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Overlaps and matrix elements of one- and two-body operators are calculated in a space

spanned by multiphonons of different types taking the Pauli principle properly into ac-
count. Two methods are developed: a generalized Wick's theorem dealing with new con-
tractions and recursion formulas well suited for numerical applications.

NUCLEAR STRUCTURE Multiphonon theory. Generalized Wick's

theorem. Recursion formulas for calculation of overlaps and matrix ele-

ments of one- and two-body operators. Illustrative examples.

I. INTRODUCTION

In atomic nuclei, many excited states show a vi-
brational nature. To explain the properties of these
states, phenomenological bosons or "microscopic"
quasibosons were first introduced. With these inter-
mediate quantities, assumed to be pure bosons, ma-
trix elements of the Hamiltonian and of electromag-
netic transition operators are easily calculated with
the help of the Wick's theorem for bosons that leads
to harmonic features. However, the observation of
anharmonicities in the nuclear vibrations demon-
strates the importance of the Pauli principle in
building higher excited states.

One way to solve the problem would be to start
with many quasiparticle excitations. The corre-
sponding Fock space would then be tremendously
large and the Wick's theorem for fermions rapidly

inapplicable. To take advantage of the collective
nature of the vibrational states it appears to be
better to introduce new entities: the phonons Q;,
which are defined as a superposition of two quasi-
particles

(1.1)
p~v

where (Z;)&„———(Z;)~ is chosen to be an anti-

symmetric matrix, and a& creation operators of fer-
mions (quasiparticles}. These phonons are no longer
considered as bosons since their commutation rules

are now

[Qi,Q2] =——,tr(ZiZg)+ g (ZiZ2)q„a„aq .

(1.2)

Among the theories developed to deal with the
problem of anharmonicities, the following two are

of special interest:
(a} The boson expansion (BE}techniques aim to

return to pure bosons by expanding fermion pairs
like a„a„and a„a„ in terms of pure bosons. The
matrix elements of H (or of other operators} are
then again easy to calculate. But one is faced with

difficulties concerning the convergence of the ex-

pansion. Furthermore, the Pauli principle is only
approximatively taken into account and some spuri-
ous states may appear (see Ref. 3}.

(b) The multiphonon method (MPM), where the
phonons (1.1) are piled up, takes the Pauli principle
fully into account. This method has been developed

previously for one type of phonon, compared to bo-

son expansions and checked in a simple model

where an exact solution can be obtained. The main

problem in this method is the calculation of the ex-

act norms of the multiphonon states and of the ma-

trix elements of H in the subspace spanned by these
states. Simple recursion formulasx were obtained
which allowed easy numerical evaluation of the ma-

trix elements.
The aim of this paper is to extend the MPM to

cases where phonons of different types are involved.
Two methods are given. In Sec. II we formulate a
Wick's theorem for phonons where we define "new
contractions. " In Sec. III we generalize the ap-
proach with recursion formulas. Illustrative exam-

ples are given in Sec. IV where the two approaches
are compared. Finally, conclusions are drawn in
the last section.

II. A WICK'S THEOREM
FOR PHONONS

We first write the commutation rules of the pho-
non operator Qt defined in (1.1) with pairs of fer-
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mion operators

[a„a&,Qt] =Z»+ g (Z„ia2a& Z—
&2 a2a„),

(2.1)

[a&a~ Q ]= g Z„i,a&a2, .t

We now calculate explicitly the overlaps for
states with one, two, and three phonons. For one
phonon we have

(QiQ2 & =([Qi,Q2]) tr(ziz2) (2 4)

From these relations one deduces the double com-
mutator

[[g,,g, ],g4]= X(Z4Z, Z2)„„

According to the antisymmetry of the Z matrices
one has

(Z4Z i Z2)» ———(Z2Zi Z4)~,
which allows us to write

[[Qi,Q2],Q4) =
z p (Z2ziz4+Z4ziz2)»a&a„.

(2.2)

We define a "contraction of two operators"

c[g Q']=&Q Q'&

For two phonons, we obtain explicitly

&Q3QlQ2Q4) &Q3Q2[Q1 Q4]&

+&QSQ4[Qi Q2]&

+&Q [[Q,g'], Q']&

and using (2.2) and (2.5) we get

&QSQiQ2Q4&= [QSQ2] [QiQ4]

+C[QSQ4]C[Qig2]

+C[QSQ i;2,41 .

(2.5)

This double commutator behaves like a new phonon
(1.1), labeled Q i.2 4 of which the antisymmetric ma-
trix Z is given by

If we define a "contraction of four operators"

[Qsgig2Q4] =C[QSQ i.2 4] (2 6)

we obtain

(Q3gi Q2Q4 ) = g C[gg ]C[gg ]

+C[gsgigZQ4)

(2.3)Z).,2 4
——Z2Z)Z4+Z4Z )Z2

(2.7)(Note that for further convenience we have put even

indices to creation operators and odd ones to an-
nihilation operators. ) With the choice (1.1) the
quasiparticle vacuum

l ) is also the phonon vacu-
um.

where the summation runs over all different possi-
ble products of contractions of two operators.

For three phonons the successive commutations
of Qi with all creation operators lead to

(QsQ3QiQ2Q4Q6) (QsQ3Q2Q4[Ql&Q6]&+ &QSQSQ2Q6[g»Q4])+ &gsgsg4Q6[gi'Q2) )

+&g g {?'[[Q,g'],Q ]&+&Q Q Q [[Q Q ] Q ]&

+&Q Q Q [[Q Q ] Q I&. (2.8)

(2.9)

(2.10)

Using relations (2.2)—(2.7) and setting

C[QSQ3giQ2Q4Q6]= g C[QsQSQ2kQi;2i2j)
l(J

for the "contraction of six operators, "we get

(QsgsgiQ2Q4Q6)= C[g Q )C[g Q )C[Q Q 1+C[gigZ]C[gsg )CM Q )

+C[gig4)C[gsg2]C[Qsg6)+C[gig4)C[Q3Q6]C[QSQ2]

+C[Q]Q6]C[Q3Q2]C[gsg4]+C[gig6]c[QSQ4]c[QsQ2]

+C[gi Q2]C[gsg3Q4Q6]+C[giQ4]c[QsQ3Q2Q6]+C[QiQ6)C[QsQSQ2Q4]

+C[Q3Q 2 ]C[Qs Q i Q 4Q 6 ]+C[Q3Q 4 ]C[QsQ 1 Q 2Q 6 ]+C[Q3 Q 6 )C[gs Q i Q 2Q 4 ]
+C[gsg2]C[gsgiQ4Q6)+C[QSQ4)C[gsgi Q2Q6]+C[QsQ6)C[QSQi Q2Q4]

+C[QsQSQ i Q2Q4Q6) ~
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This relation can be summarized by

(QSQ3Q)Q2Q4Q6 ) —g C[QQ ]C[QQ ]C[QQ ]+g C[QQ ]C[QQQ Q ]+C[QsQ3QIQ2Q4Q6],
(2.11)

where the summations still run over all different
possible products of contractions.

Equations (2.5), (2.7), and (2.11) give the explicit
form of a generalized Wick's theorem for 1, 2, and
3 phonons. The "new contractions of 2, 4, and 6
operators" are defined, respectively, by (2.5), (2.6),
and (2.9).

We note that if the Q's would have been boson
operators only the first term of Eqs. (2.5), (2.7), and
(2.11) would have appeared. All the other terms are
due to the fact that the Pauli principle is properly
taken into account in considering phonons of the
type (1.1).

I

The generalized Wick's theorem for phonons can
now be formulated in the following way: The over-

lap of a state built on p different creation operators

iQtQt. . . Qt )

with a state built on p different annihilation opera-
tors

( Q1Q3 Q2p —1 I

is the sum of all different products of possible con-

tractions; the contraction of 2p operators being de-

fined from the contractions of (2p —2) operators by

C[Q2p —1Q2p —3
' ' Q3Q1Q2 ' ' '

Q2p] —g C[Q2p —IQ2p —3
' ' ' Q3Q ' ' ' Q Q(zi 2j] ~ (2.12)

where Q ~ Q is a sequence of (P —2) oPerators Q where Qz; and Qzj are missing.

Equations (2.5), (2.7), and (2.11) show that the theorem is true for 1, 2, and 3 phonons. The proof of the

generalized theorem will be made by induction. But first, it is necessary to know how to calculate the in-

volved contractions.
Let us look for the first contractions. From Eqs. (2.4) and (2.5) one has

C[Q)Qz]= ——,tr(ZiZz) .

Further, from Eqs. (2.3), (2.5), and (2.6) we get

C[Q3Q1Q2Q4] =C[Q3Q1;2,4]

= ——,[tr(Z(ZzZ3Z4) +tl(Z)Z4Z3Z2)],

where we have used the property that under a trace one can perform a cyclic permutation.
In a similar way Eqs. (2.3), (2.9), and (2.13) lead to

C[Q5Q3Q(Q2Q4Q6] =——, I tr(Z)Z2Z3Z4Z5Z6)+tr(Z(Z2Z3Z6Z5Z4)+tr(Z(Z4Z3Z6Z5Z2)

+tr(Z)Z4Z3Z2Z5Z6 ) +tr(Z)Z6Z3Z2 Z5Z4) +tr(Z)Z6Z3Z4Z5Z2 )

+tr(Z)Z6Z5Z4Z3Z2)+tr(Z)Z4Z5Z6Z3Zz )+tr(Z)ZzZ5Z6Z3Z4)

+tl (Z 1 Z6Z5Z2Z3Z4 ) +tr(Z, Z4Z5Z2Z3Z6 )+tr(Z1 ZzZ5Z4Z3Z6 ) (

(2.13)

(2.14)

If p is one of the p! permutations of the even indices 2,4,6, . . . , 2p and R 1 is one of the (p —1)!permutations

of the odd indices 3, 5, . . . , 2p —1, we can give the recipe to calculate explicitly the contraction of 2p operators

defined in recursion formula (2.12)

C2p C[Q2p —1 Q3Q1Q2Q4 Q2p]
1 y tr(Z)ZP(2)ZR, (3)ZP(4) R)(2p —1) P(zp)) (2.15)

P,Ri

Equations (2.4), (2.13), and (2.14) show that this recipe works for p= 1, 2, and 3. Let us prove it by induc-
tion.
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In relation (2.15},the index 1 plays a peculiar role and we prefer to write this equation in a way where all
odd indices are treated on an equal footing. Therefore, we introduce the p. permutations R of the odd indices
1,3, . . . , 2p —1 and consider

S= g tr(ZR(i)ZP(2)ZR(3) ZR(2p —1) P(2p)} '

P,R

(2.16)

Using the property that under a trace one can always perform a cyclic permutation one can for each permu-
tation R bring the matrix Zi ——ZR(2; 1) in front of the product. Since there are p odd indices, it is then easy
to see that

~~P g (Zi P(2)ZR (3) ZR (2p —1) P(2p)} '
P,Ri

Hence the contraction of 2p operators also writes

C[Q2p 1 Q3Q)Q2Q4 . Q2pl= —
2 g tr(ZR(1)ZP(2)ZR(3) ZR(2p 1)ZP(2p)) .
P P,R

(2.17)

From (2.17) we see that one can choose any of the Z; to play the particular role attributed previously to Zi.
The proof of the recipe is now made by induction.

By definition, we have

C2p+2 C[Q2p+1Q2p —1 Q3Q1Q2Q4 Q2pQ2p+2]

[Q2pp(Q2p —1
' ' ' Q3Q2Q4 ' '

Q2pQ2p+2Q1;2i, 2jl ' (2.18)

In the term being summed, Q2Q4 .
Q2PQ2p+2 is a sequence of Q where Q2; and Q2j are missing.

~ ~

We apply the recipe for 2p contractions, bearing in mind that the matrix related to Q, .2. 2. is

Z ).2( 2j
=Z2iZ] Z2j +Z2jZ ]Z2i

and yield successively

1

C2p+2 g g tr(ZR (3)ZP(2)ZR (5)
' ' ZP(2p+2)ZR (2p+i)Z1. 2; 2j)

i &j pR&

1

{ti (Z 1Z2(ZR
1 ( 3 )Zp ( 2 )

' Zp ( 2p +2 )ZR
1 ( 2p + 1 )Z2j }

i &j p;.R&

+tr(Z)Z2jZR (3)ZP. (2)
' ' ZP (2p+2)ZR (2p+1)Z2i) j

(2.19)

(2.20)

(2.21)

tr(Z)Z2 Z2p 1Z2p}=tr(Z2PZ2p 1 Z2Z1) .

1 g g g tr(Z)Z2jZR)(3)ZP"(2) ZP(j(2p+2)ZR)(2p+1)Z2i}
R& ij P;-

where R 1 now labels one of the p! permutations of the odd indices 3,5, . . . , 2p + 1 and Pij one of the (p —1)!
permutations of the even indices 2,4, . . . , 2p+2 where 2i and 2j are missing. In Eq. (2.19}we have applied
the recipe for a contraction of 2P operators where Z plays the predominant role, in Eq. (2.20) we have brought

Zi in front of the products, and in Eq. (2.21}we have suppressed the restriction i &j. Finally, we note that

represents simply the summation over all permutations P of the even indices 2,4, . . . , 2p +2 so thatiJ ij

the searched contraction Cpp+2 writes

1

C2p+2 ————g g tr(Z1ZP(2) R (3)
'

R (2p 1) P(2p+2)), (2.22)
Ri P

which achieves the proof of the recipe.
We would like to add here the following comments:
The summation in (2.15) contains p!(P —1)!terms. This number can be reduced by a factor of 2 since, ac-

cording to the antisymmetry properties of matrices Z, one has
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Despite this reduction one sees that this number increases quite rapidly with p, which leads to an obvious limi-
tation of practical applications of the generalized Wick s theorem. We emphasize, however, the fact that this
limitation is far beyond that one had had by direct use of the Wick's theorem for fermions.

We also emphasize the fact that Eq. (2.17) simply translates the commutation properties of the products of
the creation or annihilation operators of phonons, namely

[QR(2p —1) QR(3)QR(1)QP(2)QP(4) QP{2p) 1 Cf Q2p —1 Q3Q]Q2Q4 Q2p l

for every P and R, which were not at all evident from the original definition (2.12).
Let us now come back to the proof of the generalized Wick's theorem. Here too, we proceed by induction.

We first reformulate the theorem for 2p operators in a more mathematical way. We introduce the partitions

tP]~P2~. A I

of the integer p so that

P=Pr+P2+ ' ' ' +A ~

where

Si &S2&S3&.. .ek

The Wick's theorem for p can be written

&Q„, Q,Q, Q,Q. " Q„&=

XC[QR(2p]+2p2 —1) QR(2p]yl)QP(2p]+2) QP{2p]+2pi)1

g C[QR(2p] —1)
' ' '

QR(3)QR(1)QP(2)
'

QP(2p])l
Ip),pp, . . . ,pkj P,R

[QR(2p —1) QR(2p —2pk+])QP(2p —2pk42) QP(2p)~ ~

(2.23)

where the sum over the permutations P of even and R of odd indices runs over all formally different contrac-
tions.

We assume that the theorem is true for p and calculate (as we have done for the first values of p)

&Qip+] Q3Q]Q2 Q2p+2) p C[Q]Q2i]&Q2p+1 Q3Q2 Q2p+2)

+ g & Q2p+1 Q3Q];2i, 2jQ2 Q2p+2 ) (2.24)
J (J

In the first sum, Q2
. .

Q2p+2 is a product of Q where Q2; is missing and, in the second sum, where Q2; and

Qzj are missing.
In these two terms, respectively referred to as A and 8, overlaps of p operators arise for which one can ap-

ply the Wick's theorem. We shall show that any product of contractions corresponding to a given partition of
(p + 1) will appear once, and only once, in terms either A or B.

Since term A necessarily contains a product of at least two contractions it is obvious that the total contrac-
tion C2p+2 arises necessarily from part B, with total contraction of the 2p operators involved.

C2p+2 [Q2p+1 Q3QlQ2Q4 Q2p+2]

= g C[Q2p+1 ' Q3Q];2i,2jQ2 ' Q2p+2)

Here, Q2 . ~

Q2p+2 is a sequence where Q2; and

Q2j are missing which is coherent with our defini-
tion (2.12). That way showed C2p+2 arises once,

and only once, in (2.24).
Let us now consider the partitions of p +1 where

p] ——l. Among these there are those where Ql ap-
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pears in a contraction of two operators C[Q1Q2i]
and those where Q1 does not appear in such a con-
traction. Products of contractions containing the
factor C[Q1Q2;] cannot arise from 8 terms, since
according to the presence of index 1 in Q 1.2;22 the
lowest possible contraction is

C[Q2k+1Q 1;2i,2j] [Q2k+1Q1Q2iQ2j] '

We consider a general product of contractions con-
taining a factor Q1Q2i, e.g.,

C[Q1Qzi]C[Q ' Q ]

C[Q. Q ] . . C[Q. . . Q'] (225)

The product of contractions in the factor
of C[Q1Q2i] appears in a given partition of integer

p. It is evident that the term (2.25} appears in part
A of (2.24) for i =I

C[Q1Q2I]~Q2p+1 Q3Q2 Q2p+2} '

Q2 Q2p+2 is a product where Q2i is missing.
Furthermore, its unicity is ensured since a given
product of contractions in a given partition of j2 ap-

pears once, and only once, in the product of con-
tractions obtained by applying the Wick's theorem
for p phonons in the factor of C[Q1Q2i] in Eq.
(2.26}. With the terms of type (2.25) we exhaust

part A of (2.24).
Let us now look for a product of contractions

corresponding to a given partition of (p+1) where

Q1 does not appear in a contraction of two opera-
tors, but in contraction C of, say, 2pi operators,
which we can always relabel with indices

P (2),P (4) ~ ~ P (2pi );
(2.27)

R(1)=1,R(3). R(2pi —1) .

The factor E of this contraction corresponds to a
given partition of (p+1 —pi) where the operators
are labeled by the "complementary" indices, i.e., all

indices different from those involved in (2.27).
Let us look for such a term among the contribu-

tion of sum 8, where we apply the Wick's theorem
for p and the definitiori (2.12), thereby ensuring the
existence and the unicity of each product of con-
tractions corresponding to each partition.

The sought contraction C, involving Q1, will ap-
pear once and only once in the set of all different
contractions of 2pi —2 operators where one of the

Q has been replaced by Q1.2; 2j, where the odd in-
dices are R(3),R(5),. . . ,R(2pi —1), and where the
even ones are

P(2) P(4), . . . ,

p(2m)=i, . . . , p(2n) =j, . . . , p(2pi)

with m &n &pi. Its factor F, will appear too, and

only once, among the products of contractions in-

volving the partitions of (P +1—Pi) and the comple-
mentary indices, thereby proving the theorem. At
this point, we would like to emphasize that in the
application of (2.23) one must first formally write
all terms of the sum considering all phonons as dif-
ferent and do the regroupings and simplifications
due to the appearance of identical and/or orthogo-
nal phonons afterwards. (This procedure is, in fact,
similar to that used in the application of the usual
Wick's theorem for fermions. )

We need now to show that this Wick's theorem

also allows us to calculate in a rather easy way the
matrix elements of any operator T containing one
and two body parts. As usual we express T in terms
of normal ordered quasiparticles.

T= Tpp+ T~~+ T2p+ T4p+ T3$+T22

where the indices ij of TJ indicate the number of
creation and annihilation quasiparticle operators.
The part T00 leads simply to an overlap matrix.
The contribution of

Tll g( 11)pv+p+v
pv

can be brought to the application of the new Wick's
theorem after one commutation. Indeed

(Q2p —1 Q3Q1T11Q2Q4 Q2p } (Q2p —1 Q3Q1[T11~Q2i]Q2 Q2p }

where in the product Q2 ~

Q2p, Q2; is missing.
We note that

[T11 Q2. 1

behaves like a new phonon

Q2; ———,g (Z;)„.~t„t .,

where

(Z; )p„(tZg Z; t——)p„. —

It is evident that the T2p and T4p can be treated
directly, while T3& needs one commutation similarly
to ?'11. Finally T22 needs, as can be seen from Eq.
(2.1), two commutations.
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IIi. RECURSION FORMULAS [Q; QJ]=o.

In this section we analyze the previous problem
in a completely different way. First of all, we
rewrite the basic states

gage' ' '
Qzp I &

by grouping together all phonons of the same kind;
this is especially suited when the phonons are of
some collective nature as will be assumed hereafter.
This is always possible since

The same thing is made for the bra vector

&
I Q2p-i ' ' '

Q3Q~ .

There are r different types of phonons appearing in
both Q2Q4 ~

Q2p and Q2p, Q3Q, . They are
denoted once for all after a relabeling of the in-
dices, Qt, gz, . . . , Q„. Thus, the previous problem
is now fully equivalent to the calculation of the
quantity

p

N(k„k, , . . . , k, ;k„k,, . . . , k„)=&g„g,'g, 'g, g, . g„
with

(3.1)

k, +k, + . . +k„=k', +k;+. . . k„'=p.

Some of the k; (or k ) may be zero if the i phonon is absent from the ket (or bra) state but present in the bra
(or ket) state.

To calculate (3.1) another quantity

k' k„
A„";&(k;,k;, . . . , k„;k„k„.. . , k, )=&g,"" . g, 'g, 'a„'a.'gt~ 'g~". . . Q,'& (3.2)

is needed. The index (20) means that it appears in
the calculation of matrix elements of T20.

The indices p, v refer to the quasiparticle excita-
tions a„a„and parameters k t, kz, . . . , k, (and
k', ,k2 . . . , k„') stand for the number of phonons

Q &, Q2, . . . , Q, in the ket (bra) vector. In order to
clear up the formulas as much as possible the index
(20) and the parameters k; are omitted hereafter ex-
cept when some confusion may arise. In particular,
in writing the equations, we indicate only the
parameters k; submitted to some changes. Since the
phonons are made of two quasiparticle excitations it
is obvious from (3.2) that

A„"„"(k',k,', . . . ,k„';k„k„.. . ,k„)=0

k', +k,'+. +k,'~k, +k, + . +k„+1,

I

means of the phonon definition.

N(k„';k„)= —, g (Z„)~„Aq„'(k„';k„—1)

for every n. In the following, it will be convenient
to consider A» as the matrix elements of a matrix
A. Hence Eq. (3.4) can be written in a more com-
pact form

(3 4)

N(k„';k„)= ——,tr[Z„A' '(k„';k„—1)]

(3.5)

for every n.
Starting from (3.2) we move a„a„ to the left by

introducing the commutator [Q;,a$av] with each.
""t

type of phonon; finally the last term contains the
bra & I aqa, which vanishes.

Thus

(20) (20)A Jg+

(3.3)

'with

A„„=g g J„"'„
n=1 i=0

(3.6)

k' k'
)

-
y ) k f 1 k tk) )k»J»= &Qr

'
Qn+I Qn[gn~apav]gn" ' '

Q l Q] ' ' ' Qr

A recursion formula for J„"'„is obtained by commuting [Qn, a&a„] with Q„
~ng Jn(I —1) +~nn

(3.7)

(3.8)
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and with

K„"".=&[Qn [Qn &„& llQ. ' '''Qn" '''Qi'Qi ' 'Qr (3.9)

where

[Q. [Q. &„~.]1

which commutes with all QJ, has been moved to the
left to act directly on the bra ( ~. Hence, K&"„ is in-

dependent of i. From Eq. (3.8} Jz'„can easily be
calculated

one finds

A+&= g 1 Jp~+
n=1-

~nn (3.11!

l
Jns Jno+

where

l
nnE~, , (3.10)

Moving the operator [Q„,a„a„]in the definition of
Jz, to the left until it acts on thebra (

~

leads to

are the usual binomial coefficients. Performing the
summation over i [in (3.6)] and using relations
(3.10) and

@go y g KNN +LB
n'=n+1 & =o

with

(3.12)

k' k„', k'
K""„'=(0~ [Q„,, [Q„,~~a]]Q„" ' Q„" ' ' ' Q ' ' Qi Qi ' ' '

Qr

k' k„
L„"„=(0~[Q„,a„u„]Q„". . Q,

" ' ' Qi ' ' '
Qr

Inserting (3.12) in (3.11) one gets

(3.13)

P kn P kn P P

2
K„""„+g

n=1 n=1 n =1 n'=n+1

k„'
nn'

E„~ (3.14)

It remains to calculate the quantities E and I..
Using Eq. (2.1) one deduces

[Q„,[Q„,a„a,]]=g [(Z„)„(Z„},„+(Z„) (Z„)„„]aa„
p, v

and then

Lq„(Z„)q~(k„'———1;k„),
Kq"„' ——g [(Z„)~p(Z„)„q+(Z„)qq (Z„)p„]Aqg(k;k„' —l, k„' —) .

p, v

Thus A&, can be written in matrix notation

(3.15)

(3.16)

r r
A' '(k„',k„';k„,k„)= g 1

N(k„' —1;k„)Z„+g 2 2
Z„A' '(k„;k„' —2)Z„

1 n=1

k„' k„'

[Z„A' '(k„,k„;k„' —l,k„' —1)Z„
n =1 n'=n+1

+Z„A'"'(k„,k„;k„' —l,k„', —1)Z„] . (3.17)

In order to simplify the formulas we define reduced quantities ~ and ~'~0' by dividing the quantities N
and A' ' defined in (3.1) and (3.2) by
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k1!k2! ~ k !k1k2! ~ ~ ~ k'! .

Furthermore, we gather the two last terms of (3.17) in one. Then Eqs. (3.4) and (3.17) become

k„M(k„';k„)=——, tr[Z„M'20'(k„';k„—1)]

for every n

(3.18)

w'~+(k„', k„';k„,k„)= g M(k„' —1;k, )Z,
n=1

+—g [Z„W'2+(k„,k, ,;k„' —l, k„' —1)Z„+Z„W' '(k„,k, ;k„' —l,k„' —l)Z„] .

The second term in (3.19) reflects the effect of the Pauli principle; if n =n then

'(k„,k„;k„'—l, k„'.—1)

must be understood as

'(k 'k„' —2) .

(3.19)

Basically the two previous equations are coupled recursion relations: The recursion acts on the total number
p+p' of phonons; they are coupled since W' ' is a function of M and M is a function of W'~+. Once the
matrix W' ' is calculated, the matrix elements of the Tii part of any operator T are easily determined. De-
fining in a similar way as in (3.2) the matrix A "'i:

(11) r e r ~

k' k2 k
&

t. ~k& ~kg ~kr
(ki k2 kr ki k2 k )=~Qr ' ' Q2 Qi i& Qi Q2 Q

l

(3.20)

and using Eq. (2.1) one gets
W'"'(kN;k„) =—g [Z„W' '(k„;k„' —1)] .

(3.21)

Introducing again the reduced quantity M'"' by di-
viding A"" by the product of all the factorials
k;,k yields

(3.22)

If, instead of using [a a, Qt] we use [Q,a a], we
get an equivalent formulation

(3.23)

The formalism concerning matrix elements for
one body operators and for overlap matrices has
been developed in detail. The same philosophy is
followed and the same techniques are used for the
computation of matrix elements for two body
operators T40, T31, and T22. The derivation is
much more involved since in that case we need to
commute four phonon operators Q with atatatat
to get something which commutes with Q.
Nevertheless, the demonstration is straightforward,
although lengthy; here only the basic relations are
quoted.

Let us define the quantity

~p,vpo 1~ ~ r ~ 1~ ~ r
k1! . k,'!k,! k, !

It vanishes if

(3.24)

ki+ . +k„'gk, + . . k„+2.
If P'&„~ is any permutation on the indices p, v,p, o, the symmetry properties of atat&t~t hold also foi
M&„~. More precisely one has
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(40) W (40)+p~~p~=( 1) ~»p0 i

where ( —1} is the signature of the permutation. To evaluate M' ' we need the following commutators:

[Q„,[Q„,a&avapa~]] =E»~ +terms a a+terms a a aa,(n]n2)

with

(3.25)

(3.26)

(3.27)

as the first commutator.
In fact, the summation in (3.27}contains only six

different terms [owing to the antisymmetry for the
Z matrices, to each permutation there corresponds
2!2! permutations coming from a transposition in

the indices of (Z„,} and (Z„,} which give the same

result; this remark explains the —, factor in (3.27}].
l

I

Directly from Eq. (3.27}one can check that

(n]n2) + (n]n2)
+p~E»pa =( 1 ) E»pr

(n]n2) (n]n2)
+n, n,&I.vp

The second commutator

(3.28)

with

[Q„,[Q„,[Q„,,a&avapa~]]] = g F»~ »~a~a& +terms a aaa(n]n2n3)

Ij,V

(nnn)
gFp~ »y =

4 y y ( 1) +'
] 2 3+p~[(Z )p»(Z )vv'(Z 3)p ]

n]n2n3

(3.29}

(3.30)

(3.31)

The third commutator

The summation in (3.30) contains only 36 different terms due to the fact that the transposition po in (Z„) and

the triple transposition (n i n2)(pv)(p, 'v') give the same result. One can also check that

(n] jjgn3) ~ (n]n2n3 )

(n]52n3 ) (ij ]npn3 )

+n]n2n +p,vpcr p'v' =+pvpcr p, 'v'

with

(n]n2n3n4)
[Q [Q [Q [Q p p 11]]= g p pa, pvp' ' ' p' v'

p'v'p'cr'

(3.32)

(3.33)

which has the following properties:

(n']n2n3n4) ~ (n]n2n3n4)~p~G yvpe, p'v'p'cr' =( 1 ) G»pa, p'v'p'a'

(n ]n2n3n4 ) (n] n2n3n4)
~n, n, n, n, gpvpa, p v pcr =Gp, vpcr, p v pcr

The recursion formula for M'~' now reads

(3.34)

1 (n]n&)
Wpi~(k i, . . . ,k'.k i . . . k ) =—g ~(k i, . . . , k„;k'i, . . . , k„' —1, . . . , k„' —1, . . . , k„' )Epv' ~'

n]n2
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(n )n2n3 ) (20)
Z, Z,Fp„p „.„Wp „(k„.. . , k„;k', , . . . , k„' —1, . . . , k„' —1, . . . , k„' —1, . . . , k,

'
)

1

n)n2n3p v

1 (n&n2n3n4)+
4~ g g Gpvpo&pvpo

n f n2n3n4 p'v'p'o'

)&M„'„' ~ (k), . . . , k„k), . . . , k„', —1, . . . , k„', —1, . . . , k„', —1, . . . , k„', —1, . . . , k„' ) .

(3.35)

In this relation, as in the equivalent one (3.19), if I (I = 1,...,4) phonons n; are identical the parameters k„' —1
l

must be understood as k„'. —l. To calculate the elements W&„zo for a total number p +p' phonons, one needs

the overlap matrix M for p +p' —2, the one body matrix W„'„' for p +p' —3, and W„'„~itself for p +p' —4.
The matrix elements of T3~ and T22 of the two body operator are obtained from W' ' by the following

equations:

pvpo 1~ . i r& 1~'''~ r

= gg(Z„)..~,'„,'.,(k', , . . . , k„';k,, . . . , k„—1, . . . , k„),
n o'

)k) )k„
&Q,

' Q'„. ..Q . Q &

+pvpo( l~ ~ r ~ li ~ r)
k)! . k'fk)f k 1

(3.36)

= g(Z„) pW„'„'(k), . . . , k„';kl, . . . , k„—1, . . . , k„)

+-, g g [(Z„,) (Z„,) +(Z„,) (Z„,) ]
n&n2 p'o'

X W„'„p' (k ), . . . , k„';k), . . . , k„—1, . . . , k„—1, . . . , k„),
(3.37)

with the same convention on the parameters as in
(3.19) in the case of identical phonons.

The introduction of reduced quantities is useful

to write the various equations in a more compact
and elegant way. It is equivalent to say that instead
of working with basis states

Qt ' 'Q.
we use "reduced" states'

Qt 'Q'
k~ kt

the reduced quantites are now the matrix elements

I

in this reduced basis. Starting from

~(0,0,. . . ,0;0,0, . . . ,0)= 1

all the recursion formulas given above allow us to
calculate overlap matrices and matrix elements for
one and two body operators concerning any general
multiphonon state

~
k&, . . . , k, ).

IV. ILLUSTRATIVE EXAMPLES

The two methods presented in the previous sec-
tions represent two different ways for computing
matrix elements in a multiphonon basis. They both
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m, =m(k, k)=(k
~

k) . (4.1)

The recursion technique is used in that case and we
write Wt, instead of M(k, k —1). The basic equa-
tions (3.18) and (3.19) are expressed here by

take care of the Pauli principle rigorously and give,
of course, the same results if no approximation is
made. The question now arises as to which one is
more suited for a given problem. Even if some pho-
nons are identical the generalized Wick's technique
requires performing the treatment as if they were all

different, grouping together all identical contrac-
tions afterwards. Furthermore, the number of con-
tractions up to a given order increases more or less

exponentially with the phonon number. These few
remarks explain why, according to us, the Wick's
theorem is useful in the case where the multiphonon
basis contains few phonons, all of different types

On the contrary, the recursion formulas ought to be
used if the basis contains several phonons of the
same type. The case of a great number of different
phonons is difficult independently of the adopted
method. From a numerical viewpoint, there are
also differences between the two methods. In the
Wick's formalism, the algorithm necessary to code
all the system of contractions is not very easy but
each matrix element of a given order can be com-
puted separately. On the other hand, the use of re-

cursion formulas allows a more elegant numerical
formulation but requires the computation of several

matrix elements at the same time. In practical
cases, one often checks the stability of the results
when increasing the basis. The matrix elements of
order p —1 are then necessary also when one goes to
further order p. The recursion formulas ought to be
very well suited for such practical problems.
Furthermore, with the contraction technique, since
each matrix element is calculated separately, the
computing time should be rather long but storage
considerations are of minor importance whereas the
contrary holds for a treatment based on recursion
formulas.

Let us now examine two examples which illus-

trate the use of both methods; in order to keep a
maximum of simplicity we focus our attention on
overlaps only.

In the first example, only one type of collective
phonon is considered and is denoted by Q . The
multiphonon basis is thus the set of vectors

gk

I ik)=, i0),k=1, . . . , N] .

The overlap matrix is simply the norm matrix

kit, =——,tr[z&t, ],
Af I =ZMI ~+ZMI ~Z .

(4.2)

(4 3)

It is possible to "decouple" these equations and to
express everything in terms of the reduced norm M;
more precisely

k

t[Z] ' (4.4)
I=1

k

kMi, =—
~ +Ms ttr[z ] .

/=1
(4.5)

C [QoQo] =— «(Zo ) = 1

C[Q Q, ]=——,tr(Z, 2)=1,

c[Q,Q', ]=c[Q,Q,']=——,
' tr(z, z, )=0.

Besides (4.6) we need the following contractions:

(4.6)

C [QoQoQoQo] = —«(Zo'»

c[QoQoQiQi1= —«(zozizozi),

C[Q, Q, Q', Qi]= —tr(z, '),
C [Q i QoQoQ i ]=—«(Zo'Z i'»

C[QoQoQoQoQoQol = —6«(Zo )

C[QiQi QiQoQoQi]= —««Zi'Zozizo»

C[QoQoQoQoQ iQ i ]= —««Zo'ZiZoZi ),
C[QiQiQoQiiQiQi]= —2tr(Zozi Z0Zi )

—4tr(zo Zi ),

(4.7)

Starting from Mo ——1, Eq. (4.5) allows a very easy
numerical evaluation of ~t, . On the other hand,
the replacement in (4.5) of Mq i by its developed
form in terms of tr(Z ) would give the final ex-
pression obtained by use of the Wick's theorem; this
expression is not simple at all and one sees in this
special case the power of the recursion formulas.
Applications of this example were investigated in
detail for quadrupole phonons both in an exactly
solvable model and in more realistic situations.

The second example deals with the coupling of
an octupole X~=0 phonon Q+i and a quadrupole
E =0+ phonon Qo, a problem of basic importance
in the actinide region where the first octupole state
lies very low in energy. Here we give only the over-
laps for both K =0+ and E =0 states up to
third phonons by using the Wick's theorem. The
phonons Qo and Qi are assumed to be orthonormal-
ized thus
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C[gigogogogogt]= —2t (Zo'Zi o' t)

—4tr(Zo Z) ),
C[g&g&Q&g&g&g~]= —6tr(Z~ ) .

Concerning EC =0+ states there are six basic
states, namely I), QpI), Qp I), Q& I), Qp I),
and QoQt I ). Application of the generalized
Wick's theorem leads to

( I
&=l,

&g.g'& =C[g.g.']= l,
& Qo'Qo~ & =2C [gogo]'+ C [QogoQogo ]=2—tr{Zo')

&Qo'Qi' &=2CI QoQi 1'+C[gogogigi]= —«(ZoZiZoZi)

&g& g&' & =2C[gigt]'+C[gigiQtgt]=2 —«(Zi'»
&Qo'Qo' & =6C[QoQol'+9C[QoQo]C[gogogtgol+C[QoQoQoQoQoQol

=6—9tr(Zp ) —6tr(Zp ),

(4.8)

&Qo'QoQ" & = 6C[gogo']C[gog l'+3C[gogo]C[gogog g 1

+6C[Q Q ]C[gogogpg)]+C[gogogogogtgtl

= —3 tr(ZpZ~ZpZ~ )—6 tr(Zp Z&ZpZ & ),

(g, 'gpgpg)') =2C[gpgp]C[g, g~] +4C[gogt]C[g, gp]C[g, g~]+C[gpgp]C[Q~Q~Q~Q~]

+2C[QoQt]C[gigigog i]+2C[g igo]C[gigogtg i]

+4C [Qi Q i ]C[gi Qogog i ]+C [Qi Qi Qogog ig i 1

=2—tr{Z, ) —4tr(Zp Z, ) —2tr{ZpZ& ZpZ& }—4tr(Zo Z~ ) .

For theE =0 states there arefour basis states, namely Qt I ), Qpg~ I ), Qp Q~ I ), Qt I ), and

&g g', &=C[g g']=l,
&Qtgogogt &=C[gogo]C[g]gil+C[gogt]C[gigo]+C[gtgogog]]

=1—tr(Zp Zi ),
& Qi Qo'Qo~g i & =2C [QoQo 1'C [Qi Qt]+4C[QoQt]C [Qi Qo]CI QoQo]+ C [Qi Q i ]C[QoQoQoQo]

+2C[QoQt]C[gigogogp]+2C[gtgp]C[gogogog i]
+4C [gogo]C [Q i Qogog t]+C[g i Qogogogog i ]

=2—tr(Zo ) —4tr(Zp Zt )—2tr(Zp Z&Zp Z~) —4tr(Zp Z&2),

&Q 'Qo"Q'&=6CIQ Q ]C[g Qol'+3C[Q Q ]C[g Q QoQo]

+6C[g Qo]C[gigiQoQtl+C[QigigiQoQoQil

=—3 tr(ZpZ] ZpZ] ) —6 tr(Z, ZpZ, Zo },
(Q)3gt) )=6C[g)g)]'+9C[g)g&]C[g&gigigt]+C[glg&g&gtgtgtl
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It is worthwhile noting that some matrix ele-

ments for E =0+ states are obtained from contrac-
tions of lower order involving 11 =0 states (and
conversely). The study of the coupling between 0
and 0+ bands is in progress and more detailed

analysis is postponed until future publications.

V. CONCLUSIONS

To properly treat the problem of multiphonon

states of different types we have developed two
methods which allow us to properly take into ac-
count the Pauli principle, thereby being much better
than the different available boson expansion tech-

niques.
The first method appears to be a generalization of

the Wick's theorem for phonons. It seems especial-

ly suited for studying matrix elements of multipho-

nons states with a few phonons of many different

types.
The second one, which is a recursion formulation

of the same problem, is more easily handled in the
case of numerous phonons of the same type or when
only a few types of phonons are involved.

These two methods are complementary, the first
one is formally more compact and elegant, the
second one more useful for realistic numerical cal-
culations.

Several applications are possible within this for-
malism: coupling of different vibrational states in
deformed nuclei, coupling between collective and
noncollective excitations, elimination of the spuri-
ous states due to nonconservation of particle num-

ber, etc.
In difficult realistic cases where the limitations of

these methods may be rapidly reached it is possible
to combine the multiphonon method for matrix ele-

ments involving few phonons with boson expansion
techniques as shown in Ref. 3.
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