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We present results of calculations of the longitudinal and transverse response function
for inelastic electron scattering from Fe and ' C. In the impulse approximation it is
found that the calculated longitudinal response is approximately forty percent too large for
' Fe. We discuss those aspects of nuclear dynamics which could account for this
discrepancy and suggest that the depletion of the shell model orbitals through various
(short-range) correlation effects may play an important role. It is suggested that a signifi-
cant longitudinal response may exist at energies above the quasi-elastic domain; this
response would involve the excitation of 2p-2h states. In our model there is a significant
disagreement between theory and experiment for the transverse response. We ascribe this
disagreement to meson-exchange-current effects; however, we present no calculations of
such effects in this work. Quantitative studies of these effects in finite nuclei are required.
If our model for the quenching of the longitudinal response in the quasi-elastic domain
proves to be correct, we can infer that quasi-elastic electron scattering studies may provide
a measurement of the average probability of the occupation of a shell model orbital.

NUCLEAR REACTIONS Quasi-elastic electron scattering; transverse
and longitudinal response functions; finite nucleus calculations in a

modified impulse approximation.

I. INTRODUCTION

One of the most interesting experimental results
in recent years has been the separation of the longi-
tudinal and transverse response in inelastic electron
scattering for intermediate values of the momentum
transfers. ' One striking feature of the analysis has
been the failure of the standard Fermi-gas model to
explain the data. For example, as may be seen in
the figures of Refs. I and 3, the Fermi-gas model
gives a result that appears satisfactory for the trans-
verse response but is about a factor of 2 too large
when the longitudinal response is considered. This
discrepancy is particularly difficult to understand
since meson-exchange-current corrections are ex-
pected to be small for the longitudinal response, al-
though such corrections can be quite important for
the transverse response function. Noble has con-
sidered this matter and noted that the longitudinal
response could be reduced by modifying the nucleon
form factor, that is, allowing for a larger proton

size in the nuclear medium. In this work we con-
sider an .alternative explanation of the nuclear
response and argue that the reduction of the longi-
tudinal response may be a more or less direct mea-
sure of nuclear correlations which deplete the shell
model orbitals. In order to study this question and
avoid the uncertainties introduced by the Fermi-gas
model we have carried out our calculations using
wave functions appropriate to a finite nucleus. The
calculations are relativistic in that we solve the
Dirac equation to obtain the spinor wave functions
of the bound orbitals. The continuum orbitals are
solutions of the free Dirac equation. The details of
the calculation are presented in the following sec-
tion. However, it is useful to summarize our results
at this point.

Our calculations do not contain any free parame-
ters and we find that for both Fe and ' C we ob-
tain a good agreement with the shape and peak po-
sition of the experimental curve in the quasi-elastic
region. Without any modifications, the calculated
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transverse response is in fair agreement with the
data while the longitudinal response is uniformly
too large. If we multiply our cross sections for 56Fe

by 0.6 and those for ' C by about 0.7 the longitudi-
nal response is given correctly. This procedure now
leads to more marked disagreement between the. cal-
culated and measured transverse response. We be-
lieve that the effects of meson-exchange currents
which enhance the transverse response may account
for this discrepancy. We further assume that it is
important to construct a model which fits the longi-
tudinal response, since corrections from meson
currents are small in this case. '

We should also note that final-state interaction
effects in inclusive electron scattering have also
been studied. The effects are not particularly large
and lead to a reduction of the peak height by 5 to
10 percent. We refer the reader to Ref. 6 for a dis-
cussion of this effect.

In the following sections we present arguments to
indicate that the factors 0.6 and 0.7 mentioned
above can be interpreted as the square of a wave
function renormalization constant. That is, in the
case of Fe we expect an occupation probability of
v'0. 6=0.8 for each orbital. (For ' C the corre-
sponding probability is somewhat larger since ' C is
a less dense system. ) Essential to our argument is
the observation that the depletion of the shell-model
orbitals mentioned above is due to the short-range
("hard-core") and tensor parts of the nucleon-
nucleon interaction. Thus each particle orbital has
admixed 2p-1h states in which the particle states
have large momenta. As we will discuss later in the
work, this has the effect of shifting strength out of
the quasi-elastic peak to higher energies. If our in-

terpretation of the data is correct we can conclude
that quasi-elastic electron scattering may be used to
obtain a fairly direct measure of the depletion of
nucleon orbitals due to short-range correlations. Of
course, to obtain a truly quantitative measure of or-
bital occupation probabilities it will be necessary to
have good theoretical estimates for the effects of
meson-exchange currents.

The plan of our work is as follows. In Sec. II we
review some aspects of the theory of quasi-elastic
electron scattering and present the results of our
calculations. In Sec. III we discuss those aspects of
many-body theory that are useful for the considera-
tions of this work and we indicate how we may im-
prove upon the impulse approximation. We also
discuss how considerations of unitarity aid in
understanding the dynamics. In Sec. IV we discuss
the experimental data for 6Fe and ' C. Finally, in
Sec. V we present some concluding remarks.

II. QUASI-ELASTIC ELECTRON SCATTERING

—2W)(1 q I,co)tan —,8],

(2.1)

where the Mott differential cross section OM is
given by

cc cos (8/2)
4E~ sin (8/2)

(2.2)

Here Mr is the mass of the target. The longitudinal
and transverse response functions are given by
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We shall be using the Bjorken and Drell convention
so that q2=c02

I q 12. —
The functions W~ and W2 appear in the response

tensor M» which may be written in the laboratory
frame as
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Here

P~=(P" (q'P)q"/q )/Mz'—

The quantity in the square brackets in Eq. (2.1) is
N,""M„where

The electron scattering cross section is usually
written as (see Fig. 1)

~xcI: W2( I q I
~)de Z

2 2 T
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N,"'=
—,Tr[p(jt(+m, )y'(jt2+m, )]/[4E)E2cos (8/2)]

=[k~)k&+k~2k(+g""(q /2)]/[2E, E2cos (8/2)] .

For the matrix elements of the nuclear current in Eq. (2.5) we have taken (see Fig. 1),
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Here
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with F, (0)=F2(0)=1;F)(0)=0, Fz(0) =1;v~ =1.793, a„=—1.913. Also,
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The bound-state wave functions QJLM(Q) are the Fourier transforms of the solutions of the Dirac radial equa-
tion:

. a V +P[—M~+S(r)]+V(r) /JISM( r) =(M~ eJI. —)PRIM(
l

(2.11)

Here S(r}and V(r) are scalar and vector potentials
corresponding to a self-energy

X(r) =S(r)+13V(r) .

I

As usual we put

FJL(r)5'i. (r)
ELM r &G (r)@AM(r~} (2.12)

and write
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P= (M, , o) = [EJL(Q), -Q j
where

(2.14)R„(Q)= f F (r)J'z (Qr)r drv'2ln, .
FIG. 1. Basic diagram used to calculate the quasi-

elastic process. Here

EJI.(Q}=[M~s'+Q]'.
and

Ex(q+Q}=[M& +(q+Q} ]'

R JL(g) ( 1)(L' L1+)12—
X f G (r)JI. (r)r dr@'2/rr .

(2.15}

with Mq~ and M~ the mass of the residual nucleus and
the nucleon, respectively. The heavy solid line denotes
the nuclear target or the residual nucleus and the wavy
line is a virtual photon.

If we insert Eqs. (2.7)—(2.10) into Eq. (2.5) we
fll1d

(2.16}
JL
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where
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Here the target density matrix pJL (Q) is given by The trace Tfi is given by
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Note that if we replace Bfz by pI' and AJL by MN we find the free-nucleon trace

Pr"PI'
V

T""~4M q [F +aF ] g"'+2 F F2 q-
., 2Mg 2M~ M~

(2.24)

In addition, for the purposes of the following discussion, we write

Tfg 4Ig"'T i+ (PNBJ——L+PNB fg )T2 ],
where Ti 2 are given by comparison with Eq. (2.23). Since Tfz is not gauge invariant we define

(2.25)

P V

T1 + (PNBJL +PNBJL )T2 (2.26)
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where

etc. Further we form the kernels appropriate to the calculation of Wi, W~z [see Eq. (2.5)]:

(A 'P)(&ac 'P)~Mr'

[1 (P.—q) l(q Mr )]
(2.27)

P 2

io2 = 7'2 3(P~'P)(&zL, 'P)~Mr' p~'&—sc 1 — [1—(q'P)'~(q'Mr')] '. (2.28)

In terms of w i z we have
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(2.29)

Since ui; depends only upon cos(q Q), we may reduce the integrals required in the calculation of Wi and
8' to
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x
A
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Results of our calculations for the transverse and
longitudinal response functions, gr and g&, are
shown in Figs. 2 and 3. We will call the response
shown in Figs. 2 and 3 the unmodified impulse ap-
proximation result. These results may be compared
with the experimental data given in Ref. 1. In the
next section we will make such a comparision.
ever, before proceeding we will discuss the theoreti-
cal basis for introducing a modified impulse ap-
proximation.

1q1 MJL, —M~

A

A'=(co+Mr )'—
1 q 1' .

In the nonrelativistic limit

(2.35)

(2.36)

III. SOME ASPECTS OF
MANY-BODY THEORY

In the Introduction we noted that a direct appli-
cation of the impulse approximation failed to ex-
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where a and P are spin-isospin indices. [The factor of 2 in Eq. (3.5) arises from a spin summation. ] Explicit
expressions for the polarization operator in this approximation are given in Ref. 8. (In realistic calculations
one must include the nucleon electromagnetic form factors. )

As may be seen from inspection of Fig. 1 of Ref. 1, an attempt to fit the response function using this form
of the impulse approximation in the context of the Fermi-gas model has similar defects as the unmodified im-

pulse approximation described in the last section. In particular, the calculated longitudinal response is too
large.

In order to go beyond the impulse approximation we consider the approximation to the polarization opera-
tor in which we use self-consistent Green s functions in Eq. (3.4). That is, instead of 6 p of Eq. (3.6), we use
the Green s function of an interacting system. This function may be written as the sum of two terms, one of
which has a right hand cut and one of which has a left hand cut in the complex co plane:

8(~k~ —k~) 8(kF Ik —
I

)
Gop(k, co) =5~p +

co —cok —X(k,co+iran)+it) co —co& —X(k,co —t'i)) —ii)
(3.7)

Here X(k,co)/fi is the nucleon self-energy. One usually writes, for co=cok and X(k,co)=X„(k,co)+iXI~
X(k,co),

BXg
Xz(k, co)=Xx(k,cop)+(co —co-„) (k, co)

~
=~-+ ' ' ',

to obtain

Z(k)8(
~

k
~

—kp) Z(k)8(kp —
~

k
~

)
G~p(k, co)=5op +

co co „——X'(k, co i, +iq)+i'll co co z
—X'(k—,co& ill) —irl— (3.8)

where

Z(k) = 1 — (k,co) (3.9)

l

structure involves the coupling of the quasi-particle
to 2p-1h states.

The equation for G(k, co),

6(k,co)= G (k, co)
is the wave function renormalization constant and +6 (k,co)X(k,co)6(k,co), (3.10)

X'(k, co q ) =Z(k)X(k, co q ) .

Note that the expression given in Eq. (3.8) is accu-
rate near the quasi-particle pole at

co=cok+X'(k, coq) .

In addition to the quasi-particle pole, 6(k, co) of
Eq. (3.7) has a cut structure associated with the ana-
lytic properties of X(k,co). If we use the model for
X(k,co) shown in Fig. 5(a) we see that this cut

k+q

FIG. 4. Basic diagram for the calculation of the polar-
ization operator, IIO(q, co). An integration over k is im-
plied. [See Eqs. (3.4) and (3.5).] The dotted line denotes
a photon of four momentum q =(q, co). The crossed dia-
gram is not shown.

is shown in Fig. 5(b), where a heavy line is used to
denote 6(k, co) and a light line is used for 6 (k,co).
The perturbation expansion for X(k,co) indicated in
Fig. 5(a) may be used to provide a corresponding
expansion for 6 (k,co), as in Fig. 5(b). In this figure
we have indicated the renormalization of the pole
term by the factor Z. [There is also a shift in the
position of the pole as may be seen upon inspection
of Eq. (3.8).] If we neglect the low-lying collective
modes, which become relatively less important with
increasing momentum transfer, the intermediate
particle states appearing in X(k,co) or 6(k,co) have
quite high momenta as these excitations are induced
by the strong short-range parts of the nucleon-
nucleon interaction.

At this point we may exhibit in Fig. 6 a diagram-
matic representation of the polarization operator
appropriate for the calculation of the longitudinal
response. Here the heavy lines denote the Green's
functions of Eq. (3.8) and the dark triangle is a ver-
tex function. If we use the equation for the vertex
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X (k, (u) 1T (q, u))

(a)

+ ~ ~ ~

(a)

G (k, (u)

+ + IE
ik

FIG. 6. Diagrammatic representation of the integral
equations appropriate to the calculation of the longitudi-
nal part of the polarization operator. (a) Here the heavy
lines denote the Green's function of Eq. (3.7). The dark
triangle is a vertex function. (b) Schematic representation
of the integral equation determining the vertex function.
Here T is a nucleon-nucleon scattering amplitude. Use of
this equation leads to the second line of part (a) of the
figure.

+ ~ ~ ~

FIG. 5. (a) The self-energy of a nucleon. Here the

wavy line denotes a T matrix and the dashed line is a po-
tential interaction. (Only the direct terms are shown. ) In
this figure we limit ourselves to the term of the self-

energy containing a single T matrix. (b) Diagrammatic
representation of the equation for G(k, co). The heavy
line represents G(k, co) and the light line is G (k,co).
The wavy line is a T matrix and the dashed lines are po-
tential interactions. (Only the direct terms are shown for
simplicity. )

function shown in Fig. 6(b) we obtain the second
line of Fig. 6(a). Here T denotes a particle-hole
scattering amplitude. Further analysis of this equa-
tion for the polarization operator could lead to a
description of the response in the random phase ap-
proximation (RPA), for example. Calculations
which will be reported elsewhere indicate that col-
lective effects are not completely negligible in the
longitudinal response at intermediate values of the
momentum transfer; however, in a first approxima-
tion we can drop the term describing particle-hole
rescattering. (We will comment at a later point
concerning the uncertainties in the model which are
introduced by the neglect of collective aspects of the
nuclear response. )

Thus we are motivated to consider a calculation

of ImII( q, co) which involves only the Green's func-
tions of Eq. (3.7). Further, let us also restrict our-
selves for the moment to the use of only the pole
terms of G(k, to) given in Eq. (3.8). (See Fig. 7.)
Except for some effects associated with the detailed
structure of X'(k, co& ), we see that, if Z(k) is not
strongly dependent on k, the result is

II(q,co)=Z Iio(q, co) . (3.11)

We suggest that Eq. (3.11) is a useful approximation
if I q ~

is large and Imlio(q, to)@0, that is, in the
quasi-elastic scattering region. The basis of this ar-
gument may be illustrated as in Fig. 7. The first
part of this figure shows II( q, co) expressed in terms
of the Green's functions G(k, co) of Eqs. (3.7) and
(3.10). These Green's functions may be expanded as
in Fig. 5(b} and two terms arising from such an ex-
pansion are shown in Fig. 7. The first of these
terms corresponds to Z IIO(q, co). The second of
these terms shows the coupling of the photon to
2p-2h states uia the strong interaction. The last dia-
gram shows the photon interacting with a highly
excited nucleon (k»kr} already present in the
correlated target. In order to generate this term one
must go beyond the model for the self-energy
shown in Fig. 5 and include terms quadratic in the
T matrix (rearrangement terms).

Now, if the momentum transfer in the strong in
teraction, q ', is large, the intermediate 2p-2h states
can haue large energies placing them aboue the
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(e, e')

0 MeV/c

.6

IOO—

IOO 200
+ Z

k

(u (MeV)

FIG. 8. The modified impulse approximation
(Z2=0.6) for Sl (q, co) for ' Fe. Here

~ q ~

=330 MeV/c.
The data are from Ref. 1.

+ Z

k'--q

k'+ q

k
I

FIG. 7. The photon polarization tensor II(q, co) in the
approximation considered in this work. The heavy lines

are Green's functions G(k) and G(k +q) while the light
lines are 6 (k), . . . , etc. The dashed lines denote poten-
tial interactions. [See Fig. 5(b).] Here Z denotes the
wave function renormalization constant. Note that the
second diagrammatic expansion for II(q, co) is written in

terms of Goldstone diagrams. Crossed diagrams are not
shown. To obtain the last diagram shown one must con-

sider terms of the self-energy of higher order in the T
matrix than those shown in Fig. 5.

energies. We now note that calculations of occupa-
tion factors in finite nuclei give 0.77&Z&0.84.
The range of values is associated with different as-

sumptions concerning the intermediate state spec-
trum in a reaction matrix calculation in the finite
system. The occupation factor is more or less in-

dependent of the orbital and for definiteness will

take Z2=0.6. It is clear from Eq. (3.11) that the in-
clusion of this factor will lower the theoretical value
for the longitudinal response by about 36 percent.
In Figs. 8—10 we compare the data for the longitu-
dinal response for Fe with the theoretical curves
where the impulse approximation result has been re-
duced by a factor of 0.6. In general, the agreement
of the modified curves with the data is satisfactory.
The situation with respect to the transverse response
is now more complicated. Upon inspection of Figs.
11—13 we see that the disagreement between the

quasi-elastic region. Thus the reduction of
ImII( q, co) in the quasi-elastic domain (by the factor
Z ) is compensated by finite values of Imii(q, ro)

for energies above the quasi-elastic region. We may
now explore the consequences of our assumptions.

IV. COMPARISON OF THE
EXPERIMENTAL DATA

AND THE MODIFIED
IMPULSE APPROXIMATION

200—

SL

I 50—

50—

IOO -$

Fe (e, e')

= 370 MeV/c

= 0.6

In the last section we presented an argument indi-
cating that short-range correlation effects lead to a
renormalization of the impulse approximation re-
sult by a factor Z in the quasi-elastic domain and
an associated enhancement of the response at higher

0 100
(u (MeV)

I l% t I I

200

FIG. 9. Same as Fig. 8, except that
~ q ~

=370
MeV/c.
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FIG. 10. Same as Fig. 8, except that
~ q ~

=410
MeV/c.

100
(u(MeV)

200

theoretical curves (which represent 0.6 times the un-

modified impulse approximation) becomes more
marked as we go from q=210 MeV/c to q=410
MeV/c It .is worth noting that the unmodified
theoretical result at q=210 MeV/c is about 20 per-
cent higher than the data at the peak, while the
modified result is about 30 percent too low at the
peak. (See Fig. 11.) At q=2SO MeV/c the modi-
fiixI result is about 40 percent too low while the un-

modified result is about 10 percent too large at the
peak. (See Fig. 12.)

Upon inspection of the figures for the transverse
response function it would appear that the unex-

FIG. 12. Same as Fig. 11, except that 1q ~

=250
MeV/c.

plained discrepancy is dependent upon the momen-
tum transfer

~ q ~. Comparison of the modified
impulse approximation with the experimental data
indicates that the discrepancy at the peak of the
cross section varies roughly as q as one goes from

~ q ~

=210 MeVlc to 410 MeVlc. This suggests
that the discrepancy may have its origin in some ef-
fect due to meson-exchange currents.

In the previous section we remarked that some
uncertainty was introduced into the analysis due to
the possibility of some collective effects in the long-
itudinal response. An indication of this feature is
seen upon further inspection of Figs. 8—10 and Fig.
14. In these figures we note a significant amount of

ST

~ ~

5 Fe (e, e')

q = 210 MeV/c

Z =06

ST

400—

500—

Fe (e, e'}

q = 370 MeV/c

Z =06

200-

100
(Mev)

200
IOO—

FIG. 11. The unmodified and modified impulse ap-
proximation for Sr{q,co) for ' Fe. Here

~ qua=210
MeV/c. The data are from Ref. 1. The dotted 1ine is the
unmodified response. [See Fig. 2 for the unmodified
response at other values of

1 q 1.]

IOO

&u (Me V)
200

FIG. 13. Same as Fig. 11, except that 1q1 =370
MeV/c.
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FIG. 14. The longitudinal response function,

Rl (q, ~)—=4mSI. (q, co)/M& for inelastic electron scatter-

ing from ' C. (Here MT is the mass of the target. ) The
solid line shows the modified impulse approximation
with Z =0.73. The data are from Ref. 2. Note that
q„=

~

co' —q ~

=(400 MeV/cl~.

strength for small values of co below the quasi-
elastic peak. If we assume that this strength has
been shifted out of the peak region by collective ef-
fects we can argue that the data for SI for Fe can
also be understood if we put Z =0.7 and ascribe
the enhanced discrepancy at the peak to the
aforementioned collective effects arising from
particle-hole rescattering. With this alternative
value of Z we have Z-0.84, which is about the
upper limit for the orbital occupation probability
obtained in the calculations summarized in Ref. 7.
An analysis of the longitudinal response which does
not completely neglect collective effects is called
for. However, we believe that the uncertainty in Z
which we suggest for this effect represents a reason-
able estimate that will be supported by further in-
vestigation.

Finally, we consider the comparison between
theory and experiment for quasi-elastic scattering
from ' C. This nucleus is less dense than Fe and
nuclear matter results are less useful here. In Fig.
14 we present a comparison of the data with the

0 100 200
(u(MeV)

500

FIG. 15. The transverse response function,
RT(q, co) —=4~ST(q, ~)/MT for inelastic electron scatter-
ing from ' C. The solid line shows the modified impulse
approximation with Z =0.73. The data are from Ref. 2.

V. CONCLUSIONS

We have adopted the point of view that we can
understand the longitudinal response function if we
assume that a significant amount of the longitudi-
nal strength is to be found at high energies, and that
the depletion of strength at the lower energies is a
measure of the reduction of the shell-model orbital

modified impulse approximation. Here Z =0.73,
and the fact that this value (Z=0.85) is larger than
the value for s Fe (Z=0.77) is consistent with the
density dependence expected for the mean occupa-
tion factors. In Fig. 15 we compare the modified
impulse approximation for the transverse response
function, Rr(q, co), with the experimental data
Here an enhancement of the unmodified response of
about 40 percent is required, if upon further multi-
plication by Z =0.73, one is to obtain agreement
with the data. Again, there is some degree of un-

certainty in the value given for Z due to the pres-
ence of some small collective effects in the longitu-
dinal response. (See Fig. 14.)
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occupation probability, I', from unity due to short-
range correlations. The probability of occupation
of a shell model orbital in Fe appears to be slightly
less than 0.8. This value is consistent with the
theoretical values for this factor obtained in
Brueckner-Hartree-Fock calculations. For ' C one
infers P=0.85. This larger value can be understood
if one notes the smaller density of the ' C system
relative to Fe.

This interpretation of the experimental data leads
to a more marked disagreement between the calcu-
lated and experimentally determined transverse
response function, indicating even larger meson

current effects than might have been considered to
be present on the basis of a comparison of the ex-
perimental data with the unmodified impulse ap-
proximation. It is clear that there is much work to
be done in order to obtain an accurate quantitative
description of the transverse response.
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