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Possible existence of a m nn bound state
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We have applied the relativistic Faddeev formalism to look for a bound state of a negative

pion and two neutrons, using as input the pion-nucleon P33 channel and the nucleon-nucleon

So channel. We found that if the pion-nucleon interaction is sufficiently short ranged, the sys-

tem can be bound. We represented the pion-nucleon interaction with two different models of
rank-one separable potentials, while for the nucleon-nucleon interaction we used the Yamaguchi

potential and three different models of rank-two separable potentials.

NUCLEAR REACTIONS m nn bound state; calculated, Fredholm deter-
minant at JS =2018 MeV.

The possibility that a m nn bound state may be
formed in the laboratory is suggested by the fact that
the two neutrons alone are almost bound in the 'So
channel, while the m n interaction is dominated by
the P33 resonance, which is attractive, so that the
combined effect of these two channels may produce
enough attraction to bind the three-body system.
This bound state, which would have total isospin
T =2 and Tz = —2, cannot decay by electromagnetic
or strong interactions, so that it wiii have a lifetime
similar to that of the charged pion.

Several attempts have been made in the past to
search theoretically for this state, which have not
been successful, although they were performed
without a complete three-body theory. Thus Gale
and Duck' solved the Faddeev equations without in-

cluding the very important nucleon-nucleon interac-

tion, while Kalbermann and Eisenberg, ' as well as

Ueda, simply applied the Heitler-London-Pauli varia-

tional method in a nonrelativistic approach. In this

paper we will present the results of the first calcula-

tion based in the relativistic Faddeev equations in

which we have included both the pion-nucleon P33
channel and the nucleon-nucleon 'So channel.

The most favorable state to form the bound state is

that with total angular momentum and parity JP=1
[we take parity as P = (—)'+", where I is the orbital
angular momentum of a pair and X is the orbital an-

gular momentum of the third particle with respect to
the pair], since in a minimal coupling scheme the two

neutrons which are in a state of I =0 and j=0 can
couple to the pion in a state with A. =1 to give total
angular momentum 1 and parity —1. Similarly, the
pion and one of the neutrons which are in a state of
I =1 and j = —, can couple to the spin of the other

neutron in a state with A. =0 to give total angular
momentum 1 and parity —1. Of course, we will not

restrict ourselves to the minimal coupling, but in-

clude all possible couplings leading to J =1 .
The relativistic Faddeev equations are based in the

sum of all possible sets of ladder diagrams in which
two particles interact while the third particle acts as
spectator. 4 ' As one has conservation of total four
momentum, these equations depend on eight con-
tinuous variables. However, by applying a
Blankenbecler-Sugar reduction, ' one can eliminate
two of these variables so that after performing an an-

gular momentum decomposition one is left with in-

tegral equations in two continuous variables. These
equations can then be reduced to one-variable in-

tegral equations by making the isobar or separable ap-
proximation. The input of these equations are the
two-body amplitudes that are obtained by solving the
Blankenbecler-Sugar equation for the two-body sub-
systems. In the case of the nucleon-nucleon interac-

tion, this amplitude can be related to the nonrelativis-
tic Lippmann-Schwinger T matrix by using the
prescription of minimal relativity. Thus we will use
for this subsystem the rank-one separable potential of
Yamaguchi, ' which is purely attractive, as weil as
the three models of rank-two separable potentials of
Mongan, "which have both attraction and repulsion.
For the case of the pion-nucleon interaction in the
P33 channel, we will use the rank-one separable
models that have been proposed recently by Garcila-
zo, Mathelitsch, and Verwest, ' which fit the scatter-
ing volume and the phase shift from 0 to 350 MeV.
These potentials are of the form

where the strength y is determined by requiring that
the system have a resonance at an invariant mass of
1232.2 MeV, and the form factors for the two models
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are

g, (p) =2/(1 +p'/nt') + (1 —2)p'/(1+ p'/ug')';

A =0.93815, n~=2. 141 fm ', n~=6.072 fm ',
(2)

g„(p) =de ' + (1—A)/(1+p'/aP)

A =0.55606, n~ =1.238 fm ', nq=50. 677 fm '

In order to perform the partial-wave decomposition
of the equations, we have used the fully relativistic
angular momentum formalism of the three-body heli-
city states. ' ' Since we considered the pion-nucleon
amplitude in the P33 channel and the nucleon-
nucleon amplitude in the So channel, the relativistic
Faddeev equations for total angular momentum and
parity J~=1 consist of three coupled integral equa-
tions for the configuration where the nucleon is the
spectator, and two coupled integral equations for the
configuration where the pion is the spectator. We
used a 40-point Gauss mesh to represent each of
these integrations, which gives a numerical accuracy
of better than 0.1%.

In order to look for bound states, we have to calcu-
late the Fredholm determinant of the system. If the
two-body interactions are repulsive, then the
Fredholm determinant is larger than one, awhile if
they are attractive, it is less than one. If the
Fredholm determinant passes through zero at an en-
ergy below the three-body threshold, then there is a
bound state. Thus the simplest way to find out
whether there is a bound state in the m nn system is
to see if the Fredholm determinant is negative at the
three-body threshold JS =2018 MeV.

We show in Table I the values of the Fredholm
determinant at threshold for the various models of
the pion-nucleon and nucleon-nucleon interactions.
We see that if we neglect the nucleon-nucleon in-
teraction or include it using the Yamaguchi potential
which has only attraction, then the Fredholm deter-
minant is negative so that the system is bound.
However, when we include the Mongan potentials
which have both attraction and repulsion, the system

becomes unbound for the model I of the pion-
nucleon interaction, although it is still bound for the
model II of the pion-nucleon interaction. The actual
binding energies for the various models of Table I go
from a few MeV up to more than 1 GeV, which
shows that probably some of the models have already
too much attraction. It also indicates the large sensi-
tivity of the binding energy to the form of the two-
body interactions.

The large effect that the nucleon-nucleon short-
range repulsion has on the Fredholm determinant can
be understood if we look at the pion-nucleon poten-
tials I and II in coordinates space, where we see that
they are strongly attractive at short distances. Thus,
when we switch on the nucleon-nucleon short-range
repulsion, it becomes harder for the pion-nucleon at-
traction to act, since this requires that the pion be
close to the two neutrons at the same time, but the
nucleon-nucleon repulsion tries to keep them apart.
It is interesting, however, that for the model II of the
pion-nucleon interaction the pion-nucleon attraction
is stronger than the nucleon-nucleon repulsion, so
that the system can still be bound. Since the main
mechanism that binds the system is the short-range
pion-nucleon attraction, it is clear that if the
nucleon-nucleon interaction has a repulsive hard
core, this mechanism will not be allowed to act and,
consequently, we probably will not have a bound
state in that case.

The calculations that we have described were per-
formed for a system with isospin 2. Similar calcula-
tions for the case of isospin 0 or 1 in the continuum
region have been performed in the past. Thus exten-
sive work has been done for the pion-deuteron sys-
tem' ~ which has isospin 1. Similarly, the relativis-
tic Faddeev method has been applied by Kloet and
Silbar to describe nucleon-nucleon scattering, taking
into account the inelastic pion-production chan-
nel. More recent calculations have included all
the various couplings between the NN, m.NN, and md
channels, in a unified description that preserves two-
and three-body unitarity. '

Recently, solutions of nucleon-nucleon phase-shift
analyses above pion-production threshold ' have
revealed what appears to be dibaryon resonances in

TABLE I. Values of the Fredholm determinant at threshold for several models of the pion-
nucleon and nucleon-nucleon interactions.

Without
NN force Yamaguchi Mongan I Mongan II Mongan III

P33 model I

P33 Model II

W.013

—0.559

—0.069

—0.524

1.215

—0.117

1.478

—0.566

0.442

—0.343
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several isospin 1 nucleon-nucleon channels. These
states are similar to our m nn bound state, except
that in this case the Fredholm determinant is zero
not below threshold, but at some energy above
threshold on the unphysical sheet not far from the
real axis.

To conclude, we have shown that it is possible to
have a m nn bound state with some of the existing
models of the pion-nucleon and nucleon-nucleon in-

teraction which reproduce well the two-body data.
However, given the uncertainty in our knowledge of
the short-range part of the pion-nucleon and
nucleon-nucleon interactions, we cannot really estab-
lish whether the bound state exists or not.
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