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Pade phenomenology for two-body bound states
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Pade approximants in the squared momentum variable, recently used for elastic scatter-

ing, are employed in generating accurate analytic approximants for bound states. Through
iteration, [L/L+1] approximants yield the lowest eigenstate of the homogeneous
Lippmann-Schwinger equation for Yukawa, Malfliet-Tjon, and Reid soft core central po-
tentials with, respectively, L =1, 2, and 3. Higher eigenstates are readily obtained; the
second is given for the Yukawa potential. Analytic separable expansions and scattering ex-

pressions result.

NUCLEAR STRUCTURE Fade approximants in k, analytic two-
body bound states, separable expansions, effective range parameters.

Two-body bound states, most notably the deu-

teron, have long been the subject of analytic investi-
gations. However, analytic methods have met with
limited success. Although the Rayleigh-Ritz
method has proved useful, ' as have iterative tech-
niques, the former leaves unsolved the important
problem of basis optimization, while the latter can
lead to rapid growth of complexity with each itera-
tion. Even though in the computer era the two-

body problem no longer demands analytic solutions,
they are patently desirable because of their tractabil-
ity and their possible use as stepping stones to solu-
tions of few-body problems. For example, their use
in constructing separable representations of poten-
tials can have a decisive advantage in three ' and
four body problems. In this paper we introduce a
new method of using Pade approximants (PA) (Ref.
7) for iteratively generating analytic solutions of
two-body bound-state problems that is accurate and
simple to use, and we use this method to construct
analytic separable expansions and expressions for
effective range parameters.

A PA is defined as a rational function approxi-
mant, with its coefficients determined by equating
the truncated Taylor expansions of the PA and the
function being approximated. Previous work has
shown reasonable analytic approximants in momen-
tum space to possess a simple pole structure such as
naturally arises from using PA. Also, it has re-
cently been found that x —=k is a natural variable
for PA to the two-body scattering function,
F(x)=k cot(5o), associated with realistic NN poten-
tials, and that such approximants closely reproduce
exact results. The bound state. results we give here

V(r)= g VJ
PJP

The two-body Schrodinger equation for a bound S
state,

' —1

kP(k)= E-
M f, dy y'Vo«y)4(y)

from using PA also yield rational scattering func-
tions when employed with the unitary pole approxi-
mation (UPA) (Ref. 9) or the unitary pole expansion
(UPE). 'o When applicable, the present method ap-
pears to be a powerful alternative to previous uses
of PA's for solving the integral equations of few-

body systems.
The present method consists of assuming a Pade

form for the solution of a two-body bound state
problem and recovering that same form from a
series expansion of the integral equation. Unlike
the Thomas-Sachs method, ours leaves the com-
plexity of our eigenfunction unchanged during the
iteration process. We consider the case where the
potential is a sum of Yukawas; for numerical results
we further specialize to a single Yukawa which
models the triplet np interaction (Y), the 'So
Malfhet-Tjon potential (MT)," which is a sum of
two Yukawas, and the 'So Reid soft core potential
(RSC),' which is a sum of three Yukawas. The last
two, especially the RSC, have strong short-range
repulsions. For Y, B=2.240 MeV; for MT and
RSC, we set the binding energy 8 to 0, following
Harms. '

The potential is written:
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when written with the potential of Eq. (1) in the
momentum representation, becomes

X(k)=Z g ' I" d y
2']7 +& k Jl +y]]

&& In(pj'+(y +k)'),

where we use natural units (fi=c=l), we define
strengths gj

—— MV—J /pj (M/2 is the reduced mass)
and yo MB ——(B is the binding energy), and we have
multiplied out the bound state pole:

The overall strength parameter A, is introduced as
an eigenvalue and equals unity if the potential pro-
duces the binding energy E =—B. Our equation
for X(k} is identical to the homogeneous
Lippmann-Schwinger equation used by Harms to
generate the UPE, and X(k) becomes the form fac-
tor for the UPA when A, =1:

V (k', k)= —(k'iX)(X ik),
with X(k)—:(k

~
X). The UPE is given by

(k'iX;)(Xj ik)
V]](k',k) =-

j ] Aj
where XJ(k) are eigenfunctions of the Lippmann-
Schwinger kernel with ME= —yo and having
eigenvalues Aj. Orthonormality holds in the form

x„ I
G, ( —B)

I X.) =—s

where Go(E) =(E —k /M)
The solutions X„(k) and A,„are expressible, for

E&0, in terms of an eigenvalue problem for a Her-
mitian operator, Go VGO . Consequently, prop-
erties of the spectrum are readily obtained and the
Rayleigh-Ritz method produces variational bounds
on eigenvalues.

We write the even function X(k) as a PA in the
variable x =k:

X(k)= =[L/M],Pt (x)

where m —1 is the number of poles of X(k) on the
positive imaginary axis. The constants hq and d~
are simply and analytically expressible in terms of
the Pade coefficients and y]]. A PA for X(k) is
recovered and a value of A, obtained using the first
2L+2 terms of the series expansion of the right
hand side of Eq. (5}. The solution, found iteratively

by using the recovered X(k) as an input to the right
hand side, generally requires about 30 iterations to
get 14-figure convergence of all parameters. Table I
gives our results for the three potential models,
showing the lowest order PA required for conver-

gence. In coordinate space the wave functions are
sums of exponentials, all range parameters being
uniquely determined by our method, while in
momentum space the wave functions closely resem-

ble those previously given. ' ' The Yukawa
model used by Harms' differs so slightly from the
one we employ that comparisons to three figures
can still be made. It is also possible to obtain bind-

ing energies iteratively for those potentials that have
bound states, by varying B until A, equals unity. For
our Yukawa model, this yields B=2.202 MeV, pro-
ducing the characteristically larger error in B
(1.7%) than in A, (0.27%%uo).

Higher eigenstates can also be obtained either
iteratively or by diagonalization, as will be dis-
cussed in more detail in a forthcoming paper. The
natural basis for either approach is the I + 1 di-
mensional subspace spanned by the [L /L +1]PA's

possessing precisely the same denominator polyno-
mials.

Table I reflects two approximations, the first be-

ing our basic ansatz that a PA form adequately
represents the eigenfunction. Another approxima-
tion is made in the iteration procedure, by truncat-
ing the series expansion of the right hand side of
Eq. (5). We have tested the ansatz by doing a
Rayleigh-Ritz calculation with PA functions as a

TABLE I. First eigenvalue of Lippmann-Schwinger
equation obtained through iteration compared with accu-
rate results.

where L and M are the degrees of the polynomials

Pt. and Q]]t, and we choose M =L+1, which as-
sures normalizability. The Hulthen function ob-
tained by Sachs has a [0/1] structure. Anticipating
our result that the stable solutions have poles on the
positive imaginary axis, we obtain the equation

n m

X(k)=A, g g hqtan, (5)
p=l q=1

Potential

Y
MT

RSC

'Reference 5.
Reference 10.

'Reference 4.

PA

[1/2]
[2/3]
[3/4]

1.003
—0.4419
—0.05705

1a

—0.4342b

—0.062 S6'

First eigenvalue
Iterative Accurate
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basis and using numerical quadrature. For simpli-
city, we shall restrict all further detailed discussion
to the Yukawa model in the [1/2] approximation.

Figure 1 shows the lowest eigenstate, Xi(k), and the
orthonormal [1/2] function, X2(k). They closely
resemble the first two eigenfunctions numerically
obtained for the Harms- Yukawa model. ' The
Rayleigh-Ritz procedure is easily applied in the
Xi(k}, X2(k) subspace. For this purpose 20-point
Gauss-Legendre integration is sufficiently accurate
to compute matrix elements. If we write

iX&=~t iXi&+p iX2&,

then solving the equations

&Xi I Go( —8)~ IX&=~&X
I
Go( —8) IX&

i=1,2, with A = VGp( 8) and —the orthonormality
condition leads to the upper bounds k» (1.000036
and A,2(3.479074. Our A, 2 for the Harms and
Adhikari Yukawas are the same to three figures,
compared with Harms's accurate value of 3.2846.
We obtain a small admixture P=0.606128)&10
of ~Xq& to the first eigenstate. Hence, Gp( —8)A is
practically diagonal in the Pade-iterated basis, and
the plots of the new approximate eigenfunctions are
indistinguishable from those in Fig. 1. Varying 8,
we obtain 8=2.2395 for A, = 1, which is in striking
agreement, differing by 0.02 percent from the exact
binding energy. These results strengthen the credi-
bility of our approach for generating analytic solu-

tions introduced in this paper.
With our ~Xi & and

~
Xq &, analytic approxima-

tions to the rank-1 UPA and the rank-2 UPE are

0.6-

immediately obtained, and the scattering function
F(k ) =k cot(5p) is easily found from the R matrix.
The R-matrix integrals can all be evaluated analyti-
cally and lead to rational forms for F(k ). For the
present Yukawa potential, convergence of the UPE
series contributions to E(k ) is known to be slow,
although it is much faster for potentials with
short-range repulsions. ' %e limit our discussion
here to the scattering length. We define the integral

dy y'Xi'(y)
I(y )=M

P y2+y 2

By the normalization condition, I(yp )=1. The
UPA scattering length is

n.MXi (0)a=
2(I(0)—A, i}

' (6)

and if we set A, i ——1 we guarantee that the T matrix
will have the correct bound state pole, and we ob-
tain 0=5.614 fm compared with the more precise
value of 5.470 fm that we computed from the
Schrodinger equation in coordinate space. The nu-

merical result just given comes from the use of the
iterative Xi(k) and X2(k). Scattering length calcula-
tions reported here are all insensitive to choice of
basis, whether iterative or Rayleigh-Ritz. Our
two-term UPE leads to a scattering length of the
form

ai+a2 —2aia2J(0)a=
1 —aia2J (0)

where a» and a2 are the scattering lengths associat-
ed with the two separable terms in V and

ir(M/2)Xi(k)X2(k) J(k')

k2=P J dyy Xi(y)X2(y)Gp ~ (8)

~ 0.4-

0.2-

O

-0 2-

10O.l 1

k(fm )
FIG. 1. Iterative eigenfunction Xi(k) in [I/2] approxi-

mation (solid line) and +2(k) (dashed line) obtained by
orthogonalizing to g~(k) while maintaining the same
Pade denominator, Q2(k ). Both functions are normal-
ized.

The weakly attractive second term in V associated
with Xq(k) drives the total scattering length to a
value of —0.7 fm when Rayleigh-Ritz eigenvalues
are used. If A, i and A,2 are allowed to vary, a better
fit to low energy scattering is achieved at the cost of
shifting the bound state pole in the T matrix. If
A, »

——1 is used, the bound state pole is reproduced,
but the second term in V must be strongly repressed
(A,2== 110) to fit the scattering length to the quot-
ed precision.

Although these results are approximations to a
UPE analysis, the simple analytic structures permit
extensions with great ease. Under current investiga-
tion is the possibility of fitting the bound state pole
and the scattering function F(k ) at low energies



PADE PHENOMENOLOGY FOR TWO-BODY BOUND STATES 2619

with the use of several terms in a separable expan-
sion for V, by varying all the A, except for A,

&
which

is determined by the bound state pole. Two other
problems that would require some generalization of
the present method are the deuteron with tensor
forces and the triton with finite rank potentials.
Both systems are reducible to coupled integral equa-
tions in one variable. We are investigating the pos-
sibility that they can be solved analytically in a
similar manner.
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