)
co=1+ g (gV)'

E=l
N —1

= 1+ g (gV)'
E=l

+ g g (gv)'ly„&&y„lv
I=Nn =N+1

N —1

=1+ g (gv)'
I=1

+ X
n =N+1

(41)

cos(kr ——,le.)
(N)

r n=l
(45)

where we have used Eq. (26). In the Appendix, we
show that

N

(46)
n=1

Therefore, if we use Eq. (27), we see that the func-
tion g behaves as

cos(kr ——,lir) ~,„,&J I
v

I q„&(N)

n=1

As a result, the wave matrix co is free from any
singularity and requirement (II) is satisfied by Eq.
(31). All poles at E„(n = 1, . . . , N) on the real axis
which cause difficulty in the K-matrix theory are
now absorbed in the denominator of Eq. (31) or
(32), shifted to some points on the complex momen-
tum plane.

If we use the function i)j„defined by Eq. (26) also
to n & %+1, and designate the ratio of the normali-

Thus the function i(| behaves asymptotically as

cos(kr ——,lir )
lim g=

By virtue of this equation and Eq; (29), the Green's
function g vanishes at large distances and require-
ments (IV,') and (IVb) are satisfied. As a result, re-
quirement (IV) is satisfied by Eq. (32).

In conclusion, Eqs. (31) and (32) satisfy all four
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n=1
(48)

Owing to Eq. (40), we can express 1 —A,„approxi-
mately as

E—E
(49)

If we make use of this expression in Eq. (48), we ob-
tain the many level formula in a compact form.

In the remainder of the present paper, we will not

go into detailed discussions of these subjects any
further but confine ourselves to the treatment of the
three-body breakup process.

III. APPLICATION TO THREE-BODY BREAKUP

About twenty years ago, the three-body breakup
process aroused enthusiasm in constructing an
equation for this process in a manner that the ker-
nel is compact. Equations proposed at that time by
various authors turned out to be the same and are
now called the Faddeev equation. ' Faddeev has
proved that the kernel of the Faddeev equation may
be extended over the entire Banach space to a com-
pletely continuous operator after five iterations (Sec.
7 of Ref. 3). In practice, the Faddeev equation was
solved for the breakup process by employing a
separable potential (in momentum space), '

by using
the Pade approximant for a local potential (in
momentum space), ' or numerically in the form of a
partial differential equation with a local potential
(in coordinate space). ' The PST is proposed in the
present paper for the purpose of treating the break-

up process in the form of an ordinary differential
equation with a local potential in coordinate space.
The authors believe that in this form the applica-
tion to nuclear reactions is done most easily.

We have already solved a bound state problem of

requirements (I), (II), (III}, and (IV), and do not
have any shortcoming that prevents the Jost- or the
K-matrix expressions from applying to complex
problems.

The potential V in Eqs. (31) and (32}cannot only
be local but also nonlocal. It may also be a complex
potential. Thus we can expect many applications in
the theory of nuclear reactions. For instance, the
many level resonance formula is very easily ob-
tained. For the elastic scattering, the on-shell t ma-
trix reads

&i I
I'~ li&

ff (1—)(„}+(k&i
I
I'~ li&

the three nucleon system by using the PST. ' For a
bound state problem, the kernel of the Faddeev in-

tegral equation is confined in a finite region in coor-
dinate space. As a result, the numerical calcula-
tions are performed without difficulty. However, at
energies for which the breakup process is possible,
the kernel of the Faddeev equation extends up to in-
finitely large distance in coordinate space. This
makes numerical calculations in coordinate space
very difficult unless some clever method is intro-
duced. In the method of the partial differential
equation, ' the asymptotic behavior of the wave
function is imposed as the boundary condition in
the six dimensional space, thus limiting the region
of numerical calculations. However, if there exists
a final state interaction between a pair of particles
as in the case of a singlet nucleon interaction, the
pair is subject to this interaction without regard to
the distance between the spectator and the center of
mass of this pair. As a result, we have to perform
numerical calculations up to an infinitely large dis-
tance for this coordinate. Obviously, this is impos-
sible. Therefore, we anticipate that when the energy
of the system becomes so low that the effect of the
final state interaction becomes important, the
method of solving the partial differential equation
will find itself faced by this difficulty.

The PST proposed in the present paper is aimed
at overcoming this difficulty. The Faddeev equa-
tion is constructed in a manner that the two-body
interactions take place successively between dif-
ferent pairs of particles. ' If we decompose the
wave function satisfying the Faddeev equation into
the spectrum of the spectator, ' we need to solve a
coupled set of ordinary differential equations for
the relative coordinate of the pair. Thereby, if we
adopt for Got the form given by Eq. (24), we need
calculate only in a finite region, since our Green s
function g vanishes at large distances. The contri-
bution from the asymptotic region can be calculated
by a method that is going to be demonstrated in this
section. Thus in our method, numerical integra-
tions are confined in a finite region for the coordi-
nate of a pair of particles. The effect of the final
state interaction can be calculated precisely, since
the integration over the spectator coordinate is done
analytically as demonstrated in Ref. 6 or 7. [See
also Eq. (70) of this paper. ]

In the Faddeev theory, the total wave function 4
of the three-body system is expressed as a superpo-
sition of three components g"(i = 1, 2, and 3);

y(()+ q(2)+ y(3) (50)

where g(" represents the wave function in which a
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y(1) F(1)+G t (y(2)py(3)) (51)

and two other equations obtained by the cyclic per-
mutations of 1, 2, and 3. For simplicity, we shall
use the permutation operator Q defined by

Qq(1) y(2)+ y(3) (52)

To solve Eq. (51), we reduce the dimensionality
of the variables. For this purpose, we introduce a
complete set of functions [p1z J, where ({)(z is the
product of the normalized plane wave»(p, y() of
the spectator 1 with energy Ez, y~ being the dis-
tance between the spectator 1 and the center of

pair of particles 2 and 3 are interacting by the po-
tential V1( = V23) in the final state, while the parti-
cle 1 stands as a spectator.

Although Faddeev introduced this decomposition

by a mathematical reason that the kernel of the in-

tegral equation be compact, the physical meaning of
this decomposition is understood in the following
manner. Suppose that the particle 1 propagates
after the final state interactions V2(:—V31 ) or
V3 ( = V,2). In this case, the propagation of particle
1 is described by g' ' or g( ', and these two wave

functions should interfere. So the total wave func-
tion in this case should be the sum f( '+f( '. Now,
it is easily understood by symmetry that the total
wave function of the three-body system should be
given by Eq. (50).

If we designate by E'" the initial wave for the
Faddeev component f"), the Faddeev equation is
represented as a set of coupled integral equations;

mass of the interacting pair 23, and the orthonor-
malized spin-isospin-angular wave function

I
a() of

the total system

where

(53)

ut(PP()=v'2&~pjt(py() . (54)

While Ez runs from 0 to Oo, Eq takes a positive
value so far as E~ &E and becomes negative for
E& &E. With respect to the breakup, the former
corresponds to the open channel and the latter to
the closed channel.

In Ref. 16, we demonstrated how Eq. (51) is
decomposed into the elastic channel, the closed
channel, and the breakup channel. To save space,
we do not reproduce the demonstration here. In
this paper, we are concerned only with the treat-
ment of the breakup channel [(10a) of Ref. 16] and
assume that the treatment of other channels is al-
ready known. ' We also neglect the antisymmetri-
zation. '

If we let $0" include all contributions from the
elastic and closed channels [(6a), (10b), and (10c) of
Ref. 16], Eq. (51) can be written as

(The function p1z is denoted by f3 1n Ref
whe~e the spectator was taken as the particle 3.)
The spectator energy Ep and the energy of the in
teracting pair Eq are related by

(55)

(56)

where Go q
is the two-body Green's function for the interacting pair 23,

GO ~
= (Eq —E23+ 1 m)

The subscript q on t; ~ indicates that it is calculated at E~. For simplicity, we write Eq. (56) as

I 4&=14 &+g J'~p
I atV»&

I ~&Godet. (q)&&
I &»V» I QV&

(57)

(58)

where we have omitted the particle index 1, and
written t, (q) in place of ts The subscript .a denotes
the spin and angular momentum of the interacting
pair, If we ignore the spin, the subscript a stands
simply for the angular momentum L of the pair.
From Eq. (56) or (58), we see that the breakup am-
plitude for the channel 1 with momentum p and
spin-isospin a in the final state is given by where

—v, IB,(q))F, (q)(c, (q) I, (60)

T"~ '= —(jL(qx) I t, (q)(a
I (»(p) I

Q%) . (59)
Let us express Eq. (31) in a simpler form of Eq.

(3),

t, (q) = V, (A, (q)+1)



26 PARTIALLY SEPARABLE t MATRIX 49

A, (q) =co, (q) —1 =g, (q}VQ, (q),

B,(q) =co, (q)[f, (q,x)+iqjL(qx)1

(61a)

(61b)

and

C, (q) =j1.(qx) V,co, (q) . (61d)

F,(q) = Q (1—&„(q)) Further, we define a function v, (q} and an operator
Dby

+iq&jl {qx) I
V ~s I jr, (qx

(61c) and

v, (q)= &C,(q) I
&a

I &u/(p)
I Qy&,

D= I-Xf'dp Q l»(p}& la&A. (q)&a
I &ui(p) I

(63)

If we use Eq. (58), it is readily seen that the function v, (q) satisfies a set of linear equations

v, (q)+g f 'dp'M, , I'o(q )v'(q')=&C. (q) I &a
I &ui(p) l&Q I 0&

a'

with the matrix elements M
v s defined by

M«, s = &Ca(q} I
&a

I
&ui(p} IDQ I

ui(p') &
I
a'& IBa(q') &

(64)

(65)

If we use Eqs. (60) and (61) in Eq. (59), we can ex-
press the breakup amplitude as

T'a, 'p '= pa(q»a(q) —. (66)

This simple expression is very interesting. The
factor F,(q) represents the pole of the final state in-

teraction of the two-body subsystem involved in the
three-body system. ' For instance, for the singlet S
state of the nuclear interaction, we may take N = 1

I

and take the first Sturm-Liouville eigenstate as f of
Eq. (25). For this state, the eigenvalue A, i(E}never
becomes unity on the real k axis, but it takes values
which are very close to one near zero energy.

Now, the problem of calculating the breakup am-
plitude is reduced to solve Eq. (64). The matrix ele-
ments M~q ~ q in this equation are calculated by ex-
panding the operator D of Eq. (63} into a power
series in A, (q).

M«, ~, = &C.(q} I
&a

I &ui(p} I Q I » (p'} & I
a'&

I
B'(q'}&

+P f 'dp" &C, (q}
I

&a
I &ui(p)

I Q I
ui-(p") &

I

a"&A.-(q")

&«a"
I & ui-(p")

I Q I
ui (p'} &

I

a'
&

I
B'(q') &+ (67)

A very important aspect of the present forinulation is that the operator A, (q) vanishes at large distances
due to Eq. (61a). This property is essential in the evaluation of matrix elements appearing on the right hand
side of Eq. (67). Let us first take the first order term. The operator

&C.(q)
I

&a
I

&ui(p}
I Q I

»-(p") &
I

a"&A.-(q")

in this term is obviously bounded and numerical calculation is feasible. Note that the function C, (q) is short
ranged due to the potential V, in Eq. (61d). The operator

A, -(q")&a"
I

&u (p")
I Q I

u-(p"')& la"'&A, -(q"')

needed in higher order terms is similar in nature. On the other hand, the function

A' (q"}&a"
I & ui (p")

I Q I
ur(p'»

I

a'
& I

B'(q'}&

required in the first and higher order terms is similar in nature to the zeroth order term
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&C.{q) I &a
I &ui(p) I Q I ui {p'}&

I
a'&

I
B'(q') &

owing to the presence of the function B, (q ) that involves a contribution from large distance.

By Eq. (47) and due to the property of the operator co that it tends to 1 asymptotically, the functions

IB,(q)& and
I
C, (q)& behave at large distances as

I
hL+'{qx)& and

I
V(x)jL(qx)&, respectively. Since other

terms of
I B,(q) & and

I
C, (q) & vanish at large distances, it will be sufficient to study the behavior of

and

ii =&Jr(qx) V
I

&a
I &»{p) I Q I

ui {p')&
I

a'&
I Js. '(q'x) &

I2= &ii(qx}~ I &a
I &ul(p) I Q I uI {p')&

I

a'&
I

—ni {q'x}&

(68)

(69)

As described in a previous article, the overlap integral of the spectator functions and the spin-angular func-
tions

&a
I &uI{p} I Q I

ui {p')&
I

a'&

is expressed together with the function jI (q'x') as

&a
I &»{p}I Q I

ur(p'}&
I

a'&
I ji {q'x)& =pp' f, 'duii(~)App {«';u)f,"x'dx'j~ (&]x')j~ (q'x')

~ 5(A, (
—q')

=pp' f 'du jl.(Ax )Azz (aa';u)—1 2 X,q'

where u =cos8=-, and
P P

A, =p/2+p', A, i
———(p+p'/2) .

(70)

(71)

The function A~~ (aa;u} denotes the overlap of the spin-angular wave functions, explicitly given by Ref. 6,
Eq. (31). The explicit form of this function is not important in the present discussion. After some calcula-
tions using Eq. (71), we express the 5 function in Eq. (70) as

5(A, ~
—q')=, 5 u —,{q' —p —p' /4)

PP PP

Then, performing the u integration, we obtain

(72)

1/2
&a

I &ui(p)
I Q I ui(p')&

I

a'& Ijr, (q'x)&=~/qj'L, q'+ —,'(p' —p') x A~~ aa';, (q' p' —p'/4)—
(73)

Now it is evident that the integral I~ can be numerically calculated.
Similarly, the integral I2 is expressed as

&a
I

&ut(p)
I Q I

ur'(p') &
I

a'&
I

—ni. {q'x)& = pp' f —'du jL(~)App (aa"u }f "x'dx'JL, (~ix')nc {q'x')
r

=pp' 'du jI (Ax)A~~ (aa', u)q' '(A, &/q') P, (74}

where we have made use of the formula given by
Fuda20

I

is between the upper and the lower boundary of the
integral, where

f "x j~(px)hl'+'(kx)dx = . (75)

The principal-value integral over u can be calculat-
ed without any difficulty if the pole of (A, ~

—q' )

PP &2E—P —4P &PP

is satisfied. Here, we have used Eq. (55)

E=—,p' + —,q', (m =Pi=1) .

(76)

(77)
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On the other hand, if momentum p' satisfies the
relation

2E —p —4p' =pp' or —pp',i 2 (78)

the pole of (A, i
—q' )

' is on a boundary of the u
integral. In this case the integral over u of Eq. (74)
gives rise to a logarithmic divergence. However, the
p' integral in Eq. (64) makes the contribution from
this special point null. Therefore, we do not need to
worry about this singularity. In conclusion, we can
calculate Eq. (64) numerically and obtain the break-
up amplitude by Eq. (66).

Finally, we mention that the discussions in Sec.
III may amount to a proof for the existence of the
solution of the Faddeev equation, although we do
not claim any mathematical rigor. Because our ker-
nel is confined in a finite region in coordinate space,
we might be able to prove the existence of a unique
solution of the Faddeev equation without going as
far as five iterations. Without proof, it is almost
clear that such a kernel, once iterated, should be
compact in the three-body Banach space.

IV. SUMMARY
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APPENDIX

In this Appendix, we prove that for the Sturm-
Liouville function defined by Eq. (25), with Eqs.
(26), (27), and (28), the formulas (33), (34), and (46)
are valid.

First, we prove Eq. (46)

n=1

where a'„' is given by Eq. (28). Let us introduce
the identity

m=1

We have given an expression of the t matrix that
is very useful in applications. It consists of one
separable and one nonseparable term [Eq. (31)].
The nonseparable term does not involve any pole on
the real momentum axis [Eqs. (29), (30), and (37)].
A11 poles are included in the separable term in a
nondivergent manner [See

N

n=1

in Eq. (31)]. Both the separable and the nonsepar-
able terms of the kernel Got [Eq. (32)] are regular at
the origin. The Green's function g used in the t ma-
trix vanishes at large distances from the origin.
[See Eqs. (29) and (47).] As a result, the nonsepar-
able term of the kernel [co—1 of Eq. (32)] vanishes
at large distances and the separable term behaves
asymptotically as hi+'(kr). With these properties,
the present expression of the t matrix is more useful
in applications than the Jost- or the IC-matrix ex-
pressions. The applications are suggested to the
many level formula [Eq. (48)] and the three-body
breakup problem (Sec. III). It is demonstrated that
we can calculate Eq. (64) without any difficulty,
and obtain the breakup amplitude expressed in a
simple and physically interesting form [Eq. (66)].
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If we put A, =O in Eq. (Al), we immediately obtain
Eq. (46). The proof of Eq. (Al) is done as follows.
Let us define a constant f„by

N

f(A, ) =1+

m=1

(A2)

The constant f„ is calculated by taking 1, as a com-
plex number.

2~j +i A, —A,„ i (e

N

m=1
N

m=1

N

mQn

(A3)

As a corollary, we get from (Al) an equation

~"= g (&—A, )y y P(A, —A, ) .
m=1 n=l ~ (g g )

kQn
n m

m~n

(A4)
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Next, we prove Eq. (34),

(gP'I 1(„&=o,
for I & N and n = 1,. . . ,N. If we prove

(g&"
I P. & =o (A5)

for n =1,. . . ,N, then Eq. (34) is true. Since the

functions g„and )(t)„(n =1, . . . , N) in the text
differ only in the normalization factors, we prove

(A6)

for n =1,. . . ,N.
By the definition of g, Eq. (29) with Eqs. (26) and

(27),
N

g&lg. &=( PGO+ IP&&J I)I'l(jl. &= 2 C. IP»
m=1

(A7)
where C„ is given by

(gv)'Iy„&= y (c')„ (A9)

Therefore, to prove Eq. (A6), we have to demon-
strate that all matrix elements (C~)„vanish.

When N=1, (C')„~=0, because aI"——1 from
Eq. (28) or Eq. (46). For N&2, we introduce a
determinant

(A10)

or explicitly,

C„~=A,„5„—A,„a' ', n, m =1,. . . ,N . (A8)

We form an N XN matrix C from the set IC„
In general,

y(n)(g)

(A, —A, , )+k,a( A, ,a,
A,~a, (A, —A,2) +A,pap

~1Qn —1

A,2CXn zan

(A 1 1)

~n —1CE1 ~n —1CX2

kn CX2

~n —1)+~a—1OI —1

~n&n —1

~n 1&n-

(A, —A,„)+A,„a„

for n =2, 3, . . . ,N. In Eq. (Al 1), we have suppressed the index (N) of a,' '
(i =1,. . . ,n), for simplicity. By

the subtraction,

( the n th row) —[ the (n —1)-th row] X (A,„/A,„,),
we rewrite Eq. (Al 1) as

A, 1CX3 A 1CXn A, (a„

A —A2

y(n)(g) 0 0

An 1

0 —(A, —A,„1) A, —A,„
n —1

n —1

=(&—A,„)y(" "(A,)+a„A,„g (A, —A, )
m=1

=(~—~, )(&—&„)({)(""(iL)+ y A, g (A.—A, )
k =n —1 mQk

k =2 mQk

n n

k =1 m+km=1
= g (A, —A, )+ y a A, g (A, —A, ). (A12)



PARTIALLY SEPARABLE t MATRIX

Therefore, if we use (A4), we obtain

(A13)

As a direct consequence of this theorem, we ob-
tain from Eq. (A13) that

Now we recall the Cayley-Hamilton theorem that
( X p (A16)

f(A, ):—
~

A, l —C ~,
then

f(C)=0.

(A14)

(A15)
I

This means that all matrix elements (C+)„~ (n,
m =1,. . . ,N) vanish and hence Eqs. (A6), (AS), and
(34) are valid.

Before we prove Eq. (33), we demonstrate a corol-
lary that if we define 8'nm by

N N 1V

g (1—&k)+ g ~k&k
k+n k&n l+n, k

nm

—A,„a g (1—A,&}, for num,
l+n, m

(A17)

then the matrix W is the inverse matrix of (1—C}.
This is proved if we use Eq. (A8) for the matrix

element of (1—C}.
N

[(1—C)W]„= g [5„k(1—A,„)+A,„ak]Wk

N

=(1 J.)W—n~+J. g &kWkm
k=1

= (1 —A,„)W„~ +A,„a~ g (1—A,k ) .
kQm

(A18)

Here, we have used Eq. (A17) in the second term on
the right hand side. If we again use Eq. (A17) in
the first term, we get for the diagonal element

Now we prove Eq. (33),

N

I+ (j
~

Vco
~
P}= g (1—A,„) .

n=1

If we use Eq. (A9), the matrix element

(j ~

Vco
~ P„}reads

1 —gV

=(J ~V y (1—C)„~y )
m=1

(A20)

If we use Eq. (A17) for (1—C)„', and Eq. (26),
we get

1V

[(1—C)W]„= g (1—Ak)
k=1

(j ~

Vco
~ Q„)= —A,„g (1—A,k) .

k+n
(A21)

N N

+ g A,„a,g (1—A))=1,
k =1 l+k

(A19)

where we have used the relation obtained by putting
A, = 1 in Eq. (A4). If we use Eq. (A17) in Eq. (A18),
we readily see that the nondiagonal matrix elements
vanish. As a result, the matrix W is the inverse ma-
trix of (1—C}.

As a result, we obtain

N N

1+ (J
~

V&
~
q) =1—g a„J„g (1—X„)

n=l k@n

n=1
(A22)

where we have made use of the relation obtained
from Eq. (A4} by putting A, = 1.
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