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Meson wave functions in the meson-nucleon shell model
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When the meson wave functions in the meson-nucleon shell model are chosen by analogy
with the nucleon static model, direct effects of exterrial mesons on the ground-state energy
are minimized, and the Hartree approximation is realized in a particularly simple way.

[NUCLEAR STRUCTURE Pion wave functions. ]

I. INTRODUCTION

The nuclear shell model was developed as a
means of treating systems of nucleons interacting
via two-nucleon forces. In the seventies, it became
fashionable to attempt to treat directly the meson
fields that are believed to give rise to the nucleon-
nucleon forces; mean-field theory was applied to the
ground configuration of meson-nucleon systems and
results resembling the results of a Hartree-Fock
procedure were obtained for systems of nucleons
and scalar or vector mesons'; sometimes Hartree
procedures resulted. ' The mean-field procedure is
only effective for treating fields with nonvanishing
expectation values. Since the pion field has no ex-

pectation value in even-even nuclei, it contributes to
the mean-field calculations only a repulsive self-

energy term. ' ' On the other hand, the work of
the Paris group indicates that the exchange of two
pions gives rise to an attractive intermediate-range
contribution to the nucleon-nucleon potential.
Mean-field theory applied to a system of pions and
nucleons cannot generate the equivalent of this
intermediate-range attraction.

A recent article describes how the mean-field
procedure can be extended so as to effectively in-

clude fields such as the pion field (and the gluon
field) that have vanishing expectation values. The
extension is a meson-nucleon shell model (MNSM)
in which the nucleon field is expanded in the usual

way in a set of orthonormal modes or single-particle
wave functions and, in addition, the meson field is
also expanded in an appropriate set of orthonormal
modes. In the usual nuclear shell model (NSM), the
model space is restricted by requiring that the nu-

cleons occupy a limited set of single-particle orbi-
tals. The ground-state energy in the NSM is a func-
tional of the nucleon mode functions, and setting to
zero the functional derivative of the ground-state
energy functional with respect to each of the nu-

cleon mode functions gives a set of equations to be
solved self-consistently for the mode functions.
When the model space is a single Slater deter-
minant, the self-consistent equations are the
Hartree-Fock equations. In Ref. 9 a similar varia-
tional procedure was used to derive self-consistent
equations for the nucleon mode functions and the
meson mode functions in the MNSM.

This paper presents an improved procedure for
determining the mesonic mode functions. The new
method has the advantage that the meson mode
functions are given explicitly as functionals of the
nucleon mode functions and so do not have to be
determined self-consistently; only the nucleon orbi-
tals are self-consistent equations. Also, the connec-
tion with the mean-field procedure is strengthened,
as the meson fields there are likewise given explicit-
ly as functionals of the nucleon orbitals. Finally,
the Hartree approximation is particularly trans-
parent when the preferred meson wave functions are
used. The new method for determining the meson
orbitals is an extension of one previously
developed' for meson orbitals in a simpler static
model.

II. STATIC MODEL FOR THE
MESON-NUCLEAR SYSTEM

Consider a system of nucleons and mesons with
Yukawa interaction of the nucleon and meson
fields. A noncovariant formulation is used here.
The meson field is assumed to be invariant under
space rotations; in covariant terminology, it can be
a scalar or pseudoscalar field or the zeroth com-
ponent of a vector or pseudovector field. Let the
nucleon field be 4(x) with Fourier transform %(p)
and the meson field be 4 (x) with the associated
annihilation operator a (k); the index a is the isos-
pin or color or other nonrotational symmetry index
of the meson field and will be understood to be sub-
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ject to the usual summation convention in the fol-
lowing. The Hamiltonian is

H =TF+ TB+HI+H

Tt f——'P (p)t(p}%'(p)dp,

TB —— a) ka kaa kdk,
Ht= —f a (k)S (k)dk,

S (k)=Y(k) f q (p)w. k, p
2

Yi (k)
S (k)=g ' S i (k),

k
(2)

a (k)=y ' a i (k),
k

so that HI becomes

H =—g f a i (k)S i (k)dk.
aim

Now let (f;„I be a complete set of orthonormal
functions and expand 4

qi(p)= g +8;+;„(p),
i=1 p

(4)

where. p represents the isospin and angular momen-
tum m values; i represents the angular momentum,
isospin, and radial quantum numbers; and 8;& is the
annihilation operator for a nucleon in the state ip.
Then S~i~ (k) must take the form

S, (k)= gv;, ,(k}p'.",
ijl

ijl t l
p

where the curly braces in Eq. (5} are used to indi-
cate coupling of the angular momentum and isospin
parameters of the enclosed 8~ and 8 operators to
give tota1 angular momentum /m and isospin index

XV(q)5(k+p —q)dpdq,

where t(p) and to(k) are the energies of a free nu-

cleon of momentum p and a free meson of momen-
tum k, respectively, and Y(k) and W~(k, K) are
the form factors that characterize the particular
Yukawa interaction; 8' represents the operator for
the nucleon current that interacts with the field 4a,
while Y is the factor that comes from the relation
between 4 (x) and a~(k); representative forms for
W and Y are given in Refs. 4, 11, and 12.

First, rotational functions are used to expand S
and a

(2J; 4-1)(2T;+1)

degenerate substates. Then the Hamiltonian is

HN =TNF+ TB+HNI+HNI
N

TNF= g g tij~ip~jp
ij=1 p

N=X
ij =1

Ts y f to(k)ai (k) ai(k)dk
0

(7)

Hivt = gg p"—' f v; i(k)a,'(k)dk .
ij =1 l

The operators p'j' generate a finite algebra, so that
for fixed nucleon orbitals fi& Eqs. (7) represent a
static model for several mesons ai(k), each interact-
ing with sources p'j through form factors v (ijki).

At this point it is time to generalize the notation
so as to explictly include the parity of the field as
well as the representation of the nonrotational sym-
metry group (isospin rotation group} to which it be-

longs. Instead of ai or p', the operator will be writ-
ten a„or p", where r stands for (t, l, n. ), and I and n
are the angular momentum and parity of the rota-
tionally scalar field and t is its isospin or other sym-
metry group representation parameter. The 0 repre-
sentation will be used for (0,0, + ); the 0 representa-
tion of any group is the one-dimensional one. In
this notation, p'J' is given by

(&)

and HN becomes

HN TNF +TB +HNI +HNI &

N

NF X tijp
ij =1

T~= g f to„(k)a, (k) a„(k)dk,

g gpij' f v;, (k)a„(k)dk .
ij =1 r

a and the same isospin representation as aa. Kith
these substitutions HI takes the form

00

HI = —g p'j' v;jt(k)ai (k)dk
ij1

=——ggp."' f, v;;i(k)a, (k)dk.
ijl am

Now, as in the NSM, restrict the nucleon states to a
limited number N of orbital quantum numbers, i,
each with its fuH set of
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III. MESON WAVE FUNCTIONS
IN THE STATIC MODEL

Now it is the turn of the meson field to be ex-

panded in terms of a set of orthonormal functions.
In Ref. 10 it was shown that in the case of a single
source form factor u(k), the appropriate expansion
functions are v(k)/co(k) and an arbitrary set of
functions orthogonal to it. The analogous set in the
present case is obtained by first orthogonalizing the
functions

u J,(k)/co„(k)

for each r by a unitary transformation:

N

v (k)= g u„",Jvj„(k),
ij =1

f ~ v~(k)u„„(k)
dk=G 5„q .

co„(k)

(10)

For each r there are M, orthonormal functions

P~(k), one for each nonzero G~

u (k)
harv( ):

G (k)
t

functions X„orthogonal to these and relatively
orthonormal can be chosen so as to form a complete
set. Then the expansion of a„(k) is

M

a„(k)= g P (k)a + QX„(k)a„.

generated by a set of operators 8;& acting on the
vacuum and is therefore finite, the MNSM subspace
is infinite because the a~ are Boson operators. The
part TE of the Hamiltonian represents the kinetic
energy of the external mesons,

rTs g g coiJ a„; arJ
r ij

~;",= f cg„(k)X*„;(k)X„(k)dk,

while Hss describes the interaction of the external
mesons with the MNSM subspace:

Hzs=gga„' J„,

(15)

J„=grl"'(a —G p ), (16)

f u" (k)X„(k)dk .

The source current J in Hss for the ri external
meson acts within the MNSM subspace. The point
of choosing the meson mode functions in the above
special way is that J„has zero expectation value in
any eigenstate of Hs, as follows from the commuta-
tion relation

la~»sj= gaivl «g Grl p"")—
Jtl

and the positive definite character of co„"„. Hence
there are no second-order purely mesonic correc-
tions to the energy of the ground state of Hs.

and H takes the form

HQ ——H$+ TE+HE$+HE$ ~

The term H$ is the MNSM Hamiltonian

H$ ——T$p+ Tgg+H$I+H$I,

TsF = g tvp

M

~sa= g g m„"„a' a„„,
r v@=1

M„

HsI= —g g , "„G,„p"" at,
r v@=1

co„"&——f co„(k)P* (k)g,z(k)dk

dk,
~ u'(k)u„„(k)

G Gq o co(k)

(14)

IV. REMARKS ON THE MESON-NUCLEON
SHELL MODEL

The MNSM Hamltonian Hs of Eqs. (14) can evi-

dently be written in the form

H$ ——H~+H~,
M„

H~= Q g co,"„(a —G p )t.(a„„—G„„p""),
r v@=1

M„

H& TsF gg ~——vl p 'p—"
r vp, =1

=~sF gX ~r'k, PP""'.P—'"',
r ijkn

which operates in the subspace generated by the
operators {8;„,i =1,NJ and a acting on the vacu-
um. In contrast to the NSM subspace, which is

where the effective two fermion interaction V is

given by
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~ u,j.„(k)uq„„(k)
~jk jul (19) I In y j & = g g~( )+2 „(yn,a. 'a.~) I In j &

PP

(a,„—G,„p"")
l ) =0 (20)

for all rp; this condition can be satisfied because all
the p's are c numbers in this ease. The same pro-
cedure works if the fermion subspace is restricted to
any single state vector for the fermions.

In other more complex cases it seems likely that
the coherent meson-pair technique introduced in
Ref. 13 will be useful in treating Hs of Eqs. (14)
and (18). The MNSM has a coherent pair for each
value of rp, so that a coherent pair state is

The function u,j„(k) is just the factor Y,(k), which
is typically

(2 )
—3/2 —i/2(k )

times the matrix element of the current operator
W~ between the fermion states i and j; it follows
that HIt is exactly the Hartree Hamiltonian for the
fermion subspace with the fermion-fermion poten-
tial given by the direct one-meson-exchange poten-
tial for the meson feld under consideration. This
result also holds for a scalar field that is the fourth
component of a covariant vector or pseudovector
field; the proof follows the lines given in Ref. 11.
Like the mean-field treatment, the MNSM does not
reproduce the Fock exchange terms. As have been
noted previously, ' ' ' these terms are largely con-
tained in the free fermion self-energy terms that
must be added to the ground-state energy of Hs to
obtain the energy of the bound state of Hs relative
to the energy of the same number of free fermions.
Some of the Fock exchange is also in HM. Note
that HM is positive semidefinite, so that the Hartree
energy is a lower bound on the energy of the ground
state of Hs. The Hartree Hamiltonian is usually

only written for the ground state of a system of fer-
mions; HH of Eq. (18) has a whole spectrum of
states and is actually an extension of the usual Har-
tree ground-state energy functional.

The resolution of Hs given in Eqs. (18) is re-

markable but not surprising. Its simplicity can be
regarded as an additional justification of the choice
of meson mode functions made in Eqs. (11) and
(12).

The case of a single Slater determinant is the sim-

plest special case of the MNSM; as was noted in
Ref. 9, this case reduces to the usual mean-field ap-
proximation. For a single Slater determinant, all
fermion operators p can be replaced by their respec-
tive expectation values and the expectation value of
HM is minimized in the mesonic state that satisfies

where the state
l I n j ) is a "basic" state that satis-

fies

a,„a„„lfn j)=0,
a„„a,„l In j)=n,„l tn j);

the state
l ( n,y j ) is the coherent pair state that sat-

isfies

(22)

a,„a„„lIn,y j ) =y,„l In,y j) . (23)

a„(k)= g P (k)a +ai(k), (25)

then the form of the expansion is as in Ref. 10, and
the methods given there can be used to obtain bind-

ing energies and scattering amplitudes within the
one-external-meson subspaee.

V. SUMMARY

When the nucleus is treated as a system of nu-
clixins and mesons with a Hamiltonian like that of
Eq. (1), the usual expansion of the nucleon field in
terms of a set of normalizable shell-model single-

The function gd+2„(x) is the coherent-pair function
defined in Ref. 13 with d the degeneracy

d(r )=(2t+ 1)(2l+ 1)

of the meson operator a„. For the standard p-wave

pions of the nucleon static model d is 9. Matrix ele-

ments between coherent pair states are given in
terms of basic-state matrix elements in Ref. 13. A
general basic state has the structure

I It j&
'

lI j& "j' (24)

where now
l I n j ) is a purely mesonic basic state

belonging to the combined representation Rz, where

R stands for (T,J,n), and
l ti j

.) is a purely fer-
mionic state with occupied orbitals

j
1 J =11,l2, . . . , Eg

coupled to total T&J+tr~. For any R, a choice of a
set of basic states leads to a Hamiltonian matrix
whose lowest eigenvalue is an approximate ground-
state energy of Hs for the given R.

Techniques already exist for treating the external
mesons. If Eq. (12) is written in the form

M„
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particle wave functions leads to a rather complicat-
ed "static model"of the type described by the Ham-
iltonians of Eqs. (7) and (9). In the expansion of the
meson annihilation operator, a particular choice of
the internal meson wave functions is advantageous:
(a) It minimizes the direct effects of the "external"
mesons on the ground-state energy of the system,
and (b) it leads to a simple connection with the Har-
tree approximation.

The resulting MNSM Hamiltonian provides a
framework for treating the effects of meson pairs
by using methods previously applied to the static
model of the nucleon'; external mesons can also be
treated by using established techniques. '

This work was performed under the auspices of
the U.S. Department of Energy.
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