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Isosinglet K *N S-wave scattering length
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Faddeev equations are used to analyze the available data of low-energy elastic K *d scattering
in order to determine the isosinglet K *N S-wave scattering length. For 107 MeV kaon lab
kinetic energy the extracted / =0 S-wave scattering length is @y =—0.015 fm. The need of
more precise experiments at lower energies is made clear.
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Considerable interest on low- and intermediate-
energy kaon-nucleus scattering has arisen in recent
years.’2 K~ beams are used in the formation of hy-
pernuclei, whereas K * experiments offer the possibil-
ity of testing both reaction dynamics and nuclear
structure. The construction of kaon factories in the
near future>* will undoubtedly increase that interest.

The reliability of the information to be drawn from
the second type of experiments is conditioned, as in
every many-body process, to a good knowledge of the
two-body system.* It seems, therefore, worthwhile to
try to reduce the present uncertainties in the X "N in-
teraction. The scattering length and effective range
in S wave for the isospin I =1 channel are reasonably
well established through K *p scattering experi-
ments.>® For the I =0 channel, instead, the situa-
tion is much more unsatisfactory. Since the informa-
tion on this channel must be drawn mainly from K *d
data, the obtained 7/ =0 parameters can be affected
by important errors due to the approximation made
in handling the three-body problem. In the analysis
of the K *d data, use is made, generally, of the im-
pulse approximation. Multiple scattering terms, how-
ever, may be very important at low energies’;
neglecting them can introduce appreciable errors in
the parameters fitting the experimental results.

Faddeev equations provide an (in principle) exact
method of relating three-body data with two-body
parameters. The only limitation in their applicability
is the use (for the sake of computational simplicity
and feasibility) of separable potentials to represent
the two-body interactions. This is not a severe limi-
tation, as such potentials can reproduce, reasonably
well, the existing two-body data.

We have used the Faddeev formalism to obtain the
S-wave scattering length for the / =0 channel of the
K* N system from low-energy K *d scattering data.
We have analyzed the results of elastic K *d scatter-
ing at 342 MeV/c K " incident laboratory momentum
reported by Glasser.® These are, to our knowledge,
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the most recent low-energy K *d experiments.
Rank-one separable potentials of the form (units
#=c=1 are used)

V(pp,E)=g(p)IN(E)/2ulg(p) , (6}

where u denotes the reduced mass, have been used
to describe all the two-body interactions (only S-wave
has been considered). Form factors g(p) of the
Yamaguchi type,

g(p)=p*+pH1 , )]

have been taken and a dependence on the energy for
the intensity parameter A(E) is allowed. For the NN
system, this dependence has been chosen of the type
recently proposed by Garcilazo,’

M E) =\yvtanh(1 —E/E,;) , (3)

with Ayv=—9.4111273 fm™ and E,=0.816 fm™".
This potential, with range parameter Byy=1.632 384
fm™!, fits the triplet scattering length (a,=5.39 fm)
and the deuteron binding energy (Eg=—2.225
MeV). The K *N interaction in the isospin I =1
channel can be fairly well represented at low energies
by the potential suggested in a recent paper.!® Its en-
ergy dependence has been taken of the form

ME)=)\exp(—2uCE) , 4)

with Ay =371.05533 fm~3 and C;=-0.151953 fm2
For the range, the value 8; =4.740 140 fm™! has been
selected. With this rank-one separable potential,
both the scattering length (a; =—0.309 fm) and the
effective range (ro=0.32 fm) in S wave can be fitted.
Previously analyses of the I =0 channel K *N in-
teraction indicate that it is considerably weaker than
the /=1 one. The second term in the effective
range expansion can be neglected at the energy under
consideration.!! So, a dependence on the energy in
the intensity parameter is not needed and we have
taken A(E) =\ The two parameters, Ay and Sy,
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entering in the potential have not been considered to
be independent; they have been so related as to pro-
duce a vanishing effective range. In this manner,
there remains only one adjustable parameter, which
we have taken to be the S-wave scattering length a,.

In the solution of the Faddeev equations, the con-
tour rotation method!? has been used. At the energy
under consideration, a mesh of 48 points in every
two-body channel has been needed to obtain an error
of less than 1%. As it can be seen in Fig. 1, it be-
comes immediately apparent from our Faddeev
analysis that the theoretical elastic K *d differential
cross section depends linearly on a, for a range of
values of a, containing previous determinations of
this parameter.!3~1® This fact, due to the above men-
tioned relation between the intensities of the 7 =0
and 1 interaction, obviously indicates that it is
enough to retain only the first two terms of a Taylor
expansion of the cross section around the point
ao=0 (no interaction). In this situation the minimi-
zation procedure to determine ao from the experi-
mental data becomes extremely simple. The best fit
is obtained for

ap=-0.015 £0.023 fm , Q)
with a X? per degree of freedom of 0.96.
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FIG. 1. Elastic K *d differential cross section in the la-
boratory frame at 342 MeV/c K % incident momentum. The
experimental data are from Glasser (Ref. 6). The curves
represent theoretical predictions obtained in the Faddeev
formalism with the two-body potentials quoted in the text
and for three different values of the 1 =0 K *N S-wave
scattering length a.

In order to make evident the importance of multi-
ple scattering terms at low energies, we have
represented in Fig. 2 the theoretical differential cross
sections obtained, respectively, in a Faddeev treat-
ment and in the single-scattering impulse approxima-
tion,¥ 13 with the value of ag given in Eq. (5). The
discrepancy observed amounts to a 15% at low an-
gles, reaching a 25% for laboratory angles above 70°.
It seems, therefore, absolutely necessary to take into
account multiple scattering terms. Besides Faddeev
equations, other procedures of incorporating re-
scattering effects exist. Recently, Landau and co-
workers®!? have developed, for the analysis of
scattering of pions, nucleons and kaons from nuclei,
a method that consists in solving the Lippman-
Schwinger equation with an optical potential con-
structed from the elementary two-body amplitudes.
To our knowledge, it has not been applied to the
K *d system and a contrast of such a method with the
Faddeev one, though desirable, is not possible at
present.

For comparison, we list in Table I the values of ag
obtained previously by other authors with different
methods. The large errors, induced by the experi-
mental uncertainties, in the various determinations of
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FIG. 2. Comparison of the elastic K *d differential cross
sections in the laboratory frame evaluated by means of the
Faddeev equations (continuous curve) and in the single-
scattering impulse-approximation (dashed curve) at 342
MeV/c Kt incident momentum. The two-body potentials
used in both calculations are those mentioned in the text,
with a I =0 K *N S-wave scattering length ap=—0.015 fm.
The experimental points are the same as in Fig. 1.
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TABLE I. Previous determinations of isosinglet S-wave
scattering lengths.

ay (fm) Reference Method
0.04 +0.04 13 Impulse-approximation analysis
of K*d data
—0.1143%¢ 14 K *d multiple scattering
with zero-range boundary-
condition formalism
—0.005 15 KN phase shift analysis
with dispersion relation
constraints
-0.23 £0.18 16 KN forward dispersion
relation
0.02 17 KN multichannel analysis
with dispersion relation
constraints
-0.17 18 KN effective Lagrangian

ao make all of them compatible. However, in view of
the importance of multiple scattering terms, we find
our determination more reliable than that of Ref. 13,
where such terms have been ignored, or that of Ref.
14, where they have been evaluated approximately by
assuming a zero-range KN interaction. The methods
used in Refs. 15—18 correspond to a theoretical ap-
proach quite different from ours and, therefore, it is

difficult to draw any conclusion from a comparison of
the corresponding values of aq.

There are two main simplifications in our treat-
ment of the K *d system. First, we have ignored
Coulomb interaction and, second, our two-body po-
tentials are effective only in S wave. The inclusion of
Coulomb interaction in the Faddeev equations would
modify the theoretical cross section only in the region
of low angles, where the experimental errors are
larger. The effect on the fitted scattering length
would then be unimportant. As far as we are consid-
ering a low-energy process, the inclusion of D -wave
interaction in the NN system and P wave in K *N in-
teraction would be enough to avoid our second sim-
plification. Having at our disposal also the P-wave
low-energy parameters of the / =0 K *N channel, a
better fit of the experimental data would be obtained.
However, the size of the matrices (144 rows of com-
plex elements, in the case of purely S wave) to be in-
verted in the obtention of the Faddeev amplitudes in-
creases considerably. In view of the inaccuracy of the
experimental data, we have considered it unnecessary
to introduce such complications which would result in
small corrections to our determination of ag. Obvi-
ously, more precise experiments at lower energies are
needed to obtain a satisfactory value of the /=0
K*N S-wave scattering length.
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