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The structure of generator coordinate kernels for nucleus-nucleus scattering is analyzed
with respect to various particle exchange contributions due to antisymmetrization. This
analysis leads to an algorithm for a systematic computation of the kernels, and is suitable

for revealing their analytical form. The method may be used as a guideline for computer
aided symbolic algebra calculations.

NUCLEAR REACTIONS Classification of GC integral kernels with

respect to particle exchange. Systematic computation.

I. INTRODUCTION

Generator coordinate (GC) theories have become
a powerful tool for microscopic investigations in
nucleus-nucleus scattering. Typically, the scattering
system is described by Slater determinants (or su-

perpositions of Slater determinants) which represent
two (or more) clusters with their relative degrees of
freedom being parametrized by real or complex gen-

erator coordinates. The most direct application of
these techniques is the generator coordinate method
(GCM) (Refs. 1 —3) where the Hill-Wheeler equa-
tions have to be solved directly with appropriate
boundary conditions. Generator coordinate tech-
niques also seem to be indispensable when perform-
ing resonating group method (RGM) (Refs. 5 and 6)
calculations for heavier systems. The integral ker-
nels in the RGM may either be obtained by unfold-
ing the corresponding GCM kernels or by intro-
ducing complex generator coordinates (CGCM)
(Refs. 10, 6, and 11) and integrating over some of
these. All these techniques depend crucially on the
factorization of the center-of-mass motion in each
cluster Slater state and therefore demand describing
the individual nuclei in the scattering system by
harmonic oscillator model wave functions. During
the past decade dynamical scattering calculations
within microscopic theories have been performed
persistently with harmonic oscillator models. Much
has been learned within this framework (and still is)
although the description of the individual nuclei ap-
pears to be poor as far as the nuclear structure is
concerned.

It appears desirable to treat inelastic processes in
a microscopic fashion. Nuclear reactions can be
calculated within the coupled channel framework,
again, with each fragment being in a harmonic os-
cillator ground state. ' The alternative approach of
an inelastic scattering process where one of two
partners can undergo an internal excitation turns
out to be troublesome even within an oscillator
model because the center-of-mass motion does not
factorize in general' and thus there is no longer an
easy way to restore translational invariance.

The possibility of treating more general wave
functions than "Gaussians multiplied by polynomi-
als" is, however, desirable and will be stimulating to
microscopic nucleus-nucleus scattering theories.
For example, inelastic processes which lead to exci-
tations of one nucleus in the continuous energy
spectrum may be investigated by including single
particle states with "plane wave boundary condi-
tions" in the Slater determinant model states. ' In
this and other similar cases a reasonable form of
translational invariant two-fragment states is

M)2I (2m ) exp(ik x„))PI„'t'„,(g))PI„,
' „,(g2) J,

where x„~ and g~, g2 are the relative and internal
coordinates, respectively. &~2 is the antisymmetriz-
er between the two nuclei, and the subscripts n

&
and

n2 on the internal wave functions P„'I„,, i =1,2,
denote excitations built into the one-fragment
model states. Using a generator coordinate ap-
proach in order to calculate overlap and Hamiltoni-
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an matrix elements with the states (1.1}one usually
starts out with (noninvariant) one-fragment Slater
states which are displaced in coordinate and (in gen-
eral) in momentum space by, say, r; and k;, respec-
tively. I.et us write these states as

C;„(r;,k;}~0), i =1,2,

using creation operators acting on the vacuum
~

0).
Rather than by mathematical accident" like in os-
cillator models, translational (and Galilean) invari-

ance must then be restored by more elaborate
methods as, e.g., projection operator techniques.
This apparently leads to an increase of calculational
and numerical effort which one must be able to
cope with efficiently. To illustrate this point, which
this work is (partly) devoted to, we quote that an
application of the Rouhaninejad-Yoccoz projection
method' allows us to compute matrix elements
with the states (1.1) out of generator coordinate in-

tegral kernels by means of the integral transforma-
tion 16y 14

(p(k'ii')
~ &op ~

f(kii))iNT

=f d si f d s2 f d uexp ——(k'+k). (si —s2) —i(k' —k) u E„„(sis2u;k'k), (1.2a)

s1 N2 s2 cV1E„„(sis2u;k'k)= 0 C, — — u, —k' C, — + u, k'
2 N 22 2

S2 N1 g S1 N2
++opC2n + u k Cln u, —k 0

2 N 2
(1.2b)

where X =1 or E =H,
~
P(kn)) denotes the

translational invariant states (1.1), and Ni, X2, and

N =N1+Nz are the mass numbers in the system.
Note that the matrix element on the left hand side
of Eq. (1.2a) is meant with respect to the internal
variables gi, g2, and x„i, as indicated by the sub-

script INT, whereas the right hand side of Eq.
(1.2b) is a usual GC matrix element defined with

respect to all single particle coordinates x1,. . ., xz,
it plays the role of a GC integral kernel. This ker-

nel is accessible by standard determinantal
methods' ' (Wick's theorem), however, it depends
on five vector variables; three of these have to be in-

tegrated over in a Fourier-type integral, Eq. (1.2a).
Although this appears to be impracticable at a first
sight it is, nevertheless, relatively straightforward
(and has been done in practice in the work of Ref.
14) to apply the transformation formulas (1.2) pro-
vided the following prerequisites are met:

(i) the structure of the GC kernel

E„„(s i s zu; k'k) is analytically known,
(ii) symbolic algebra computer codes can be em-

ployed to perform the three Fourier-integrals in
(1.2a).

Requirement (i) can be fulfilled in oscillator
models (with equal or unequal widths} and Gauss-
ian nucleon-nucleon forces. ' (The Coulomb force
may also be treated by a sum of Gaussians. ) How-
ever, we emphasize that one may equally well use,
e.g., plane wave single particle states (or the Fourier

I

representation of an arbitrary state) in order to
describe excited nuclei. The center-of-mass motion
is automatically treated correctly if the momentum

projection technique, i.e., essentially Eqs. (1.2} is
used. ' In either case the compact determinantal
structure of the GC kernels, as provided by the for-
mulas of Lowdin and Brink, ' ' cannot be main-

tained; a detailed analysis of the GC kernels with

respect to their analytical structure is necessary in
order to make a symbolic algebra ' integration pos-
sible. It may even be necessary to perform a

(iii) computer aided calculation of the analytic
form of the GC kernels,
where one starts out with one-body and two-body
single particle matrix elements.

In the present paper we propose a systematic way
for calculating the overlap, one-body, and two-body
GC integral kernels decomposed into parts of dis-
tinct analytical structure. A particularly important
feature of the method is that the symmetries of the
system (e.g., rotational invariance) are utilized at a
very early stage and are preserved in each inter-
mediate step of the calculation. This comes about
because invariant expressions are generated by per-
forming traces which involve one- (two-} particle
matrix elements. Since, in this way, the symmetries
become manifest, the analytic functions one has to
deal with depend only on a limited number of in-

variant combinations of the generator coordinates.
Apart from this technical aspect the algorithm
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described here exhibits the
(iv) structure of the kernels with respect to parti-

cle exchange between the fragments
and, within each subkernel with the same number
of particles exchanged it is still possible to distin-
guish

(v) various classes of contributions to the Hamil-

tonian kernels due to different exchange processes,
each of which is consistent with the symmetry

.properties of the system.
At the present, rather progressed, state of genera-

tor coordinate techniques, ' it is not surprising
that symbolic algebra computer codes have already
been applied in microscopic calculations of
nucleus-nucleus scattering. ' ' There also have
been attempts to classify GC integral kernels with
respect to particle exchange. ' ' However, all this
work has been done within the constraint of har-
monic oscillator models. This is also true for the
detailed particle-exchange classification schemes
developed in Ref. 19. The results there are, in prin-
ciple, reproduced by specializing the more general
algorithm proposed in the present work. It should
also be mentioned that the formulas (1.2) which
originate from a momentum projection approach
only serve as an example to illustrate the complexity
of the calculational problems. The algorithm
developed in the following sections is more general.

We will first treat the overlap kernel (Sec. II) and
then extend the method to GC kernels involving
one-particle operators (e.g., kinetic energy, Sec. III)
and two-particle operators (potential energy, Sec.
IV). The resulting formulas can be simplified fur-
ther by utilizing the orthogonality of spin-isospin
states; as an example we will treat the case of 4N-
nuclear states in Sec. VI.

The present algorithm has already been applied to
the calculation of integral kernels using formulas
(1.2) (and symbolic computer algebra) in the case of
a-a scattering'; the model considered there in-
cludes excitations of an a particle to the continuous
energy spectrum and thus goes beyond the harmon-
ic oscillator framework.

plex, parameter associated with nucleus I, I=1,2.
The norm kernel M(q', q), i.e., the overlap of the
corresponding Slater states, can be written as the
determinant of the EXN overlap matrix' '
M(q', q),

A"(q', q) =detM(q', q) . (2.1)

and

F11 ~12 21

g 22 21 12

(2.5)

Thus the overlap matrix M can be written as a four-
fold product

The matrix M(q', q) is composed of four block ma-
trices,

M"(qi, qi) M' (qi, q2)
M(q', q)= M21( ) Mi2( ), (2.2)

q2~q2

provided that the fragmentation N =Ni+&2 is the
same on both bra and ket sides. However, the set of
the one particle states, which determine the ma-
trices M (qi, qz), I,J=1,2, i.e.,

MJ (qiqJ)= f dxP;(x, qr') Pi(x,qq), (2.3)

may be chosen differently on either side.
We now assume that detM" and detM are not

identical to zero and have, as functions of the gen-
erator coordinates, at most discrete zero points. For
example, in GCM approaches to elastic scattering
of nuclei in their ground state, described by an os-
cillator shell model, detM is simply a Gaussian
and therefore is nonzero for arbitrary values of qi
and qi. The assumption may also be true for a con-
siderably wide class of kernels describing transitions
to channels with excited fragments. i6 For all gen-
erator coordinates where detM "+0and detM +0
it is thus legitimate to define

12 (M 1 1
)
—1M 12

(2.4)

co '=(M ) 'M '

II. THE NORM KERNEL

We consider model states to two-center Slater
determinants that carry a set of generator coordi-
nates q which are grouped into two subsets, q1 and
q2, each parametrizing the center-of-mass degrees
of freedom of the nuclei with particle numbers Ni
and N2. q1 may be the mean position, the mean
momentum, or some more sophisticated, e.g., com-

~11 p 1 12 1 O11 p 1 0
~22 0 1 0 j 21

I

or alternatively,

M" 0 1 0 1 0 1 co'

0 ~22 21 1 0 1 g22 0 ]

(2.6a)
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Then the norm kernel reads

~=detM" detM det(1 —Q"),
M=detM" detM det(1 —Q ) .

(2.7a)

(2.7b)

Since the number of permutations characterized by
an array (m) m„) is given by30

v!
m& Nl

&pe ~i '. m„!v "
A determinant of type det(1 —A,Q), with an n Xn

matrix Q and iL being a parameter, can be expanded
in powers of A,,

and since the relation

( —) =(—1)

det(1 —A,Q)= g A,"6„.
v=O

The expansion coefficients are

(2.8) holds, we obtain the result

( 1) ) " m m

(m, "m„) Ptl1!1 " Nl„!v
1

V v!
det(1 —A,Q}

d

)v n lf

$ det
k =1 k„=11

~k)k„

k„k„

(2.9)

(2.13)

The sum comprises all arrays (m) m„) that satis-

fy condition (2.11}.
We now include a factor v A, in both co' and co2'

and then identify Q with Q and n with NI, I being
1 or 2. Thus it can be concluded from (2.7a), (2.7b),
and (2.8) that the relation

This treatment of det(1 —A,Q) is, so far, analogous
to the Fredholm method (cf. Sec. 9.3 in Ref. 29).

We now write the vX v determinants in (2.9) ex-

plicitly as

det(Qk;kJ) y ( ) Qk)e(k)) Qk„e(k„)
ATE'S

N) N2

y ~-~„")=y ~.~,")
v=O

(2.14)

holds, where 6„"' and b'„' correspond to 0" and
Q, respectively. Since the expansion coefficients
on either side must be the same, the norm kernel
reads

(2.10}

(with s„being the permutation group of v elements)
and then decompose each ~ into an irreducible
product of cycles

min(N &,N2 )

v=O

M„=detM" detM

(2.15a)

(2.15b)

(), . ~ (), ~ ~ ~ (), ~ ~ ~ ()„~ ~ ~ ()„
m1 N1I 71k ~

Here the multiplicities m)—i.e., the number of (dif-
ferent} cycles ( }) with common length l—are sub-

ject to the condition
V

g lmI ——v, mI &0.
I=1

(2.11)

I I ——trO'

and obtain

(2.12)

m& m„g Qk, &k, )
' ' Qk„ek„)=1 )

k =1
V

»s«ing (2.10) into (2.9) the v-fold product of the
0-matrix elements can be reordered as indicated by
the cycles. Accordingly the summations in (2.9) are
written as mI-fold products of subsummations
within the respective cycles and thus lead to traces
of powers of Q. We therefore define

Here 6„ is defined by (2.13) and (2.12) while it
makes no difference if Q is chosen to be Q" or Q
one may conveniently choose the matrix of smaller
size.

There are some significant features of our result
that are worth mentioning:

(a} The prescription for calculating the norm ker-
nel is most suitable for calculations on a computer.
The powers of the matrix Q as well as the contribu-
tions to {2.13) may be computed in a recursiue

manner.
(b) The invariance properties of the model states

with respect to transformations under a certain
symmetry group are manifestly preserved when per-
forming the trace in (2.12). Symmetry properties,
which normally help to reduce numerical effort, can
thus be utilized at a very early stage of computa-
tion.

(c) The terms in the decomposition (2.14) admit a
simple interpretation. Since the matrix elements of
M (qI, qz) are (non-normalized) transition ampli-
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tudes from "ket J" to "bra I," one may associate a
one-particle exchange process with the matrix

Q"=(M") 'M'2{M ) 'M",

or alternatively, with

Q22 (M22) —1M21(M11)—1M12

We therefore interpret X„as the v-particle ex-

change contribution to the norm kernel. In Eq.
(2.13) all possible ways to exchange v nucleons be-

tween the fragments are taken into account.
The norm kernel contribution M, m.ay be illus-

trated graphically: Since, for each v, the m„=i
term in Eq. (2.13) can be uniquely attached to M„,

~,=detM" detM ( —I'„/v)+

it is sufficient to visualize I „. For example, Fig. 1

represents M1, where the characteristic trace is

and

ci(PQ) =ci(P)ci(Q)

c 1 (P)=P 'detP, detP+0,

(3.4)

(3.5)

are applied to both Eqs. (2.6a) and (2.6b). By com-

paring the two results one obtains

ci(1—Q") —ci(1—Q")co'
tcl(M) 21 t(1 Qil) t(1 Q22)

the one-particle operator t,~ which, again, is written
in block form,

t11 t12

22t t

tij (tljtlJ) = f tlxpi~(x&qr' ) toi&(x){l'j (X&e)

In order to evaluate c 1 (M) the relations

III. THE KINETIC ENERGY KERNEL

The generator coordinate kernel a of a one-body

operator, say the kinetic energy, can be calculated
and classified on the same footing as the norm ker-
nel.

We start from the general form'

a =tr[ci(M)t], (3.1)

where c 1(M) is the transposed first order cofactor
matrix of M, cf. (2.2), and t denotes the matrix of

The boxes denote the fragments in the bra and ket
states, respectively; the dotted and solid lines

represent (M") ', (M ) ', and M', M ', respec-
tively. Performing the trace is indicated by closing

the lines. This picture may be generalized in an ob-

vious manner to v & 1, i.e., to the illustration of the
ml m„

terms I1 I „"with m &1 by drawing several
closed loops where each loop is identified with the
corresponding trace I I.

X 22) 1 detM" detM

and two additional relations obtained from (3.7a)
and (3.7b) by simply interchanging the upper in-

dices 1 and 2. Thus we are left with the problem of
calculating cofactors of a matrix (1—A,Q); these are
expanded in powers of A„

ci(1—&(,Q)= g A,"X„. (3.8a)

Inserting this into

(1—A,Q)c 1(1—&(,Q) = 1 det(1 —A,Q)

and using (2.8) we obtain the recursion formulas

Xo——1,
X„=16„+X„1Q,1&v(n —1,
0=16„+X„10.

By induction, one concludes that

We note that deriving (3.6) in this way leads to

c 1(1—AQ") =1det(1 —AQ )

+Au)' c 1(1—&(,Q )to ', (3 7a)

(3.7b)

X,=pa, „Q~.
@=0

(3.8b)

FIG. 1. Graphical illustration of the one particle ex-

change contribution to the norm kernel.
Now inserting (3.6) into (3.1) and using Eqs. (3.8)

yields the final result
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IJ v=0
(3.9a)

S „=detM "detM g b,„„8„. (3.9b)
p=O

The traces 8„,which include the matrix elements of
the one-particle operator, are listed in Table I,
where the abbreviations

T =(M ) 't IJ=12 (3.10)

are used. The boundaries m[IJ], which are also
listed in Table I, result from comparing the degrees
of the A, polynomials on both sides of Eqs. (3.7). In
the last column of the table one finds the number of
particles exchanged between the fragments, which
has to be attached to the contribution a, . In anal-

ogy to Sec. II W„" and a represent v-particle
exchange terms, whereas a v' and W„' are
(v+1)-particle exchange contributions because the
matrjces T' cg

' and co i2T2i descrjbe an addjtjonal

IV. THE INTERACTION KERNEL

In order to treat a generator coordinate kernel &
of a two-body operator u,z, say the potential energy,
in a similar manner we start from'

~= —,tr[c2(M)u]

:=
z XX c2(M)ya. a~uaII, yS

aP y5

(4.1)

where tr here denotes a "tensor trace. " The two-
particle matrix elements v p &~ are written in block
form

particle exchange process via the matrix elements of
the one-particle operator. This feature is visible in
the graphics of Fig. 2, where the kernels a „,v =0,
are illustrated. Here the cross represents the one-
particle operator.

uiJJ kl (qIqJ qKqL ) I dxl J dx24i (x1 qI ) NJJ(x2 qJ ) u.p(1»)1}ik (xi qK)41 (x2 qL, ) (4.2)

and

c2(PQ) = —,c2(P)c2(Q) (4.3)

with the identification a = (I,i ), . . .,5 =(I,l), and
c2(M) denoting the transposed second order cofac-
tor tensor of M. Analogous to (3.4) and (3.5) the re-
lations

I

When applying (4.3) and (4.4) to the decompositions
(2.6a) and (2.6b) it turns out that the second order
cofactor tensor of a matrix (1—A.Q) has to be calcu-
lated. A straightforward calculation yields a result
that is formally similar to (3.8)

c2(P)=P 'XP 'detP, detP+0, (4.4) 0

hold [tensor multiplications as in (4.1)]; here we
have defined

(P Xg)aJI yS PaygJIS Paag——yy— (4.5)

for two matrices P and Q. Tensors of this type have
the property

22

0
t

(PXQ)(R XS)=PR XQS+PSXQR . (4.6)

TABLE I. Traces involving one-particle operators.

min [IJ]
11
22
12
21

tr[(Q" }1'T"]
tr[(Q22 }1'T22]

tr[i02l(Ql1 )laT 12]

—tr[(Q" }i'co'2T2']

min(N ~
—1,N2)

min(N~, N2 —1)
min(N] —1,N2 —1)
min(N~ —1,N2 —1)

v

v+1
v+1 FIG. 2. Graphical illustration of the simplest contri-

butions to the kinetic energy kernel.
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N —2 V

c1(1—xA)= g iP X k„„$Q~xo," ~ .
have not been enclosed in Table II because of the
obvious symmetry property

V=O P, =O P=O
(4.7) ~IJKL ~JILK

V V

The decomposition of the kernel W is now ob-
tained by inserting Eqs. (2.6) into (4.1) and then us-

ing (4.3), (4.4), (4.6), and (4.7)
m [IJKL)

~IJKL (4.8a)
IJKL v=0

p, =O P=O

(4.8b)

The symbols ep„p denote traces of tensors which
comprise a characteristic factor of type (4.5). Ten
of these 16 traces are listed in Table II where the
tensor V with the elements

VIJKL y y (~II) —1(~JJ) —1 IJKL (4 9)

is used for abbreviation. Of course the tensor in-
dices i, j, k, and l run within the range given by the
size of the block matrices, i.e., NI, XJ, NK, and NL,
respectively. Owing to relations of the type

21(Q11)p (Q22)p 21

which follow from (2.5), the role of the matrices0" and 0 in the tensor traces of Table II may be
interchanged; we choose to write 0" whenever
feasible in both Tables I and II. Of course it is ad-
vantageous to use the matrix of smaller size as often
as possible.

The remaining six tensor traces with IJKL classi-
fication

2121 1121 2212

2112 2111 1222

Moreover, if the same set of single-particle states is
used in both bra and ket, the symmetry property

IJKL KLIJ I I
U Jkl (ee,eKm ) =Uk&, (qK eL,e eJ )

cf. Eq. (4.2), leads to

1211
( y 1112)t

V V

y 2112
( y 1221)t

V V

y 2211 (y 1122)t .
V V

this reduces the number of terms which actually
have to be calculated to seven.

In order to compute the boundaries m[IJKL] it
is essential to use both decompositions (2.6a) and
(2.6b) when deriving (4.8). A comparison of the re-
sulting A, polynomials then gives the values listed in
the third column of Table II.

We further state that due to the definition (4.5)
each tensor trace can be written in the form

8 =tr[P (p) X Q (p —p) V]

dg IJKL pg IJKL
P~P —P P~P —P

= g Pk; (p)Qtj (p, p) VJkt-KI LJ IJKL

ij kl

—g&; (p)Q, (p —p)VJ
ijkl (4.10a)

where P (p) and Q (p —p) denote the block ma-
trices given in Table II. Thus each contribution

to the interaction kernel is quite naturally
split into a "direct" part P „and a "permuta-
tion" part pW„according to the first and second
terms in (4.10a), respectively,

IJKL

1111
2222
1212
1221
1112
1211
2221
2122
1122
2211

min(N~ —2,N2)
min{N~, N2 —2)

min(N, —1,N, —1)
min(N] —2,N2 —2)
min(N, —2,N2 —1)
min(N~ —2,N2 —1)
min(N& —1,N2 —2)
min(N) —1,N2 —2)
min(N~ —2,N2 —2)
min(N~ —2,N2 —2)

TABLE II. Traces involving two-particle operators.

0IJKL m [IJKL ]

tr[(n") x(n") -pv]
«[(Q")px(Q")p-pv]
tr[(n") x(n") -pv]

trio '(Q")px(Q" Y' pro'2V]
—«[(Q")px~"(Q"Y'-pv]
—tr[(Q")Px(Q")P Pro "V]
—«[(Q")px(n" Y'-p~ "v]
—tr[(n") x~"(n") -pv]

«[co"(Q")Pxco '(Q")P PV]
tr[(n )pro x(Q Y' &~' V]

"(v)

v+2
v+1
v+1
v+1
v+1
v+2
v+2

v
v+1
v+1
v+1
v+1
v+1
v+1
v+2
v+2
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~IJKL dy IJKL py IJLK
V V V (4.10b)

The number of exchanged particles, which can be
read off the matrix structure of the traces (4.10a), is
different for the direct and permutation contribu-

tion in general. The last two columns of Table II
list these numbers for the kernels d&„and
pp IJLK

The graphs already introduced when treating
norm and kinetic energy kernels can also be used to
visualize the interaction kernels; we attach the sym-
bol

1111

V0

2222

1212

I I

to the matrix elements of the two-particle operator
occurring in the direct kernels and the symbol

1221

V0

\

p
I

to the matrix elements occurring in the permutation
kernels. The graphical representation of W„
in the sense explained at the end of Sec. II—is
displayed in Fig. 3 for v=0 and each essential IJKL
combination of Table II. Note that, loosely speak-

ing, each line ending at the bra and ket boxes for
the two nuclei "exhausts" precisely one nucleon
from the respective nucleus. This determines the
maximum number of particles left for being "con-
nected" by additional lines which is in accordance
with the boundaries m[IJKL] given in Table II.
Moreover, the quantities "(v}and &(v) which are in-

terpreted as being the number of exchanged parti-
cles between the two nuclei are in accordance with
half the number of crossing solid lines running be-

tween boxes attached to different nuclei. Of course
the graphs corresponding to the norm and kinetic
energy kernels have similar features.

From a mathematical viewpoint, the interaction
kernel &(q', q) is, by means of (4.8a) and (4.10b),
decomposed into a sum of functions P „(q',q) and
~P, (q, q) each exhibiting a characteristic depen-
dence on the generator coordinates q' and q'. The
present technique for calculating GC kernels may
serve to extract some distinct features of these func-
tions without getting involved in extensive computa-
tions. For example, in the orthodox GCM, '

where a two-center oscillator shell model and
nucleon-nucleon (NN) interactions of Gaussian
shape are used, each of the kernels "&„and p& has
the form "Gaussian multiplied by polynomial" and
depends on relative mean distance generator coordi-
nates r ' and r. In the Appendix we present a com-
plete listing of the respective exponential functions

2221

0

I )
I

'~
~ I

FIG. 3. Graphical illustration of the simplest contri-
butions to the potential energy kernel.

for the general case that different oscillator widths
in both fragments are considered.

V. SIMPLIFICATION IN CASE
OF 4N-NUCLEAR STATES

The numerical extent for calculating generator
coordinate kernels with the methods described in
Secs. II—IV is generally reduced further if the
orthogonality of single particle states with respect
to spin-isospin quantum numbers is utilized. As an
example we consider here the case of greatest sim-
plification; i.e., in both fragments each orbital shell
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model state is assumed to be occupied by two pro-
tons and two neutrons of opposite spin z com-
ponent, respectively; thus both X~ and X2 being
multiples of four. The overlap matrix then consists
of four identical blocks, one for each spin-isospin
component. Hence the norm kernel is reduced to:

~=(detM) (5.1)

where M now is the overlap matrix of the single
particle states with one fixed spin-isospin index. '

Therefore the entire formalism of Secs. II—IV only
has to be applied to Nq/4XNql4 matrices. This
turns out to be extremely simple if one of the frag-

ments is an a particle because, in that case, the
"matrix" 0 of smaller size is just a number.

In complete analogy the kernels of one-particle
operators can be written in the form'

a =4(detM) tr[c&(M)t], (5.2)

where t is the matrix of the one-particle operator
for one fixed spin-isospin index and c~(M) is the
cofactor matrix of M.

In order to treat the interaction kernel we again
refer to the formulas of Brink' developed for the
special case of 4N nuclei; one obtains

P"=(detM) X~ g c~(M)~tt c~(M)rsu~rtts —Xz g c~(M)~tt c~(M)rsu~rstt
aPy5 aPy5

(5.3)

Here u rt5 denotes a potential tensor of type (4.2), where u,u and P,P are only the orbital parts of the schemat-
ic (central) NN interaction' and the single particle states, respectively; i.e., aPy5 are pure "orbital" indices
here. Xd and X~ are constants which depend on the mixing parameters of the effective interaction. ' Applica-
tion of (3.5), (3.7), (3.8), and (2.14) yields for the case of the direct traces:

where

gd m [IJKL ) d~IJAL
2 IJKL v=0

(5.4a)

f[IJKL]E'[IJKL] min[v —{gc+g'),IT] IC K'~'"=( ~M: e™)'X X X ~. ~. +.i .~. X X ~. .~. ''~,".'
K =0 I(' =0 v'=max[0 v —(a+Pc') —IT] A, =Q A,'=0

(5.4b)

m [IJKL ]

TABLE III. Summation limits in Eq. (5.4).

E[IJKL ]
r

8'[IJKL ]
r

2222

1212

1221

1112

1122

min(N] —2,N2)

min(N2 —2,N& )

min(N~ —1,N2 —1)

min(N ~
—2,N2 —2)

min(N l
—2,N2 —1)

min(N~ —1,N2 —2)

min(N2 —2,N& —2)

N] N2
min —1, —

4 4

N2
min —1,

4 4

N)
min

N) N2
min —1, —1

4 4

N2
min —1,

4 4

N)
min

4 '4
N] N2

min —1, —1
4 4

N) N2
min

4

N2 N)
min

4

N2 N)
min —1,——

4 '
4

Ni N2
min —1,

4 4

N) N2
min —1, -- —1

4 4

N2
min —1, -- —1

4 4

N)
min —1, —1

4
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with n = , —min(N„Nz). Accordingly, the contribu-

tions arising from the permutation traces can be
calculated by using the same formulas (5.4), but Xz
has to be replaced with I, "P" with
and 8x i with ~8i i . The traces 8 are formally
the same as those of Table II; however, the dimen-
sions of the corresponding tensors and matrices are
reduced to a large extent. The summation limits in
(5.4) are compiled in Table III.

Of course the orthogonality of the spin-isospin
states can also be utilized in more complicated
cases. However, the reduction of the formulas is
not always as straightforward as in the case of 4N
nuclear states. We have utilized the methods
described above in the calculation of transition ker-
nels between the a-a channel and three-body break-

up channels of fragmentation 4+3+1 in the
framework of the momentum projection tech-
nique. ' We renounce to list these kernels, since the
resulting formulas ' comprise over 30 different ex-
ponential functions, depending on three independent
three dimensional parameters, cf. Eqs. (1.2). We
just note that it would have been extremely tedious
and time consuming to calculate these kernels en-

tirely "by hand, "but it is an easy matter to employ
a computer for calculating the constants in the ex-
ponential functions for each term emerging in the
systematic method described above.

VI. CONCLUDING REMARKS

As already mentioned the present method was ap-
plied to calculating kernels for the relatively light
a-a system; here inelastic processes which cannot
be described by currently used harmonic oscillator
models could be treated in a microscopic fashion.

We believe that the algorithm is apt for applications
of this kind where it is inevitable to treat GC ker-
nels depending on more than two (real) vector vari-
ables which enter from center-of-mass projection
techniques. Of course the applicability to heavier
systems depends on the model states under con-
sideration; if one nucleus is a ground state a parti-
cle (or a single nucleon) all matrices involved in the
algorithm have dimension 1&1 however heavy the
remainder nucleus may be. Also, for heavier or
more complicated systems the algorithm is efficient
for calculating GCM kernels since then it is suffi-
cient to use only n )(n matrices, where n is just the
particle number of the smaller fragment (or even
smaller if the orthogonality of the spin-isospin
states can be utilized).

The classification of the interaction kernel based
on different exchange contributions IJEI., cf. (4.S),
seems well suited to attempts such as in Ref. 32 or
Ref. 25 to discuss the dynamical effect of various
particle exchange contributions. ' However, al-
though the discussion in Ref. 32 may well be legiti-
mate for high energies in Born approximation, it
does not seem to be so in the whole energy range.
The restriction to, say, the direct part and one dis-
tinct particle exchange contribution in the sense of
Ref. 32 or 25 would not lead to a positive semide-
finite norm kernel and therefore, would not appear
to be very meaningful. Instead, the effect of vari-
ous particle exchange contributions should be dis-
cussed in the manner of Ref. 35 where the positive
semidefiniteness property of the norm kernel is re-
ported to be maintained.

This work was supported in part by USDOE
Contract BE-AC02-76ER13001.

APPENDIX: EXPONENTIAL FUNCTIONS IN GC KERNELS

Here we list all exponential functions that occur in the nuclear potential matrix elements and in the poten-
tial kernels of the generator coordinate method. ' The nuclear two-body interaction is taken to be

V,p(i j)=uaexp — (x;—xj) (W+BP~ HP, MP P,),— —
b2

(A1)

where yb is the width parameter of the Gaussian potential and P and P, are the exchange operators for spin
and isospin. ' The GCM states are two-center oscillator shell-model states characterized by the relative dis-
tance parameters r and r ' in bra and ket. We consider the general case of different oscillator widths b „bi in
the respective fragments. It is convenient to define a mean width b and a relative width difference 5 by

2 2

b:=—(bi +bi ) 5:=
2

b +b
(A2)
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T

~ ~ ~ ~ ~ ~~ ~84 ~r~)py „ I» p l
&a~apa m"Nf )s J E L

2
R RS
b

+&so b2
S

=exp ' &s +&@
b

6I' a 8
Yp~(S)ggg( —)

ee ee aa

2N+P ' ' 2X+A
S

YPM(R)
bxg g

N'PM XAM'

~K ~L P A 0
X —5px pL, MM —aI

+(+~~~~g~ge I ~NkxA I &k~k&l~le~ ~

(A3)

where we have used the symmetric coordinates:

R= (r+F'), S= (r —r ') .
2

'
2

(A4)

The sums over M'M and XAM in (A3) are all finite: The upper summation limits depend on the occupied
shells in the fragments. In Table IV the parameters Ex, es, and ega in the exponential functions of Eq. (A3)

TABLE IV. Parameters in the exponential functions of the potential energy matrix elements.

IJPQ R

1 (1—n)2

4 1+5
1 (1+n)2
4 1 —5

2222

1 {1—n)~ (1+n)2
8 1+5 1 —5

n 1 (1—n) 1 (1
8 8 1+5 16

1 1

4 1+~2y2

(1+5)
5 y'

1 ——(1+5)+—
2 2

1212

+n5)2

5 2

1 ——{1+5)+~
2 2

(1+n5)2
2

1+—(1—5)+~
2 2

1 1

8 16
n 1

4 8
(1+n5)(1+5)

5 2

1——(1+5)+~
2 2

(1+n5)(1—5)
2

1+—{1—5)+~
2 2

n

2

1112

n~ 1 (1+n)2 1

8 8 1 —5 16
(1—5)

2

1+—(1—5)+~
2 2

1 1

8 16
n 1

4 8
2221

tl

n 1 (1+g5)~
4 4 2

{1—5~)+~
2

1

41122

1

4
1221

If the one-particle oscillator states are characterized by the quantum numbers O.kp in spherical representation
and by the displacement vectors qq (generator coordinates, which are generally proportional to r, r '), the po-
tential matrix elements can be expressed in terms of reduced matrix elements which are independent of q's



26 SYSTEMATIC ANAI. YSIS OF INTEGRAL KERNELS IN. . . 2507

TABLE V. Parameters in the exponential functions of the potential energy GCM kernels.

IJPQ Wg WSR

2222

1212

1112

2221

1122

1221

f(v—)

f(v-)

f(v—)

f(v+—1)——1

16

f(v+—1)——1

16

(1+n5)2

1 ——(1+5)+@5
2. 2

(1+n5)2

1+—(1—5)++5
2 2

f(v+2)—

f(v+2)—(1+n5)'

1 —5'+ @
2

v+1 1

4 16

v+1 1

4 16

4

4
v 1 1

4 4 1+
(1+5)'

1 ——(1+5)++5
2 2

(1—5)'

1+—(1—5)++5
2 2

v+2
4

v+2
4

1

8

1

8

(1+n5)(1+5)

1 ——(1+5)++5
2 2

(1+n 5)(1—5)

1+—(1—5)++5
2 2

are listed. Here the abbreviation

N) —N2n=
N)+%2

has been used, Ni and N2 being the particle numbers of the respective fragments. Using Eqs. (4.8) and Table
II the traces can be shown to have the following general form (only spherical fragments are considered):

IJEI. S=exp ws — +w~
b

2
RS

b
+wsz b2

(A5)

where P)„denotes a Legendre polynomial. Again the summations over Xo,A, are finite and the coefficients
["U„]*' do not depend on S, R. The parameters ws, wa, and wsa which still depend on the tupel IJKL
are listed in Table V, where the abbreviation

f(v)= 1 (1 n5) Ni+N2
(1 n) v—(1—n—5) (A6)415'2

is used. For the permutation contributions ~F' the same parameters wq, wa, and wqa occur except for two
cases: &&„'~' corresponds to P"„+i' ' and&P", ' ' corresponds to d&„

Finally we note that the exponential functions in the corresponding norm and kinetic energy kernels are the
same as those of the interaction kernels for the case I=J=K=L.
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