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Closed forms are given for a large number of quantities occurring in the theory of poten-
tial scattering in an arbitrary partial-wave state l for the cases (i) the 5-shell potential
V(r) = —A,R 25(r —R), and (ii) the 5-shell plus Coulomb potential. Furthermore, the tra-
jectories of the poles of the total T operator in the complex k plane, with varying complex
A, , are investigated in detail for zero, repulsive, and attractive Coulomb force, respectively,
Expressions are given for the effective-range parameters, and the Coulomb-modified
effective-range parameters, for all I, with application to the NN system, and the Nu sys-

tem, respectively. The connection between Coulomb-level shifts and effective-range param-
eters is considered. Improvements on the standard small-shift approximation, which is re-

latively poor, are suggested.

NUCLEAR REACTIONS Charged-particle scattering. 5-shell plus

Coulomb potential. Effective-range parameters for all l. Application to
NN and Na. Coulomb-level shifts.

I. INTRODUCTION

The theory of nonrelativistic scattering by local
and nonlocal potentials is well developed; see, for
example, the books of Newton, ' and de Alfaro and

Regge. In this paper we shall investigate the 5-
shell potential, given by Eq. (2.7). It can be con-
sidered as a limit case of a local potential. It is also
separable (rank one} in each partial wave l. Its sim-

ple form allows the explicit calculation of many
quantities in scattering theory. This has made the
5-shell potential an increasingly popular educational
tool, which is used in modern text books, and in
the construction of simple models; see, for example,

Ref. 4. We are interested, in particular, in the 5-

shell plus Coulomb potential. This interaction may

be thought of as a model for the interaction between

charged particles subject to short-range (strong, nu-

clear) interparticle forces. The Coulomb potential

may be repulsive or attractive. The 5-shell potential
is a short-range force characterized by two parame-

ters: its range R, and its strength A,. For a Hermi-

tian interaction A, must be real. We shall also con-
sider the case of complex (nonreal) A, as a model for
the non-Hermitian interactions occurring, for exam-

ple, in exotic atoms.
We shall study, in particular, the relation between

II. THE 5-SHELL POTENTIAL

A potential V is called local if in the representa-
tion [r]

( 'i &i )=&( )&(
' —), (2.1)

where V is a real (for a Hermitian Hamiltonian) or
complex (when the Hamiltonian is non-Hermitian)

A, and the positions of the poles of the total T opera-
tor (i.e., of bound states, virtual states, resonances,
etc.). We derive closed formulas for the effective-
range parameters [Eqs. (6.7)—(6.10)] and the
Coulomb-modified effective-range parameters [Eqs.
(10.14)—(10.17)], for all l. For Coulomb attraction
we discuss the phenomenon of reconstruction of
spectra, and quantum defects. We also discuss the
quality of the small-shift approximation for the
energy-level shift caused by the short-range force.

In Secs. II and III, we establish most of our nota-
tion and conventions. In Secs. IV —VI, we give re-
sults for the pure 5-shell potential. Section VII re-
calls some formulas for the general case of a short-
range plus Coulomb potential. Sections VIII —XI
give the results for the 5-shell plus Coulomb case.
Section XII concludes the paper with a discussion.
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function of r —= (x,y, z). Throughout we consider ro-
tationally invariant potentials. This implies that
(r '

I
V

I
r) is a function of r', r, and r ' r only, and

for a local potential that V(r) =V(r). In the latter
case in the representation [rl] we have

(2.2)

In this paper we consider the short-range poten-
tial V, which in each partial-wave state I is separ-
able

(2.3}

with form factor

(3.1)

(3.2)

(3.3)

(3.4)

The Green's operators Gp(E) and G, (E) are con-
nected with the free Hamiltonian H p, and

H, =Hp+ V„respectively. Throughout the energy
variable is E=(k+ie), etO. In our notation we

often suppress the dependence on E, and the l
dependence. We have

Igl)= IR), (r Igl)=R 5(r —R),
(2.4)

Go ——(E —Ho) ', G, =(E H, )—
G =Gp+GpT Gp

(3.&)

(3.6)

i.e., I
gl ) is a basis state vector of the representation

[rl]. Here R is a real positive constant. In the
momentum representation [pl] we get

=Gp+Gp Vs' . (3.7)

Here T,(E) denotes the T operator for the Hamil-
tonian H, ; it is related to V, as follows,

According to Eq. (2.3)

(2.5) T, =V, +V,GpT,

=V, +VG, V, .
(3.8)

(3.9)

= —AR 5(r —R)

Xr 5(r' —r) . (2.6)

Comparison with Eq. (2.2) shows that V, may be
considered as a limit case of a local potential.
Henceforth we shall ignore this subtle distinction,
and call V, simply "local." We have

V, (r) =—AR 5(r —R) . (2.7)

III. NOTATION AND CONVENTIONS

In this section we will further specify our nota-
tion. For the 1th partial wave completeness and
orthonormality relations read

We shall refer to this potential as the 5-shell poten-
tial. It is both local and separable. Its range
parameter is R, its strength parameter is A,. A posi-
tive (negative) value of A, corresponds to attraction
(repulsion). Our units will be such that 2m = 1 =Pi
Here m is the reduced mass. The formulas in the
following remain valid when A, and R are given dif-
ferent values in each partial wave, (A, ,R)—+(A~,R~}.
In that case, strictly speaking, we no longer consider
a local potential, but instead the lth partial-wave
projection of a local potential. This will not give
rise to confusion.

The outgoing scattering states have 5-function nor-
malization,

Note that
I
kl+)p is the same state as

I
kl) or

briefly, Ik). The use of the former (subscripted)
state makes the formal analogy with the charged
case (Sec. VII) more transparent.

We shall consider the Jost Green's operators GM
and 6», the Jost states

I
kit)p and

I
kit)„and the

related operator T,~. They are connected through
relations analogous to relations (3.6)—(3.9) (with
subscripts l), and

Iklt& =
I
kit&o+GozT» Iklt&o

= lklt)o+G»v» I
kit)p

=
I
kl t )o+Go~ V»

I
kl I ), .

(3.11)

(3.12)

We also recall that off-shell Jost states
I
kq/t ) can

be defined, with q a momentum variab'Le which in

Similar relations hold for the partial-wave projected
operators: One merejiy attaches an extra subscript l
to each operator.

"Outgoing" scattering states for Hp and H, are

I
kl + )p and

I

kl + )„respectively. They are con-
nected by

I

kl + &* = I
kl + &o+GotT» I

kl+ &o (3.1O)
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general is taken off shell. Relations for
~
kqlt), are

obtained from Eqs. (3.11)—(3.13) by the simultane-
ous replacements

~kit), [kqlt),

and

~kit)p~ ~qlt)p

throughout these formulas.
The Jost states have the following properties: X(r, ~kl+), (3.20)

respectively.
It is important to note that (p

~
kit), is not a

solution of the Schrodinger equation in momentum
representation. , This is related to the (at r =0)
singular behavior of the irregular solution (r

~
kit),

of the Schrodinger equation in [rl]. If V, is local
the following important relations hold':

(r'fG, I [r)=——,mk( —)'(r iklt),

(r ~kit)p ——(2/m) 2ihI+(kr),

( ikl )
2 (plk)

~k p —(k+le)
(r

~
kit), =(2/m. }'~ (kr) 'f,i(k, r),

(3.14)

(3.15}

(3.16)

(local V, only; the labels may be replaced by 0 or c),

&&[&r ~kit&„&kit ~r& —c.c.]

f't(k)= lim(r ~kit), /(r ~kit)p,
r~0

ft(k, q)= lim(r ~kqlt), /(r ~qlt)p,
r—+0

(3.18}

(3.19)

(r ~kqlt), =(2/m}'~(qr) 'fr(k, q, r), (3.17)

where f't(k, r) is the Jost solution of the radial
Schrodinger equation, and f"(k,q, r) is the off-shell
Jost solution of the inhomogeneous radial
Schrodinger equation. For the spherical Hankel
function h~+' we use the convention of Messiah.

The Jost function f,t(k) and the off-shell Jost
function f, (tk, q) follow from the relations, 'gt= —~gl&rt(k )&gi

~
'

r.I '=4 '+&gilG tlogi&

;I '="t '+—&-glIG»-Ig»

(3.22)

(3.23)

(3.24)

(3.25)

(3.21)

(local V, only), where 8 is the unit-step function,
8(x}=1, x&0; 8(x)=0, x&0. In Eq. (3.20)
r &

——min(r', r), r &
——max(r', r).

If V, is separable [see Eq. (2.3)] then also T, and

T, are separable, according to

IV. FORMULAS FOR THE 5-SHELL POTENTIAL

The 5-shell potential has been discussed in Sec. II. It is local [cf. Eq. (2.7)], and separable in each partial
wave [cf. Eq. (2.6)]. The following quantities are easily calculated:

(gl
~
kl+) =(2/n)'~ijt(kR),

(gl
~
kit)o ——(2/n. )' i'ht'+'(kR),

&P
~

Gpt ~gl&= —(2/~}'"(—i)'ji(PR)[P' —«+te)']
&p I Got Igl&=(2/~) ( i) [(p/k)jt(kR) —j ( tpR)] (/p' —k'—)

(r ~G»~gl)= —kj~(kr&}ht'+'(kr ), r =min(R, r}, r& ——max(R, r),
&r

~
Gol ~gl& =k8« r)[jt(«)ni(kR—} jt(kR)nt(«)]-

(gl
~

Gpt ~gl) = —kjt(kR)ht'+'(kR),

&gl
I Got lgi&=0.

(4.1)

(42)

(4.3)

(4.4)

(4.5)

(4 6)

(4.7)

The spherical Hankel function hI'+' is defined by Messiah. The spherical Bessel function
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j~(z)= (2z/n )
' Jl+ ~zz(z)

and the spherical Neumann function

n((z) =(2z l~) '
N(+ ) gz(z)

are taken according to the convention of Ref. 8. Note that Messiah denotes by n~ the same function with a
change in sign. The above formulas immediately give explicit expressions for T» by using Eqs. (3.22), (3.23),
and (4.7), and for T» by using Eqs. (3.24), (3.25), and (4.8). Note that

(4.9)

Thus one finds the scattering states from Eq. (3.10):

kJ'((kr )h(+'(kr )j((kR)
r Ikl+, =(2/m)'~ i' j((kr)+

kj'((kR—)h(
+ '(kR )

I

p kl + =k -5(p —k)+- ( R) (kR)
' —kj((kR)h(+'(kR) —k

(4.10)

(4.11)

The Jost states and the off-shell Jost states one finds from Eq. (3.11);see also the remarks after Eq (3.1.3). We
give explicitly the off-shell Jost states,

(r
I
kql & ),=(2' )' i ["1 (q&) ~ik+(R —&) [j~(«)n~(kR) j~(kR)n~—(kr)] h~'+'(qR)],

(p~q)' 'P k)'J~'kR) J~'PR) (—+)
&p ~

kqlt &s=, , Aiq— , "i'+'(qR)
7TQ p —q p2 k2

(4.12)

(4.13)

f,o(k) = 1 —Aok 'R exp(ikR)sin(kR),

f,o(k, q) =1—Aok 'R exp(iqR)sin(kR) .

(4.14)

(4.15)

The 5-shell potential is an example of a so-called
cutoff potential. For this type of potential many in-

teresting general results and properties have been

derived; see, for instance, Refs. 1, 2, and 9.

V. BOUND STATES AND RESONANCES
FOR THE 5-SHELL POTENTIAL

The Jost states in [rl] and in [Pl] are obtained from

Eqs. (4.12) and (4.13), by deleting the symbol q from
the left-hand side (lhs), and replacing q by k +i E on

the right-hand side (rhs), respectively. The Jost
functions are obtained from Eqs. (3.18) and (3.19).
For example, for S waves,

peak, which is connected to the lifetime I'
Bound-state poles lie at the positive imaginary k
axis. Decaying (unstable) and "creative" bound
states occur only for nonreal A,. They lie just left or
right of the positive imaginary k axis, respectively.
A lifetime and a width can be associated with these
states, too. The established nomenclature for virtu-
al or antibound states is not unique. We shall call
states which are associated with poles near and on
the negative imaginary k axis virtual and antibound,
respectively. An antibound state can lie close to the
physical half-plane (i.e., Imk & 0), for example,
when the attraction of V, is not sufficiently strong
to support a bound state, for l =0.

In this section, k will denote the position of a
pole of T. According to Eqs. (3.23) and (4.7) the
connection between the pole position k and strength
parameter A,~ is given by

Positions of resonances and bound, virtual, de-
caying, and "creative" states are given by the corre-
sponding pole positions of the T operator. Reso-
nance poles lie just below the positive real k axis.
They produce the familiar Breit-%'igner dependence
of the 3th partial-wave cross section. In the E plane

1

the pole occurs at Eo ——,iI on the second Riemann
sheet, where I is the width of the Breit-Wigner

'= kj &(kR)h-,'+'(kR) . (5.1)

The map (5.1) is shown in Figs. 1 and 2 for I =0
and /=1, respectively. It is not restricted to real
values of A, . In the physical half-plane for real A,

there are no poles other than on the imaginary axis.
In the lower half-plane, when A, is real and varying,
the corresponding pole trajectories exhibit a charac-
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FIG. 1. Contour plot in the k plane, for the pure 5-
shell potential and l =0. Scales are in units R '. Given
the pole position k, one reads off the (complex) value of

nits R. Given A,, all corresponding complex pole
positions can be found. Full lines correspond to contours
where ImA. is kept fixed. Broken lines: ReA, is fixed.
Since A,(k) =A,*(—k*) the imaginary k axis is the axis of
symmetry.

teristic behavior near the origin, i.e., for
~

k ~~

For I =0 the poles move along the imaginary axis
(Rek=0, antibound states). For I &0, when A, ap-
proaches from below that value where a bound state
appears, the trajectories satisfy Imk ~ —(Rek)2'; see
also Refs. 10 and 11, and McVoy. General charac-
teristics, symmetries, saddle points, and the associ-
ated nonlinearity in the relation between A, and k are
discussed in Refs. 4 and 12.

for A, j,0. In the opposite extreme of infinite
strength parameter only bound-state and virtua-1-

state poles can move off to +i oo. It should be not-
ed that in each partial wave I the 5-shell potential
can have at most one bound state. This is a direct
consequence of the fact that it is a rank-one separ-
able potential, cf. Eq. (2.3). Furthermore, when

~
A,

~

~ oo, other poles reach limit points on the real
axis, corresponding to the zeros of j((kR). For
A,~—oo the barrier becomes completely reflecting;
the resonances become infinitely narrow, cf.
McVoy. They can be thought of as positive-energy
bound states for the impenetrable sphere.

VI. PHASE SHIFTS
AND EFFECTIVE-RANGE PARAMETERS

FOR THE 5-SHELL POTENTIAL

= —(2/m)k 'exp{i5,((k})sin5, ((k) . (6.1)

Phase shifts 5,((k) are connected to the on-shell

matrix elements of the corresponding T matrix, ac-
cording to

{k
~

T([(k+ie}']
~

k)

1mk %'e observe that

cot5,( —i = (2/vr)k —'/{k
~
T,( ~

k ) .

(6.2)

Rek The effective-range function E,((k ) is defined by

K (k )—=k +'cot5,((k) . (6.3)

It is known to be real meromorphic in in a large
region containing the origin k =0, for a large class
of potentials. ' Its expansion coefficients in the ex-

pansion

K,((k )= —I/a, (+ , r,lk P,(r,I k——
I

(

6 8
+Girl k (6.4)

FIG. 2. Same as Fig. 1, for l = l. are related to the low-energy scattering parameters:
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a,i is the scattering length, r,i is the effective range,
and P,i and Q,i are so-called shape parameters.

For the 5-shell potential (2.4) the on-shell T ma-

trix is given by

&k
I &si lk&= —1&k lgi& I'/[~i '+&gal Gpi I gi&] (6.5)

and the effective-range function is even a real-meromorphic function of k in the entire k plane. [This fol-

lows from the fact that we have a cutoff potential; see the remark following Eq. (4.15).] We have

Egi(k )=kzi+'[(Aik) '+ji(kR)ni(kR)]/[ji(kR)] (6.6)

Using the well-known expansions of the spherical Bessel functions, we expand the rhs of (6.6) in powers of k .
It is trivial but tedious to find the following elegant expressions:

a,i '—=[(2l+1)!~]R
Ai 2l +1

(6.7)

—,
' r„=[(2i+1)!!]'R-"+' (6.8)

r

Pgirgi —[(21+1——)!t] R + 1+3
2l —3 (21 +3)2(2l +5)

(6.9)

g r 5 [(2i + 1)s]2R —2l+5
Ai

1 2l +15l+30
21 —5 3(2l +3) (2l +5)(2l +7)

(6.10)

VII. GENERAL FORMULAS FOR COULOMB
PLUS SHORT-RANGE POTENTIAL

Here T, is the Coulomb T operator, and t„(E}is a
short-range operator. It satisfies

In this section we consider the potential

V=V, +V, , (7.1)

t„=V, + V, G,~„, (7.5)

where V, is the Coulomb potential,

V, (r)= 2s/r =2ky/r, — (7.2)

which is reminiscent of Eq. (3.8). The partial-wave
analogs of Eqs. (7.1)—(7.5) have exactly the same
orm.

Outgoing scattering states for

and V, is a short-range potential. The strength of
the Coulomb potential is related to the dimension-

less Sommerfeld parameter y—:—s/k. We de6ne
the Bohr radius as ——~s

~

' for both cases of
Coulomb attraction and repulsion. %e note that
formulas (3.5}—(3.9) and (3.20) remain valid when

the subscript s is replaced by c. In particular, the
Coulomb Green's operator is defined by

o+ V=&o+ V.+ V.

will be denoted by
~

kl + &. The following generali-
zation of Eq. (3.10}to the charged case holds,

~
ki+ &=

~

«+ &.+G,it-i I
«+ &.

When V, is separable [see Eq. (2.3)], then also t„
is separable, according to

G, =(E Hp V,)—— (7.3) t„i=—~gl&v. i(k )&gl ~'

r„i '=Ay '+&gl [ G,i [gl& .
(7.7)

(7.8)

It is convenient to use the Gell-Mann-
Goldberger' two-potential formalism. The total T
operator can be written as

T=T.+T-

Note again the formal analogy to the chargeless
case. Sometimes it is convenient to consider
Coulomb-modified form factors g'(E). They are
associated with the states

=T, +(1+T,Gp)t„(1+Gp T, ) . (7.4)
~ g I & =( 1 +Tgi 6pi )

~
gl & (7.9)
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In this section some results of Sec. IV will be extended to the case of charged particles. In particular, we
shall need

(gl ~kl+), =(R ~kl+),
= (2/m )' e ' ~[I (I + 1+iy)/I'(2l +2)](2ikR)'e'""

X )F)(1+1+iy;21+2; 2ik—R), (8.1)

(gl ~kit), =(R
~

kit),
= (2/rr)' e'""+' ~(kR) '( 2ikR—)'+'U (& +1+iy, 2l +2, —2ikR), (8.2)

fs. 8 15 and 16. Furthermore, (r
~
G,~ ~gl) and (gl

~
G,~ ~gl) are needed. Inserting ~R)

r laced b c) and E s. (8.1) and (8.2).for
~

l) these formulas follow easily from Eq. (3.20) (with the label s rep ace y c, an qs.or g ese ormu
e E s. (7.7) and (7.8). In [rl] the Coulomb-modifiedThus a closed expression is obtained for t„l and r„~, see E'qs. ( . )

form factors (7.9) follow easily from

(r /g'l)=(r [gl) — —k( —)'(r [kit), (r /kl+), .
2

(8.3)

In [pl] the expresstons org a ea orm'f 't k f rmidable size. We only give a result for l =0, which is interesting, how-
ever in viewof its similarity to theresult for the Yamaguchi form factor [Eq. (66) of Ref. 17]. ort e -s e
potential we find

(p
~

g'1 =0)= (p ~
gl =0)—(2/m)'~' y I dt t'r 'exp ikR ~ —a~-

a
(8.4)

where a = (p —k)/(p + k).

IX. BOUND STATES AND RESONANCES
FOR THE 5-SHELL PLUS COULOMB POTENTIAL

In this section we extend the results of Sec. V to
the charged case. The corresponding states of the
total potential V = V, + V, are given by the poles of
the T operator T, +T„. Pure Coulomb poles (of
T,I) occur at k =is/n, n =1+1, i+2, . . . . They
represent bound states for Coulomb attraction
(s p 0) and antibound states for Coulomb repulsion.
If V, is nonvanishing these pure Coulomb poles are
canceled by corresponding poles in T„. For a
separable potential (2.3) it follows that the poles of
T are obtained by solving [see Eq. (7.8)]

sion and l =0 (full lines). The ratio of the typical
short-range parameter R and az has been chosen as
1/10 throughout this section. The results remain
qualitatively the same for values of R/as ranging

1mk

ReX =5

Rek

A, $
'= —(gl

~
G,I ~gl) . (9.1)

The explicit form of the rhs of Eq. (9.1) follows
from Eqs. (3.20), (8.1), and (8.2). We have solved by
numerical means the map between pole position k
and potential strength parameter A, for Coulomb at-
traction and repulsion, for l =0,1, . . . , and for
various values of R/as ——R ~s ~, where as is the
Bohr radius.

In Fig. 3 we show the result for Coulomb repul-

l

0 2 4 6 8

FIG. 3. Level contour plots for the 5-shell plus repul-
sive Coulomb potential (full lines), and for the pure 5-
shell potential (broken lines), for l =0, and R/a~ ——0.1.
The levels of the contours (A, in units R) have been
chosen the same in both cases (see indicated values).
Scales are in units a~ '. Since A,(k) =A,*(—k*) only the
right-hand half-plane is shown.



2388 KOK, de MAAG, BROUWER, AND VAN HAERINGEN 26

from zero up to the order of 1. Also shown (broken
lines) is the corresponding contour plot for the
chargeless case. We observe that well outside the
Coulombic region (i.e., well outside the region

~

k
~

& as ') and away from the Coulombic cut
(Imk &0) the charged and chargeless cases are very
similar. Inside the Coulombic region the maps are

fully different. For the charged case this part of the

map has been given on a larger scale in Fig. 4. The
course of the trajectories here is determined almost
exclusively by the Coulomb potential. In fact, the
plot is almost identical to Fig. 2 of Ref. 18, where a
related map (with a slightly different parametriza-
tion of the interaction strength parameter) is given.
The trajectories in Figs. 3 and 4 are given with Rek,

and ImA, , respectively, kept fixed. A positive (nega-

tive) value of ImA, corresponds to an absorptive
(creative) short-range interaction. In contrast to the

map in Fig. 1, we observe in Fig. 3, and more clear-
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FIG. 5. Contour plot for the 5-shell plus Coulomb po-
tential, for Coulomb attraction, for l = 1, and
R/a =0 ni
R.

ca es are in units aq '
A, is given in unitms

FIG. 4. Part of Fig. 3. Contour plot for the 5-shell

plus repulsive Coulomb potential, for l =0, and

/a~ ——0.1. Scales are in units a~ ', A, is given in units

R.

ly in Fig. 4, the possibility of a resonance very near
the origin. Such a resonance is caused by the repul-
sive Coulomb barrier.

In Fig. 5 we show a case of Coulomb attraction
and I =1. Again 8/az ——0.1. Well outside the
Coulombic region the picture is similar to the
chargeless case; see Fig. 2. We have chosen to show
the left half of the k plane for this case. In this part
the decaying bound states are located, which can be
associated with many physical systems, for exam-

ple, exotic atoms. The shift of the Coulomb levels
for nonvanishing V, is clearly seen. Also the criti-
cal phenomena and the associated saddle points'
are manifestly present. The origin (k =0) is a high-

ly singular point. It is an accumulation point of
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bound-state (or decaying bound-state) poles. Also,
it is a branch point. Note that poles which cross

the negative imaginary k axis with varying A, enter a
different Riemann sheet.

X. COULOMB-MODIFIED PHASE SHIFTS AND COULOMB-MODIFIED
EFFECTIVE-RANGE PARAMETERS

Coulomb-modified phase shifts 5i(k) are connected to the physical on-shell T-matrix elements'

( kl ~ —
~
T,gi(k')

~

kl ~ + ) = (—2lir)k 'exp(2io i)exp(i5i )sin5i,

so that

cot5I i =— (2—/ir)k 'exp(2icrI)/(kl oo —
~
T„I

~

kl oo+ ) .

Here 0~ is the pure Coulomb phase shift,

oi=argl (l+1+iy), k &0,

(10.1)

(10.2)

(10.3)

and oi+5I is the total phase shift. The Coulomb-modified effective-range function K„i(k ) is defined by

l+iy l —iy 27TyZ„,(k') =—k"+'
csl =

l l 2yH (y) + (cot5i i)—
exp(2iry) —1

(10.4)

It is known to be a real-meromorphic function of k in a large domain of the k plane, for a large class of po-
tentials. ' ' Its expansion coefficients in the expansion

E,,I(k )= —1/ ,a+i, r„ik P„ir—„Ik +—Q„ir, i k—2— 2 3 4 5 6 (10.5)

are related to the Coulomb-modified low-energy scattering parameters a„i,r„i,P„i,Q„i,. . . . The function

H(y) is related to the digamma function g,

H(y) =i)'r(iy)+(2iy) ' —ln( —iysgn(s)) .

For the 5-shell potential

(klao —
~
T„I

~

kiao+) = exp(2ioi—)r„i
~
(R

~
ki+),

~

(10.6)

(10.7)

The quantities occurring on the rhs of Eq. (10.7) have been given already in Eqs. (10.3), (7.8), and (3.20), and
in (8.1) and (8.2). This yields

r

l+iy l —iy
IC (k')=k"+'csi =

l l
r

X 2yH(y)+ ~(R ~kl+),
~

—'
A,,

-' — ( —)' (R ~kit), (R ~ki+)
exp(2iry) —1 irk 2

(10.8)

E„i is a real-meromorphic function of k in the entire k plane, just like E,i. The following expansions are

known:

H(y)- ln(iy) —ln( —iysgn(s))+ g ~8i„~ (2n) 'y ", 0&
~
arg(iy)

~
&ir,

n=1
(10.9)

(it)& I +iy i iy-
l l

1

( i)
—2ll (10.10)

exp(ikr)&F&(l +1+iy;21+2; 2ikr) = g g„y—
n=0

(10.11)
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exp(l«)l (iy —1)&(1+1+iy,21+2,—2i«)- g h„y ", 0&
~
«g(iy)

~
&n..

n=0
(10.12)

The coefficients 82„, c„(l),g„, and h„are given in the Appendix. From these expressions we have obtained
closed forms for the Coulomb-modified effective-range parameters. These forms are lengthy, and we give
only the first two coefficients of the expansion on the rhs of Eq. (10.5). We shall use the parameter v, where

~

v
~

is the ratio of a typical short-range parameter (2R in our case} and the Bohr radius az ——
~

s
~

v:——2sR =2kyR (positive for Coulomb repulsion) .

We find for Coulomb repulsion (v=2R/az):

—1
2s21+'

1 2 2 j +2I21+1+21+1
(1!)(I2l+i) l

s R 1I2!+3+~vI2l y2 +21(1+1)(21+1)I2l+iK2l+i
3(1!)(I2l+i )' 4 I2l+i

(10.13)

(10.14)

——,(I2l+i } —1(I + 1)+—,v (10.15)

where I„and K„are shorthand notations for I„(2v v) and K„(23/v), respectively. For details about these
Bessel functions of the third kind we refer to Ref. 22. For Coulomb attraction —v is positive (—v=2R /az),
and we find

—1—&csl

ZS21+'
+~J21+1N21+1

(1!)(J2l+i)
(10.16)

R 1J2l+3+3/ —vJ2l+2
+irl (1+1)(21+1)J2l+ i N2l+ i

3(1!)'(J2l+i)' 1 I J2I+1

, (J2l+i )'+—l—(1+1)——,v (10.17)

where Jn and Nn stand for the Bessel function
J„(2V'—v), and the Neumann function N„(2v' —v),
respectively. For vanishing Coulomb strength
(i.e., in the limit that s&0 for repulsion, or in the
limit s t0 for attraction) we have

To lowest orders in v we get

—a«p = —i2 p (1—v)
—1 —1

—R 'v(2C —1/2+ lnv )

+O(v lnv}, (10.21)
1'
lun a&sl =Qsl llm rcsl =rsl .
S~O S~O

(10.18)
, r«p zr, p(1 —

6 v)+—,6Rv——+O(v ) . —(10.22)

2I]K] 1

O (I, ) (I, )2

(10.19)
2v vI,

(Ii)2 ~CSO 2 SO 3

(Ii )3—vIi 2'vI2-
3v (Ii)' (10.20}

Here a,l and r,l are the low-energy scattering
parameters given at the end of Sec. VI. For I =0
and Coulomb repulsion the following relationships
exist between a„l and a,l, and between r„l and r,l,
respectively:

Here C is Euler's constant. The results
(10.19)—(10.22) closely resemble the results ob-
tained in Ref. 23 for the separable Yamaguchi po-
tential. The corresponding results for Coulomb at-
traction are easily obtained. In particular, Eqs.
(10.21) and (10.22) remain valid, provided we re-
place lnv by its real part, ln

~

v
~

.

XI. RECONSTRUCTION OF SPECTRA,
QUANTUM DEFECTS,

AND THE SMALL-SHIFT APPROXIMATION

For Coulomb attraction (s & 0) the position of the
bound states is related to the scattering parameters.
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We shall confine ourselves for the sake of illustra-
tion to 1=0. I.et us consider Eq. (10.4). Using Eq.
(10.7) and

g(i y) =g( i—y) (—iy) '+xi cothiry

it can be rewritten as

cot5qg p
—i = —,asK„p(k )+f( iy—)

exp(2iry) —1

+ ( —2iy) ' —ln( i y—)

lim «„(p„)az n——', n =1,2, . . . ,
V 0

(11.5)

since we expect p to be a continuous function of the
strength of V, . Apparently p, „are the quantum de-
fects introduced by Seaton. '" They can be ob-
tained from the solution of

—2
1

—ag
ir cotirp„= , a&K„—p +P(n —p„)

(n —p„)

+~i cothmy .

Now K„p is a real-meromorphic function of k at
k2=0, in a large domain containing k =0. At neg-
ative energies (k &0, —iy&0) the sum of the first
four terms on the rhs of Eq. (11.1) is a smoothly
varying function of k . We define its value as

1

cotmp, = 2. asK„p(k )+g( iy)—
+(—2iy) ' —ln( iy), —k &0,

(11.2)

so that

cot5qg p
—i =—cotmp —i cothmy

exp(2n y) —1

sinhm. (y+ ip )

sinhmy sinn@
'

(11.3)

1+ —ln(n —p„),
2(n —p„)

(1 1.6)

which connects p„and the effective-range parame-
ters.

Equation (11.6) contains the complete spectrum-
reconstruction or Zel'dovich phenomenon: the
sharp collective transition of the energy levels to the
adjacent unperturbed values when the strength of
the interaction is varied. ' It is illustrated in Fig.
6, where n —p„, n = 1,2, 3,4, is plotted as a function

We introduce ~ by putting k =i~, where —~ now
designates the bound-state energy. Bound states oc-
cur when

cot5ggp —i =0,
i.e., for

sin[ir((«aii) '+p, )]=0,

or

(aaz) '+p, =n, n =1,2, . . . .

We stress that i~ is no longer the independent
momentum variable, but that it gives the bound-
state position. For V, ~O we have E„0~00, and
hence p —+0: We retrieve the pure Coulomb bound
states given by zaii n'. [F——or this reason we have
limited the values of n in Eq. (11A) to 1,2,... .] It is
then natural to label ~ and p with n, such that for
vanishing V,

i0

/R
FIG. 6. Plot of n —p,„as a function of the strength

parameter A, /R, for the 5-shell plus Coulomb potential
and S waves, for n=l, 2, 3, and 4, for the indicated
values of R /aq.
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of A, /R, for the ratios R /as ——0.03 (which is a real-
istic value for the proton-antiproton system), 0.3,
and 0.003, respectively. The value of A, , where
reconstruction occurs approximately, can be found

by putting p„=—, on the lhs of Eq. (11.6). For
small ratios R/az it follows that this corresponds
to a strength A, for which

~ a„o~ &&as. Equation
(10.17) then gives the following approximate
strength-parameter value,

Ao/R=l+(2R/az)ln(2R/az) . (11.7)

The width hA, of the reconstruction region can be
estimated similarly by setting p„= 4 and 4, respec-

tively, and taking

The estimate

b, A, /R =2m.(2R /az )

is easily obtained. Considering Fig. 7, one observes
that p„ is almost independent of n for n )2. For
A,~ Do, Eq. (11.6) shows that

pn —2acso(~~ ~ )/aB ~

for n =2,3,. . . Eq. (10.16) then shows that

EE„O. For clarity we shall name (for n =1) this
value hE'"'". In Fig. 7 we have plotted the ratio
AEss~/b, E'""', as calculated according to Eq.
(11.9) for the ground state. One observes that the
SSA is a rather poor approximation. In particular,
euen in the limit of uanisht'ng short ran-ge potential
its predicted energy shift is wrong, compared to the
exact shift, by some 6%. Indeed, one can easily
show that generally

lim = lim a,K„o(—n—att ) .
p gEexact

In our explicit potential model the rhs of this equa-
tion reduces to

Ep 4a
E„p n a~

(11.10)

see, for example, Deloff. This formula gives a
correct limiting behavior when A,—+0. In Fig. 7 we
show five other possible approxitnations. All five
are based on Eq. (11.6), and use approximations for
p„, which are then inserted into the expression

[exp( R/naz—)iFi(1 n;2;2R—/na(t )]

A better approximation for EE„o is obtained by us-

ing (cf. curve 2 of Fig. 7)

1 —p„(A~00)= 1+ ln +(C —1)
2R 2R 2R 2R

ag ag ag ag
AE„p

Enp
—1.

(n —p„)
(11.11)

n =2,3,. . . . (11.8) The four curves labeled 3 to 7 correspond to
Note that for n =1 the estimate (11.8) does not
hold; n =1 corresponds to the ground state, which
for A, —+Do moves off to k = —00, and hence
1 —pi —+0. The fact that

1 —p„(A,~ 00 ) =p„ i (X~—Oo )=2R /az,

n =2,3,. . .

hE 4a,
Eno n a~

(11.9)

implying that the nth unperturbed level never
reaches an adjacent unperturbed level, is intimately
connected to the rank-one character of the 5-shell
potential.

An old and famous formula exists for the shift
b,E„( (with respect to the pure Coulomb energy E„t)
caused by the short-range interaction V, . It is the
so-called small-shift approximation (SSA), derived
by Deser eI; al. for I =0, and reads

1.0

0.9—

R/ag = 0.03 0.8—

-1.0 -0.5 0.0

1.2—
~ --.... 1 = SSA

3
1.1

I

f(

I

((
I

((

5(&
((
. i
(i

i'4
I

It
I

/I
//~ ~ '/

~~

S

\
I 'L

\

\ vi
\

~ 'a%

1', '3

I i 'a s &. s

g/R 1.0

It is of great interest to test the quality of SSA in
our case. It is trivial to compute the exact value of

FIG 7 plot of gE approxygE exact vs g yR for
I =0, R/a& ——0.03, for seven different approximations;
see text. The curve labeled 1 is the standard SSA.
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p~ = —2a, /a~,

p~ ———2a„/a&,
1 1 1@~=1/( ——,az/a„+ —,r„/az ~1tt(1)+ —,),

p ~
——m arctan( 2'—„/az ),—1

p~ n——'arctan[1/( ——,as/a„+ , r„/as—+g(1)+—,}],

(11.12)

(11.13)

(11.14)

(11.15)

(11.16)

respectively. Note that n =1 has been taken. Also
note that

for n)1. Especially curve 7 shows an excellent
agreement for the energy shift up to large values of

XII. DISCUSSION

The 5-shell potential is convenient to use. It has
the unique property that it is both local, and separ-
able in each partial wave. Its local character makes
it easily visualized in the coordinate representation.
Its separable character is a big computational ad-
vantage: The frequent use of separable forces in n

body calculations is primarily based on this fact.
Its simple form has enabled us to derive many
closed analytical expressions for the quantities corn-
monly encountered in scattering theory of charged
and uncharged particles, for all l. In particular, we
have derived formulas for the low-energy effective-
range parameters [Eqs. (6.7)—(6.10)], and the
Coulomb-modified effective-range parameters [Eqs.
(10.14}—(10.17)],for all l.

As an illustration, let us consider proton-proton
scattering in the 'So partial wave. The first three of
the following four experimental values,

a, o= —7 822+0 004 f

r„o——2.830+0.017 fm,

a~=57.60 fm,

Pcsp=0. 051+0.014

give range- and strength-parameter values

R =2.126+0.013 fm,

A,p
——1.880+0.010 fm .

These give in turn the value

Peso = 0 0377+0.0001

and the values

a,p
———16.25+0.08 fm,

r, p ——3.02+0.02 fm,

Pso ———0.0187+0.0003

The experimental 'Sp values for neutron-neutron
scattering are '

a,p
———18.6+0.5 fm,

~so=2 83+0.11 fm .

Within the limitations of this simple model and the
assumption of point charges this gives support to a
high degree of charge symmetry of the strong nu-

clear forces. A recent more realistic potential
model gives an even closer agreement.

A second illustration is provided by the X —o,

system. In the P3/g wave we have from proton-a
data33

a„~———44.83+0.51 frn

res] ———0.365+0.013 fm

az ——18.00 fm,

Pcs l~cs 1
= —0.60+0.04 fm .

The first three numbers determine R and A, &,

R =2.81+0.05 fm,

I,) ——7.49+0.07 fm,

giving in turn the value

P„&r„& ———0.53+0.03 fm

(which is remarkably close to the experimental
value —0.60+0.04 fm), and

a, )
———59+3 fm3,

rs ) ———0.80+0.02 fm

P, ]r, ]
———0.795+0.015 fm,

showing remarkable agreement with experimental
neutron-u data
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a, )
———63.0S7+0.003 fm

r, i ———0.8805+0.0012 fm

P, ~r, ~
———0.717+0.016 fm .

This supports charge symmetry within the same
limitations as in the NN case.

Our formulas (10.19)—(10.22) serve as an explicit
and useful potential-model check for the general ap-
proximate relations between effective-range parame-
ters and Coulomb-modified effective-range parame-
ters, which have been recently presented for l &0.
To our knowledge the only other explicit potential
model for which closed expressions have been pub-
lished for Coulomb-modified effective-range
parameters for all 1 is that of Ref. 36.

In Secs. II and IV, and in Secs. VII and VIII, we
have given many explicit formulas for various states
and various matrix elements, in the uncharged and
the charged case, respectively. Furthermore, we
note that explicit formulas can be obtained for the
scattering states

I
kl+), the Jost states

I
kit), the

off-shell Jost states
I
kq1t), the so-called regular

states Ikl), and the corresponding radial solu-
tions, and Jost states, for the interaction V, + V„
since the corresponding quantities for V, are
known. ' 3 The formulas for all 1 remain relative-

ly simple. The only other interaction we know for
which so many explicit formulas can be derived for
all l is the separable potential with simple rational
form factors; see, for example, Refs. 36 and 38.
The latter interaction is essentially nonlocal.

The 5-shell potential is special in some further
respects. Though T~ is real by construction (for real

Vi) the 5-shell interaction is unique in the respect
that the equality of T~ and Vi holds; see Eq. (4.9).
In general, (p'I Goi Ip) and (p'I ~i Ip) a e "0
symmetric, i.e.,

solution. " (See Ref. 5.)
A potential consisting of one 5 function with a

range parameter R may be too simple to describe
realistically the interaction between physical parti-
cles. One then may use a superposition of 5-shell

potentials with different ranges R;,i =1, . . . , N,
and strength parameters A,; which can be chosen of
different sign. This is a rank-N potential, which
admits at most N bound states. The extension of
the formalism to the rank-N case is straightfor-
ward.

In Secs. V and IX we have explored the relation-
ship between pole positions k and the strength
parameter A,, with the Coulomb potential taken
zero, repulsive, and attractive, respectively, for
some representative values of /. The results nicely
illustrate the general theory in Ref. 12. They agree
with general results obtained for the Coulomb plus
any short-range potential. ' ' ' ' They are similar
to other explicit models. In Ref. 10 the course of
the trajectories near the origin in the fourth qua-
drant of the k plane is analyzed in detail. Our re-
sults confirm this analysis.

In our explicit potential model we have studied
reconstruction of spectra (see Ref. 26), quantum de-

fects, and the small-shift approximation in Sec. XI.
Related work has been carried out by Popov and
collaborators ' for different potential models. We
stress that the standard SSA, given by Eq. (11.9), is
a very poor approximation, even for small values of
the ratio of the typical short-range parameter and
az. A better approximation is to replace a, by a„.
This is convenient because often a„can be deter-
mined directly from experiment. Much better ap-
proximations for the energy shift result from using
Eq. (11.11), and Eq. (11.15) when a„ is known, or
Eq. (11.16} when both a„and r„are known, cf.
Fig. 7. Even for complex-valued scattering lengths
Eqs. (11.11)—(11.16) can be used.

and

However, for the 5-shell potential the equality

does hold. Quite generally Goi+Goi. We recall
that G (k ) is the Green's function for "the regular

APPENDIX

In this appendix we specify the expansion coeffi-
cients occurring in Eqs. (10.9)—(10.12). The B2„
are the Bernoulli numbers. ' Note that in Ref. 15
a different convention for the Bernoulli numbers is
used. The expansion coefficients c„(l), g„, and h„
are obtained from Ref. 15. The c„(l), n =0, . . . , 1,

are given by

cp(l}=1 ci(l) =l(l + 1)(2l + 1)/6

cp(&) = (2l —1}(l—1)l (I + 1)(21+ 1)(51+6)/360,

c3(l)=(2l —3)(2l —l)(l —2)(l —l)l(1+1)(2l+1)(35l~+91l+60)/45360, . . . , ci(I)=(1')
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The g„and h„ follow from Eqs. (6.12), (6.13), and

(8.28} of Ref. 15, respectively. The connection be-
tween our notation [see Eqs. (8.1) and (8.2} and Eqs.
(10,11}and (10.12)] and the notation of Ref. 15 [see
Eqs. (2.5) and (2.6} of Ref. 15] is given by the

correspondence l~l, y~ri, kr~p, and

&r
~
kl+ },~i~e (2/tr)'r —'F ( )

&rlkl», t'e '"(2/~)' p 'H (p).

tR. G. Newton, Scattert'ng Theory of 8'aues and Particles,
second edition (Springer, New York, 1982).

V. de Alfaro and T. Regge, Potential Scattering (North-
Holland, Amsterdam, 1965).

3See, for example, S. Gasiorowicz, Quantum Physics (Wi-

ley, New York, 1974); S. Fliigge, Practical Quantum

Mechanics (Springer, Berlin, 1971), Vol. 1; H. J. Lip-
kin, Quantum Mechanics; lVeto Approaches to Selected

Topics (North-Holland, Amsterdam, 1973); C. Cohen-

Tannoudji, B. Diu, and F. Laloe, Quantum Mechanics

(%iley, New York, 1977), Vols. I and II.
4K. W. McVoy, in Fundamentals in Nuclear Theory, edit-

ed by A. DeShalit and C. Villi (IAEA, Vienna, 1967),
p. 499; C. Cohen-Tannoudji et al., Quantum Mechanics

(Wiley, New York, 1977), Vol. II, p. 1360; J.
Borysowicz and J. Dabrowski, Phys. Lett. B24, 125
(1967).

5H. van Haeringen and L. P. Kok, Teor. Mat. Fiz. 50,
100 (1982); H. van Haeringen, University of
Groningen, Report 135, 1979.

M. G. Fuda and J. S. Whiting, Phys. Rev. C 8, 1255
(1973).

7A. Messiah, Quantum Mechanics (North-Holland, Am-

sterdam, 1969), Vols. 1 and 2.
sHandbook of Mathematical Functions, edited by M.

Abramowitz and I. A. Stegun (Dover, New York,
1965). In this reference the functions nr and N~+ &&2 are
denoted by yI and FI+»2, respectively; cf. pp. 358 and
437.

H. M. Nussenzveig, Causality and Dispersion Relations
(Academic, New York, 1972).

V. S. Popov, A. E. Kudryavtsev, V. I. Lisin, and V. D.
Mur, Institute of Theoretical and Experimental Phys-
ics Report ITEP-98, 1981 (unpublished).

P. G. Burke, Potential Scattering in Atomic Physics
(Plenum, New York, 1977).
L. P. Kok and H. van Haeringen, Ann. Phys. (N. Y.)
131,426 (1981).

See, for example, Ref. 2.
M. Gell-Mann and M. L. Goldberger, Phys. Rev. 91,
398 (1953).

'5M. H. Hull Jr. and G. Breit, in Encyclopedia of Physics,
edited by S. Flugge (Springer, Berlin, 1959), Vol.
XLI/1, p. 408. Note that the convention for the modi-
fied Bessel function E„used by Hull and Breit differs
from that used in, for example, Magnus et al., cf. Ref.
22, by a factor ( —)", for integral n.

~6H. van Haeringen, University of Groningen, Report

150, 1979; Delft University of Technology, Report 82
05, 1982.

~7H. van Haeringen and R. van Wageningen, J. Math.
Phys. 16, 1441 (1975).
L. P. Kok, Phys. Rev. Lett. 45, 427 (1980).

~9H. van Haeringen and L. P. Kok, Phys. Rev. C 24,
1827 (1981).

H. Cornille and A. Martin, Nuovo Cimento 26, 298
(1962); J. Hamilton, I. 6verbo, and B.Tromborg, Nucl.
Phys. B60, 443 (1973).

2~H. van Haeringen, J. Math. Phys. 18, 927 (1977).
W. Magnus, F. Oberhettinger, and R. P. Soni, Formu-
las and Theorems for the Special Functions of
Mathematical Physics (Springer, Berlin, 1966).
H. van Haeringen, Nucl. Phys. A253, 355 (1975).
M. J. Seaton, C. R. Acad. Sci. 240, 1317 (1955); Mon.
Not. Roy. Astr. Soc. 118, 504 (1958); Proc. Phys. Soc.
London. Ser. A 70, 620 (1957); 88, 801 (1966); 88, 815
(1966); F. S. Ham, Solid State Physics, edited by F.
Seitz and D. Turnbull (Academic, New York, 1955),
Vol. 1; B.L. Moiseiwitch, Proc. Phys. Soc. London 81,
35 (1963); N. F. Mott and H. S. W. Massey, The
Theory ofAtomic Collisions, 3rd ed. (Oxford University
Press, New York, 1965).
Ya. Zel'dovich, Fiz. Tverd. Tela (Leningrad) 1, 1637
(1959) [Sov. Phys. Solid State 1, 1497 (1959)].

26A. M. Badalyan, L. P. Kok, M. I. Polikarpov, and Yu.
A. Simonov, Phys. Rep. 82, 31 (1982).
H. van Haeringen, C. V. M. van der Mee, and R. van

Wageningen, J. Math. Phys. 18, 941 (1977).
2 S. Deser, M. L. Goldberger, K. Baumann, and W. Thir-

ring, Phys. Rev. 96, 774 (1954); A. Deloff, Phys. Rev.
C 13, 730 (1976); V. B. Mandelzweig, Nucl. Phys.
A292, 333 (1977).

29See, for example, Deloff, Ref. 28, and sources quoted
there.
See, e.g., G. E. Brown and A. D. Jackson, The

Nucleon-Nucleon Interaction (North-Holland, Amster-

dam, 1976); more recent values for a„o and r„o are

given by J. P. Naisse, Nucl. Phys. A290, 445 (1977).
B. Gabioud, J. -C. Adler, C. Joseph, J. -F. Loude, N.
Morel, A. Perrenoud, J. -P. Perroud, M. T. Tran, E.
%inkelmann, %. Dahme, H. Panke, D. Renker, C.
Zupancic, G. Strassner, and P. Truol, Phys. Rev. Lett.

42, 1508 (1979);B. Gabioud, J. -C. Adler, C. Joseph, J.
-F. Loude, N. Morel, A. Perrenoud, J. -P. Perroud, M.
T. Tran, E. Winkelmann, W. Dahme, H. Panke, D.

Renker, G. Strassner, G. F. de Teramond, and P.



2396 KOK, de MAAG, BROUWER, AND VAN HAERINGEN 26

Truol, Phys. Lett. B103,9 (1981).
W. Schweiger, W. Plessas, L. P. Kok, and H. van Haer-

ingen, University of Graz Report 82/02, 1982.
R. A. Amdt, D. D. Long, and L. D. Roper, Virginia
Polytechnic. Institute and State University Report
VPISA-4(71), 1971,Table I.
See Ref. 33, Table II.

35A. E. Kudryavtsev, V. D. Mur, and V. S. Popov, Insti-

tute of Theoretical and Experimental Physics Report
ITEP-180, 1980 (unpublished).

3 H. van Haeringen and L. P. Kok, Phys. Lett. A82, 317

(1981).
H. van Haeringen, J. Math. Phys. 20, 2520 (1979).
H. van Haeringen, Phys. Lett. A86, 359 (1981); J.
Math. Phys (to be published).
A. E. Kudryavtsev, V. I. Lisin, and V. S. Popov, Pis'ma
Zh. Eks. Teor. Fiz. 34, 292 (1981).

~L. P. Kok, Phys. Rev. C 22, 2404 (1980).
O'V. S. Popov et aI., Institute of Theoretical and Experi-

mental Physics Report ITEP-84, 1981 (unpublished);
Zh. Eks. Teor. Fix. 80, 1271 (1981) [Sov. Phys. —JETP
80, 650 (1981)].


