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A new derivation of the X-body equations of Bencze, Redish, and Sloan is obtained
through the use of %atson-type multiple scattering techniques. The derivation establishes
an intimate connection between these partition-labeled N-body equations and the particle-
labeled Rosenberg equations. This result yields new insight into the implicit role of channel
coupling in, and the minimal dimensionality of, the partition-labeled equations.
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We consider the nonrelativistic theory of N in-

teracting (nuclear) particles under the assumption
that the (nuclear) force can be represented by two-

body potentials, so that the Hamiltonian for the en-

tire system is

H=H, +V=+K, + gv, ,=+K,+g V-. . .

T= VGGo ' ——g V~GGo
' ——g Tp

P

=g V (E —H +ill) '(E Ho+ill), —(2)

with G and Go taken to be defined by the final
equality in Eq. (2), permits us to express the resol-
vent identity as

(1)
In Eq. (1) K, is the kinetic energy operator for parti-
cle i, with the sum over i taken over the N particles
of the system, and V& is the two-body interaction
potential for the particular pair of particles p, with
the sum over p taken over the , N(N —1) possib—le

pairs. The operator T =—T, the N to N transition
operator, plays a special role in the N-body reaction

theory because T, given by

=Go+GoTGo . (3)

Thus knowledge of T is equivalent to knowledge of
G from which any transition operator T may be
constructed directly.

If the N to N operator T is written as T=g Tz,
as in Eq. (2), then Eqs. (2) and (3) may be combined
to form the set of , N(N —1) co—upled integral
equations

Ty=Vy+ ~~Go X Te
q

or equivalently as the matrix integral equation'

(4)

T=V+VGoo T=V+KT=[1 K] 'V, (5)—
in which T and V are pair-labeled column matrices
of dimension , N(N —1) and tr —isa row matrix, of
the same dimensionality, all of whose entries are
unity. Thus T=g T~ =o T and the kernel
E= VGoo. . Formally, our ability to solve matrix
integral equations of the form of Eq. (5) relates
directly to our ability to invert [1 K]. The N—
body reaction theory largely concerns itself with
recasting Eq. (5) (or its equivalent) into a new in-
tegral equation with a kernel K' such that either E'
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or (K')" (n finite) is a fully-connected operator. '

Such a kernel is referred to as a connected kernel
and this property is a necessary condition for the
unambiguous inversion of [1 K—'].

Thus, our first aim is to rewrite Eq. (5) in the
form of an integral equation with a connected ker-
nel since such an equation may be amenable to fin-
ite matrix methods of numerical solution. In this

paper, we employ Watson-type multiple scattering
techniques in order to achieve this end. Our first
step is to express Eq. (3) as

(8}, unlike that of Eq. (3), is a connected kernel
since each element of the matrix (Kz) is a fully-
connected operator. However, if N&3 then the
kernel E2 is not a connected kernel. We therefore
extend the procedure which gave us Eq. (6) from
Eq. (4) and rewrite Eq. (6}as'

so that

Tpq =tp GoTq

Tp = V& 1+Go g T& + V&GoT&
q+p

=t&Got& +tpGot&Go g T& (q+p)
sQq

(10)

where

=tq 1+Go+ Tq
qp

(6)

tp
——Vp+ VpGotp .

In matrix notation Eqs. (6) become components of
the matrix equation

T=t+ g t(p)Goat T
p

= Q I Tj,+ Q I T jo,Goo' T
02 N2

(8)

where t is a column matrix whose components are

t&, t(p) is a column matrix whose sole nonzero entry
is tz in the p position [so that t =g t(p)], and at' is

a row matrix whose pth entry is zero and all other
entries are unity. In Eqs. (8) we have also employed
the usual connectivity and partition notation' in
which I Tj, is the part of T with connectivity a„;
that is, a„specifies a partition of the N particle sys-
tem into (N —n+1) disjoint groups of particles,
and IT j, consists of that part of T in which all

particles within each group are connected to the
others by interactions but there is no interaction
connecting a particle in one group with particles in
another group. It follows that I Tj, is an operator

which is characterized by (n —1) nonconserved mo-
menta. Thus I Tj, is the column matrix whose

2

only nonzero entry is the pth entry, which is tz, in
the case that the partition a2 corresponds to the
separation of the system into (N —2) noninteracting
particles and one interacting pair, p. In general, the
channel selector row matrix' cr " is defined to have
all entries unity except for zeros in positions p for
which the pair p is contained within a single group
of the partition a„(pCa„).

We note that if' =3 then the kernel K2 of Eq.

T~=tqGotp 1+Go g Ts +tqGoT~ . (12)
s+p, q

If we now define the auxiliary quantities T~ and

Tqp obtained by neglecting the terms in parentheses
in Eqs. (11) and (12),

T =tpgptq+tp GOT~,

T~ =tqGptp+tqGOT~,

then it follows that'

Tw=Tw '+Go & T
sApiq

From Eqs. (13)—(15) we immediately see that

(13)

(14)

(15)

(16)

where a3 is the partition which has two interacting
pairs (p and q) and (N —4) noninteracting particles.
Thus we have

T~ ——IT~ j, 1+Go g T, (plq) .
sga3

We note that Eqs. (13) and (14), which determine

I T~ j, , are essentially connected-kernel equa-

tions. ' In the circumstance that the pairs p and q
specify only three particles (p~ ~q), we note that a
third pair r is contained in the partition a3 defined
by p and q: p, q, r C a3. It is then necessary to modi-

We now distinguish two cases in our further discus-
sion of the operators T~ which carry two pair la-
bels. In one case, p and q are two disjoint pairs
(plq) with no particle in common. In the other case
(p

~
~q), p and q are not disjoint and are thus made up

of only three distinct particles. In the first case
(piq), we obtain from Eq. (10)

T~ =tpGot& 1+Go g T~ +t&Go T~
sAp q



26 MINIMAL COUPLING SCHEMES IN N-BODY REACTION. . . 317

+tpGo(T~+Tq, ), (18)

Tpr = tpGot„ 1+Go g Ts
s+p, q, r

+tpGo(T&+T.q) . (19)

Upon combining Eqs. (18) and (19) with the aid of
the definition

fy the foregoing treatment in the following manner.
In place of Eqs. (11) and (12) we write

Tpq = tpGotq 1+Go g T
st, q, r

T=t+QITj., 1+6, g T,
s |ZQ3

= IT j2+ IT j3+ X I Tja36oo' T
03

3
= g tTj„+L,T.

1l =2

(29)

(30)

The matrix integral equation, Eq. (30), has a con-
nected kernel for N =4 just as Eq. (8) has a con-
nected kernel for N =3. Continuation of the pro-
cess outlined above yields after the appropriate
number of steps'

~uqr=Tpq+~Sr ~

we have

(20) N —1

T= g I Tj„+g I Tj,„,Gotr " ' T

Tp q
= tpGo(tq+t„) 1+Go g T

st, q, r j T jdiscon entced+KN —1T . (31)

+tp Go(Tq,pr+ Trpq» (21)

Tp qr =Tp qr 1+60 g Ts
st, q, r

(23)

while analogous equations for Tq p„and T, pq follow
from Eq. (21) upon cyclic permutation of p, q, and
r. If we now define auxiliary quantities as the solu-
tions of Eq. (21) when the right-most factor of the
inhomogeneous term is ignored, viz. ,

Tp, q
= tpGo(tq+t )+tpGo(Tq, p +T,~) (22)

then we find that

%'e note that the partitions aN 1 are necessarily
two-cluster partitions. The connected kernel of Eq.
(31) is the rank , N(N —1—) square matrix in the

square brackets in Eq. (31), and each element of
(Kiv, ) is a fully-connected operator. Equations
(31) are essentially the particle-labeled Rosenberg
equations and they are also intimately related to
the Bencze, Redish, and Sloan (BRS) partition-
labeled formulation in a way which is described
next.

Since the aN i in the first of Eqs. (31) are two-
cluster channels, we may rewrite this equation as

Thus T= g I T j n + g tj T j rGoo rT, (32)

I Tp, qr ja3 = Tp, qr ~

and so

(24)
5=2

where the sum runs over all two-cluster channels y.
Furthermore, we note that

Tp, qr=ITp, ,r ja, 1+Go g Ts
s Q'a3

(25)

Evidently, both Eq. (17) and Eq. (25) can be written
in the more concise form

o.~T =cr~VGGo ' ——T~ (33)

so that upon multiplication of Eq. (32) by an arbi-
trary two-cluster channel selector rom matrix' 0.~

we find

Tp, , ITpj, , 1+Go ——g T,
sga3

(26) T~ = g t
T~ j„+g I T&oj G Tro . (34)

Tp=tp+ Q I Tp j,, 1+Go g T,
s q.'a3

or in matrix notation

(27)

where we have used Tp, , to denote that part of T in

which the pair p interacts last and a different pair
in the partition a3 [q for (p J.q) or q and r for (q

~ ~p) j,
interacts next to last. Combining Eq. (9) with Eq.
(26) yields

then Eq. (34) becomes

N —1

Tt"= g tTt'oj„GoG.
ll =2

+ Q I T~ojrGoTr
y

(35)

If we take u to be an arbitrary, but fixed, two-
cluster channel and note that

TPa TPOG G
—1
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(36)

where the (otherwise arbitrary) two-cluster channels

a, P, y, . . . are linearly independent in the sense
that (Vx=cr V)

ya
VP
y~ =SV (37)

implies that

The set of equations represented by Eq. (35) has a
connected (matrix} kernel and Eq. (35) is one form
in which the BRS equations are often written. The
canonical BRS form follows from Eq. (35) upon the
application of an off-shell transformation'; we
have no need for it here.

Equations (35) are a closed set of coupled integral
equations for the two-cluster transition operators
T~ . These have been represented as "minimal" in
the sense that the equations are closed over the sub-
set of the two-cluster partitions ' without the need
for any three or more cluster partitions. There are
(2 ' —1}such two-cluster partitions which are all

required in this "minimal" form, and Eq. (35) is
thus a set of (2 ' —1) coupled equations. On the
other hand, the equivalent equations [from which
Eqs. (35) were derived] in the pair-labeled format

1

represent a closed set of , N(N ——1)coupled equa-

tions for the components Tz. For N =3,
2 ' —1=—,N(N —1)=3, otherwise as N increases

there are increasingly more two-cluster partitions
than there are pairs of particles.

Evidently, there are in fact only , N(N —1)—

linearly independent dynamical equations to be
solved and the full set of BRS equations, Eqs. (35),
is unnecessarily large. This occurs because there are
only —,N(N —1) linearly independent two-cluster

transition operators T~, and the additional
members of the full set of Eq. (35) merely express
the nondynamical relationships among the T~,
despite the fact that they are written in a dynamical
form.

In order to see this more clearly, let us define' a

, N (N —1) dim—ensional square matrix, S, such that

V=S 'V.

As N increases beyond 4,

[2 ' —1]» —,N(N —1)

(38)

so that there are generally many possible choices for
S. If we multiply Eq. (32) on the left by S we find

Ta0
TPo N —1

Trp = X tTI.
5=2

+ Sg [T]rGpo' S T, (39)

From these considerations, it is evident that there
is generally a large variety of choices among possi-
ble coupling schemes within the BRS set of equa-
tions. This nonuniqueness allows one the freedom
to choose the coupling scheme most suited to the
particular physical problem under study. For ex-

ample, in the N =4 case of two neutrons and two
protons there are seven two-cluster partitions and

only six pairs. Hence one might wish to eliminate
from consideration the two-cluster partition consist-

ing of unbound proton and neutron pairs.
It should also be evident that we can directly

reduce the dimensionality of the BRS equation
given in Eq. (35) (or for that matter the canonical
form obtained from it). All that is required is a
choice of S. The reduced equation obtained in this
manner is simply a partition-labeled restatement of
the corresponding particle-labeled equation, involv-

ing at most an off-shell transformation.

This work was supported by the National Science
Foundation under Grant Nos. PHY79-07511 and
PHY78-26595.

and since every element of (K~ & } is fully connect-
ed so is every element of

(SK~ )S ') =S(K~ )) S

Thus the kernel of Eq. (39) is connected. Further-
more, any transition operator T may be obtained
from the solution of Eq. (39) by noting that

T =o T=(a S ')T . (40}
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