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A three-body model of the antisymmetrized deuteron-nucleus system is evaluated ap-
proximately in terms of an effective neutron-proton interaction that can be used in the
standard distorted-wave Born approximation matrix element for stripping. Although there
is a significant reduction of interior contributions to stripping at low bombarding energy,
this effect becomes less important at higher energy; in particular, it has little influence on
the reaction Mg(p, d) at 94 MeV.

NUCLEAR REACTIONS Scattering theory, antisymmetrized three-

body model for deuteron stripping. Application to 24Mg(p, d) at 94

MeV.

I. INTRODUCTION

The dynamics of the deuteron plus nucleus sys-
tem has been studied repeatedly since the first direct
reaction theories of stripping were introduced thirty
years ago. Recent analyses' developed detailed
evaluations of plausible ansatz solutions of the
three-body model: neutron plus proton plus nu-

cleus. What is at last clear from this work is that
although "three-body effects" are large, as indicated

by the large breakup part of the model three-body
wave functions, such effects are less significant than
a correct treatment of internal coordinates of the
target nucleus.

Internal coordinates of the nucleus affect the con-

struction of three-body models in two ways. First,
they produce imaginary parts in the potentials in
the three-body model: These imaginary potentials
cause major modifications of the solutions and
they can have complicated energy dependences.
Second, antisymmetrization with respect to nuclear
coordinates modifies both the derivation of a three-
body wave function and its application for the cal-
culation of matrix elements. In this paper we con-
sider in detail the consequences of antisymmetry in
the application of a three-body model for deuteron
stripping.

Particle identity is traditionally inserted in the
stripping matrix element by applying an antisym-

metrizer to the DWBA ansatz wave function, to
give

~@Xq+'( , (ry+ r—„))Pq(
~ ry —r„~ ),

where 4 is the internal wave function of the target
nucleus. New effects arise because the proton, for
example, that emerges asymptotically can originate
either from the incident deuteron (direct term) or
from various orbitals of the struck nucleus (ex-
change terms). Standard classifications of the ex-
change terms distinguish "knockon exchange, " in
which the incident projectile interacts with the
ejected proton, from "heavy particle stripping"
(HPS) and "optical potential exchange" terms, in
which the projectile interacts with the remainder of
the struck nucleus. Early interest in HPS was
motivated by back-angle features of experimental
angular distributions. However, the effects in ques-
tion were subsequently satisfactorily understood in
terms of DWBA calculations of the direct term. In
fact, in a careful DWBA context the near ortho-
gonality of bound and continuum single-particle
(s.p.) orbitals causes all the exchange terms in the
traditional (d,p) matrix element to be very small,
with the result that they have not received systemat-
ic investigation. (By contrast, the knockon term in
inelastic scattering associates an interaction with
every active s.p. wave function; as a result it is not
reduced by orthogonality and it is frequently as

26 348 1982 The American Physical Society



26 ANTISYMMETRIZED DEUTERON STRIPPING 349

large as the direct term. )

In an improved analysis of antisymmetry in a
three-body model, the DWBA ansatz is replaced by
the expression M4g( rz, r„), and the occupied orbi-
tals of 4 are allowed to partially block the possible
dynamical development of the relative wave func-
tion f(rz, r, ). If this relative wave function is re-

quired to be orthogonal to the occupied s.p. orbitals
of 4, it is found to reduce to a solution of a three-

body equation of Bethe-Goldstone form, s 'o with

projection operators that enforce the orthogonality
property. The (d,p) matrix element based on

f(rz, r„) computed in this manner consistently in-

cludes all the exchange effects discussed previously,
in the form of an improved calculation of the direct
term. It is this procedure we consider in the present
article. We seek a sufficiently accurate Pauli modi-
fied wave function g(rz, r„).

Previous analyses of blocking ' use explicit an-
satz expressions for the three-body wave function.
In this work such explicit assumptions are avoided.
We instead combine the Pauli projection operators
into a simplified effective neutron-proton interac-
tion V„'p that can be used in place of V„p in strip-
ping calculations.

The operator V„'z can be regarded as the analog
for deuteron stripping of the medium-dependent t
matrix that appears in theories of other direct reac-
tions. (Some complications of this interpretation,
associated with nonlocalities of V„'p, are discussed
at the end of Sec. II.) This use of a t matrix is not
entirely new. It is not generally recognized that the
standard DWBA theory of deuteron stripping al-
ready has the structure of a distorted wave impulse
approximation, in terms of the free t matrix, in
which V„~ multiplies the eigenfunction P~(r). This
elementary DWIA structure has been one of the
reasons for the success of the standard theory.

Medium effects were considered previously in a
rather formal article by Dohnert" and in an explicit
analysis of '

O(p, d) by Preedom, ' based on Green's
semiempirical bound-state 6 matrix. ' Although
the bound-state 6 matrix contains substantial Pauli
effects, ' we will see that the characteristic momen-
tum relations in a stripping reaction tend to
suppress such effects. Antisymmetrization effects
in deuteron stripping and elastic scattering have
also been considered by Thompson, ' using a gen-
eralization of his method for calculating nonortho-
gonality terms in rearrangement collisions. '

The Pauli effects in V„'z are only large at low
bombarding energies, when they tend to weaken the
neutron-proton interaction in the nuclear interior.
Other effects that suppress stripping contributions

from the nuclear interior are the Percy effect, '6

breakup effects calculated in the adiabatic approxi-
mation, ' ' and the phase averaging implied by the
careful use of distorted waves. ' Although Pauli
suppression of the interior is redundant with these
other effects, it can be important at low energy if
the entrance and exit channel momenta are substan-
tially mismatched, so that phase averaging is not ef-
fective.

II. THEORY

for the wave function g(r~, r„) of relative motion.
Here E is the kinetic energy operator for the two
nucleons, and U„and Up are single-particle poten-
tials for interaction of the nucleons with the target
nucleus. Although U„and Up are treated as local
optical potentials, the derivation of Eq. (1) normally
interprets them as Hartree-Fock potentials, which
already incorporate important effects of antisym-
metry. In addition we require the reduced wave
function f(r~, r„) to be orthogonal to the occupied
single-particle eigenstates of the Hamiltonian

h„+hp =E+U„+Up .

This requirement comes into question on the right
hand side of Eq. (1), because V„z can to some extent
cause transitions into the occupied single particle
states. This problem is dealt with by the operator
Q, which projects V„~f on to unoccupied product
states of h„+h„. Evidently the left hand side of
Eq. (1) preserves the projection property of Q; the
boundary conditions for f also usually conform to
this property, therefore Eq. (1) leads to a g that is
entirely orthogonal to occupied single-particle (s.p.)

states.
Let us rewrite Eq. (1) in the form

with

(E —Ho)g=(Q —1)Vpp, (3)

Ho=—h„+hp+ V„p . (4)

Here (Q —1) is a projector on to product states that
have at least one occupied s.p. orbital. The right
hand side of Eq. (3) is a correction to the three-body
model defined by Ho. Previous analyses have been

Analyses of antisymmetry in the neutron plus
proton plus nucleus system ' all arrive at a re-
duced three-body equation of Bethe-Goldstone form

(E E ——U„Up)g(—rp, r„)=QV pP(rp, r„),
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G =(E+—Hp)

we obtain

(7)

it=[i —«Q —1)V.p] '4o

= [1+6(Q—1)V„r[1—G (Q —1)V„q] 'I go, (9)

=[1+6(Q—1)V„',"]g, . (10)

based on simple approximations of this correction
term, using factored expressions for 1(. We now
develop an improved analysis of the correction.

We consider an integral equation equivalent of
Eq. (3),

4=Co+«+ —Ho) '(Q 1)—~nif ~

with gp the exact solution of the uncorrected three-

body problem

(E Hp)g—p( 1'& r ) =0 .

Spurious effects appear in gp because V„z causes
coupling to occupied single-particle states. The
second term of Eq. (5) cancels these spurious parts
of gp.

Equation (5) can be solved in terms of a formal
effective interaction that operates on fp to generate
the full f Using . the notation

V„'~ = —
I f&[1+Pf(R,R')] '(f

I
.

The nonlocal operator

(15b)

Pf(R,R'):—(f I
6(Q —1)

I f&, (16)

which acts only on the center of mass coordinate R,
is the correction for Pauli blocking. A linearized
version of Eqs. (15a) and (15b),

PNp~= —
I f&[1—Pf(R, R')]&f I, (17)

allows easy interpretation of Pf, either as a wave
operator that projects italo on to Pauli forbidden
states, or as a scattered amplitude generated from
the perturbation (Q —1)V„~gp. We note the reason-
ableness of separable approximations for the short-
range interaction V„z. However, care must be taken
that the Yamaguchi form does not misrepresent the
high momentum matrix elements of V„&.

Approximations for Pf are facilitated by the fin-
ite ranges of ( r

I f& and of the bound s.p. orbitals
in (Q —1). On the other hand, the factors (f I,

I f & select values of the three-body Green's func-
tion G near r =0. This suggests a need for careful
treatment of V„r in Hp in the Green's function.

It is convenient to remove V„r for separate treat-
ment by the steps

Here the effective interaction in Eq. (10) is

V„'~ = V„~[1—6(Q —1)V„r]

We see that V„rl( in Eq. (5) has been replaced by
V„'r l(o in Eq. (10); thus our definition of V„'~ fulfills

the usual relation

Gi =(E+—h„——hr )

G=G)+G) VpG,

=6 -6 If&&f IG,
so that

(18)

ff
Vnpf= +np 4o . (12}

and

&f I
6 = &f I

Gi —&f I Gi lf & &f I
6

Evidently Pauli corrections to stripping are accom-
plished if the product V„zf in the stripping matrix
element is replaced by the equivalent expression
V„'& lip, using the uncorrected wave function Pp. We
now consider practical approximations for the com-

plicated nonlocal operator V„'z .
Considerable simplification is obtained by use of

the separable approximation

&f I
6 =[1+&f I

Gi If&] '&f
I Gi .

By this transformation we obtain

Pf(R, R') =APp,

in which

Pp(R, R')—:(f I Gi(Q —1)
I f&,

(20)

(21)

v. =—If&&fl (13) with

in which we later introduce the Yamaguchi form A= [I+&f
I Gi If&l—' (22)

(r
I f& =Ne ~'Ir . (14)

Insertion of Eq. (13) in Eq. (11) leads to the factor-
ized expressions

V~p ——Vr (r)[1+Pf(R,R') ] (15a)

the operator that corrects for short range correla-
tions.

Approximations suitable for use in A are the
Yamaguchi interaction of Eq. (14) and the short-
range expression

or G i —[E+ K„Kg—V(R}]—— (23)
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(24)

in which

kg (R)=(4M—/A )[Eo+ —V(R)], (25)

a is the reciprocal of the deuteron radius, and Eo is
the incident deuteron kinetic energy. The parame-
ter N of Eq. (14) has been adjusted so that A has a
pole if the relative energy equals the deuteron bind-
ing energy. The infinitesimal positive imaginary
part of kq determines the phase of the square root
in Eq. (24), such that its imaginary part must be
negative.

We recognize A as an r=0 projection of the
three-body Green's function Gi', we must expect
that the operator P~ obtained from the application
of A on Po in Eq. (20) is of rather long range in

~

R—R' ~, even if Po itself is more localized.
We now consider the nonlocality of Po(R, R').

This operator is used in the expression

(26)

in which PI=APo of Eq. (20) operates on (f
~
Po&.

We reduce the nonlocality of Po(R, R') by introduc-
ing local Wentzel-Kramers-Brillouin (WKB) ap-
proximation in Eq. (26) to replace (f

~
go& at R' by

the approximation

in which E,+z are kinetic energy operators, and

V(R) —= U„(R)+Up(R) .

With these approximations, integration over r
yields

'2 —1

A= 1—

(f ~4o&a =(f ~4o&a expik~. (R' —R) . (27)

The reasonableness of the local WKB approxima-
tion is examined later.

To continue the explicit evaluation of Po we re-
call9' that (Q —1) is a sum of single- and double-

exchange terms. Double exchange is usually rather
weak. In the present case it requires an overlap be-

tween both nucleons of the incident deuteron and

occupied states in the Fermi sea; momentum
mismatch causes the contribution from this overlap
to be negligible. The single-exchange terms of
(Q —1) can be expressed in terms of density ma-

trices, so that

(Q —1)= —,[p~(r~, r ~ )5(r„—r „')

+p„(r„,r „')5(r —r '
)] . (29)

There is a factor —, in Eq. (29) because only half the

occupied states have spins parallel to those of the
incident nucleons. We now insert Eq. (29) in Eq.
(21) for Po and we allow h~ of the Green's function
to operate on the s.p. orbitals in the first term of
Eq. (29) and h„ to operate on the s.p. orbitals in the
second term. Both these operations are replaced ap-
proximately by multiplications by e, an average s.p.
energy for the occupied orbitals. By this series of
steps Po(R) reduces to

Here k~(R) is the local momentum whose magni-
tude is defined in Eq. (25). The exponential factor
of Eq. (27) is combined with Po(R, R') to define the
local counterpart

Po(R):—e " f d R'Po(R, R')e

(2g)

Po(R)= —e " I d R'(f
~

(E+ e h„) 'p&—(r&—, r')
~ f&e (30)

-+
where the two terms of Eq. (29) are assumed to contribute equally to Po(R). The bra and ket vectors in Eq.
(30) imply integrations over the relative coordinates r, r ', respectively.

To complete the calculation of Po we insert the factorized density matrix of Negele and Vautherin ' '

with

C(rp —r')=3ji(kp
~

r —r'
~
)/k~

~

r —r '
~,

g3g ~ ~ '~ ~p ~p]
k&kF

Under the approximation that pz is slowly varying and can be removed from the integral, Eq. (30) becomes

(32)

Po(R) = (3p(A)/8mk~ ) I d k [f(k+ —,kg)] [(k+kg) —~ —ie]
k &kF

(33)
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(34)(fi a /2M)=E„(R)=E —e—U„(R) .

The form factors f( k+ —,kd ) are Fourier
transforms of the interaction functions (r

~
f ) in

Eq. (30),

f(q)—=f d ' ( lf) . (35)

where p(R) is now the total density of nucleons,

p =2p~. The momentum 1rwc(R ) is the local momen-

tum of the nucleon that is not exchanged into an oc-
cupied state. It contains the potential from h„ in

Eq. (30), so that

The two form factors in Eq. (33) originate from the
two coordinate transformations implied in Eq. (30),

~/ / ~lr,R ~r&, r„, rp, r„~r,R .

Our final formal step returns to the A factor in
the local WKB analysis of Eq. (26). Because the
derivative operator in A now appears in the product

APo(R)(f
~ 1t1o)

we simply replace 721 in Eq. (24) by —(q+k~)
and obtain

APo(R)(f
~ Po) R = f d qA( —(q+kd) )Po(q)e (f

~

1I('o) R (36)

where Po(q) is the Fourier transform

Po(q)=(22r) f d Re 'q'"Po(R) . (37)

As a guide to the properties of A(x) we approxi-
mate A in Eq. (24) by the form obtained by neglect-
ing the small quantity a, to obtain

A( —q )= 1+P [13(q kd )'/—
+'( 2 k2)) —1

so that
~'

A(x) =5(x)+e
2

0 p( 2 k 2)1/2+1( 2 k 2)

In evaluating Po(q) we take the R dependence of
Po(R) to be that of p(R) in Eq. (33), with p(R)
given by a Woods-Saxon form, for which an accu-
rate expression for the Fourier transform is well
known. Equation (36) can also be written in terms
of a folding integral

APo(R)= f d R'A(R —R')Po(R'), (38)

where

A(x)=(22r) f d qA( —q )e

(39)

range correlations in the original Green's function
in Eq. (16).

We see that the function A(x) is strongly aniso-
tropic and that in some directions it becomes rather
long ranged, since as x takes different directions the
oscillations of H'1" can be reinforced or cancelled
by those of exp( i kd —x) The. short range correla-
tions in A propagate farthest for x in the forward
direction. These properties are appropriate, since
the Pauli correction term in Eq. (26) not only gen-
erates short range modifications inside the target
nucleus, it also generates Pauli modified scattered
waves. Thus, the effective interaction V„'z does not
approach V„z as R —+ ao, as can also be seen formal-

ly from the definitions in Eqs. (15) and (16). (Cal-
culations of effective interactions for bound states
are not subject to these long range complications. )
In this work emphasis is placed on the short range
modifications, which are of most relevance to strip-
ping. Calculations of the Pauli modified elastically
scattered waves are reported in Refs. 15 and 22. We
finally note that the long range properties of A do
not conflict with the use of local WKB, because the
WKB approximation for (f ~

go) R is only applied
in the source function for A, in its limited region of
overlap with Po(R). The calculations reported in
the next section make use of the expression Eq. (36)
without the approximations to A that lead to Eq.
(40).

=5(x)+e H1 (kgx) .
4+x

(42) III. DISCUSSION AND APPLICATIONS

In obtaining Eq. (42) the small second term in the
denominator in Eq. (41) has been omitted. The
second term in Eq. (42) now accounts for short

Physical applications of the above theory are
based on the approximate effective np interaction of
Eq. (26),
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V~~p- V„p(1+APO) (43)

with the correction term APO given by Eqs. (33},
(36}, and (37). We now compute APo for some
cases of practical interest.

A. Local WKB

function p(R} in Eq. (37), in place of the accurate
Po(R), so that

Pg (0)= (APp )g 0

I d'q A( —(q+ kd )'}p(q )
=Pp(0) (44)

d qp(q)

The weakest step of our analysis probably has
been the use of local WKB approximation in the
projected wave function (f

~
$0)-„, to reduce the

Green's function in Po to the simple energy denomi-
nator of Eq. (33). Local WKB is sometimes seri-

ously misleading. For example, it was shown long
ago that a local WKB evaluation of the finite-range
correction to stripping greatly exaggerates that ef-
fect. However, the finite-range analysis concerns
a rapidly-varying form factor, and it makes essen-
tial use of relations between the directions of local
momenta. In the present case we apply the local
momentum in a Green's function, and it is only
combined vectorially with the Fermi gas momen-
tum k, which is averaged over all directions. Our
use of the local momentum seems sufficiently accu-
rate for this application.

Corrections to local WKB would be obtained by
treating (f

~
1(p) R as a distribution of momenta,

rather than as a single local plane wave of momen-

tum kd. Because such corrections are likely to be
most important in the surface region, we consider
our theory to be unreliable in the nuclear surface
and we only place emphasis on our calculated re-
sults at R =0.

Although we. ignore the possible distribution of
momenta kd in Eq. (33), the introduction of such a
distribution would have helpful implications. With
independent averages over k~ and over the momen-
tum k in the Fermi sea, each momentum average
would tend to reduce complications that might be
associated with the other momentum. For example,
the d k integration would tend to eliminate modifi-
cations of kd due to absorption. On the other hand,
if kF were treated as density dependent and allowed
to become small in the surface region, we see that
an average over kd in Eq. (33) would tend to com-
pensate for the lost average over k. Once again, we
ignore these aspects and emphasize R =0.

with Po(0) calculated from Eq. (33) at R =0.
Equation (33) is integrated semianalytically, using
the form factor obtained for the Yamaguchi in-
teraction of Eq. (14)

(45)

with

[f(0)]'=(8m%'/PM) 1+—

=1070 MeVfm (46)

Reasonable estimates for the other parameters are

p(0) =0.17 fm, EF——38.5 MeV,

kF ——1.36 fm ', P=1.34 fm
(47)

TABLE I. Values of the Pauli correction factor for
Pb at R =0, as a function of incident deuteron kinetic

energy Ep. This factor relates V„'~ and V„~ in Eq. (15).

The Pauli correction at R =0 is now calculated
numerically for a Pb target nucleus, using Eqs.
(33) and (44). The local momenta kd(0) and x'(0),
defined by Eqs. (25} and (34}, are calculated assum-

ing U„and Vto be the nucleon optical potential and
the sum of the neutron and proton optical poten-
tials, respectively. These are taken from the tabula-
tion of Becchetti and Greenlees. For p(R) we
choose a Woods-Saxon form derived from electron
scattering. Finally the local energy E„(0) is ob-
tained from Eq. (34) using the estimate e= —20
MeV. (Explicit calculations show that our results
are not sensitive to change in e in the range —10 to
—30 MeV, except at the lowest incident energies. )

The results for P&(0) and [1+P~(0)] ' at several

typical bombarding energies are given in Table I.

B. Numerical results for ~ Pb target at R =0

For a first application of the Pauli correction
theory, we evaluate APO of Eq. (43) at R =0. We
apply the correlation factor A to a simple shape

Ep (MeV) Py(0) =(APp)g p

0.38+i0.95
0.34+ i o.60
0.30+i0.27

[1+Pg(0)]

0.49—i0.34
0.62—i0.28
0.74—i 0.15
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The effective interaction V„z[1+Pf] ' at R =0 is
seen to increase slowly with energy, as expected. It
is interesting that the correlation factor A approxi-
mately doubles the value of Pf(0) in this calcula-
tion.

For very high energy we have kd &&kF and ~,
therefore Eq. (33) reduces to

(rnb/sr)

Mg(p, d)' Mg Ep = 94MeV

Po(R) =p(R)[f(
&

kd )] l2kg (48)

Although this approximation is not very useful at
moderate deuteron energies, it does bring out the
important role played by the momentum depen-
dence of the V„z form factor in determining the
magnitude of the Pauli correction. We comment
further on this effect in Sec. IV.

0.1-

C. Effect of R dependence: Application to Mg

An estimate of the R dependence of P& can be ob-
tained by endowing the quantities Ed(R), E„(R),
and Ez(R) with the R dependence obtained from
Eqs. (25) and (34), using physically reasonable po-
tentials V(R) and U„(R), and an assumed nucleon
density distribution p(R). As an illustration we
have chosen the case of 80 MeV deuterons incident

c.m.

40

FIG. 2. DWBA zero-range calculation for
Mg(p, d) Mg (2.36 MeV,

2
state) at Ez ——94 MeV

with (dashed curve) and without (solid curve) the Pauli
correction factor of Fig. 2. The data are from Ref. 31.

1.0

0.94

on Mg, which has been the subject of considerable
recent interest.

Our results for (1+Pz) ' are shown in Fig. 1

and the effect of inserting this factor into a stand-

I

CL

0.88

0

-001-

-0.02-

TABLE II. Potential parameters. Coulomb radius
=1.3 fm, spectroscopic factor =0.655 (Ref. 30), and
neutron binding energy =18.891 MeV.

Proton Deuteron
(Ref. 24) (Ref. 29) Neutron

-0.03 =-

0
I

3

R (fm3

I

9 Real

V (MeV)
r„(fm)
a„(fm)
Shape

25.58
1.17
0.75
WS

61.50
1.25
0.70
WS

68.23
1.31
0.70
WS

FIG. 1. Pauli correction factor (1+PI)
' as function

of R, for 80 MeV deuterons incident on Mg, as given
by Eq. (36) (spherically symmetric part only) and Eqs.
(25) and (34).

Imag.

8' (MeV)
r~ (fm)
a„(fm)
Shape

18.0
1.32
0.51
WS

13.5
1.12
0.69

WS Der.
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ard DWBA zero range calculation of the reaction

Mg(p, d) at 94 MeV is shown in Fig. 2. Table II
lists the parameters used for this calculation. It is
clear that the Pauli correction alone cannot account
for the order of magnitude discrepancy with experi-
ment reported in Ref. 26.

values of the angle 8 between k~ and R for the
same case as Fig. 1. Clearly, the angular depen-
dence of Py will play an important role in a precise
evaluation of the Pauli effects in the nuclear sur-
face, but it is unlikely to modify the qualitative na-

ture of the results shown in Fig. 2.

D. Angle dependence of A IV. SUMMARY

1.0

0.9

0
Imag.

As a final refinement of the calculation of PF(R),
we return to the observation made following Eq.
(42), concerning the dependence of APO in Eq. (36)
on the angle between k~ and R. This effect has
been ignored in the calculations reported so far, ex-

cept at 8 =0, where, of course, only the spherically
symmetrical part of APo survives.

The I.=1 contribution to this angular depen-
dence is readily calculated. In Fig. 3 the resulting
modified factor [I+Py] ' is shown for three

Pauli modifications of the three-body neutron
plus proton plus nucleus relative wave function are
expressed in terms of an effective neutron-proton
interaction V„'& whose strength is reduced in the nu-

clear interior. Although this effective interaction
also leads to Pauli modifications of elastic scatter-
ing and breakup cross sections, we give particular
attention to stripping, for which the amplitude is
directly a matrix element of V„'z between unmodi-
fied wave functions. In an application to Mg the
real part of V„'~ in the nuclear interior is approxi-
mately seventy percent of V„z at low energy, but it
is about ninety percent at 100 MeV. Thus the Pauli
effects do not seem relevant to recent investiga-
tions of the Mg(p, d) reaction at 94 MeV. How-
ever, Pauli suppression of interior contributions at
low energy may be significant in cases of poor
momentum matching, which would otherwise allow
interior contributions. Similar results are obtained
in an alternative analysis by Tostevin, Lopes, and
Johnson, based on an adiabatic approximation of
an intermediate Green's function.

The small value of the Pauli correction obtained
here is greatly infiuenced by the small value of the
squared form factor in Eq. (33), as indicated by the
ratio

[f(kg/2)/f(0)]',

-0.1
0

I

6

R (fm)

FIG. 3. The Pauli correction factor (1+Py) ' for 80
MeV deuterons incident on Mg. These calculations in-

clude both the L =0 and L =1 parts of the dependence
on cos8 (=kq.R/kqR) in Eq. (36). The solid, dashed-
dotted, and dashed curves correspond, respectively, to
cos8=+1, 0, and —1.

which ranges from 0.21 at low energy to 0.10 at 100
MeV. Although it may be objected that our I =0
Yamaguchi form factor might fall too rapidly at
high momenta, we can note that important finite
range reductions of f are inherently reasonable.
The Pauli corrections to stripping remove spurious
transitions from the continuum to Pauli forbidden
bound states. These forbidden transitions involve
much larger momentum differences, for example,
than those that appear in corresponding analyses of
Pauli modifications of the t matrix for elastic
scattering. Therefore, smaller Pauli effects are ex-
pected in stripping than in scattering.
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