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Bounded quadrupole operator for constrained variational calculations
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A bounded operator is introduced so that rigorous constrained variational calculations

can be performed. With this operator the calculations are no more complex than previous,

nonrigorous calculations and no dependence on unphysical parameters is introduced. It is

shown that results previously obtained in a mathematically invalid way are, to a large ex-

tent, reproduced by these valid calculations.

NUCLEAR STRUCTURE Modified constraint introduced for calcula-

tion of nuclear deformation energy.

INTRODUCTION

Some time ago Fonte and Schiffrer' pointed out
that the accepted practice of using the quadrupole
operator in constrained variational calculations was

not a valid mathematical procedure. This was
based on the observation that Q =r Y2o was un-

bounded both from above and below and would

therefore lead to infinitely attractive external poten-
tials, at infinity, in calculations with Lagrange mul-

tipliers. It was later shown that this difficulty man-

ifested itself even in constrained Hartree-Fock cal-
culations in truncated spaces, where the unbounded-

ness of Q was less apparent. This cast doubt on

the reliability of predictions based on the results of
such calculations of nuclear "energy-deformation
surfaces. "

A solution to this problem was put forth in the
original work of Fonte and Schiffrer, where it was

suggested that a cutoff be introduced so that the
external potential does not extend beyond the nu-

clear surface. Inserting such a cutoff in actual cal-
culations was shown, however, to introduce a
dependence on the cutoff length which was unac-

ceptable given the ambiguity in its definition. An
alternate solution was also suggested by Fonte and
Schiffrer in which the mass distribution was speci-
fied by certain inequalities. It would be preferable
if the difficulty were overcome in a way that was

simple to implement. Furthermore, one would like
to investigate to what extent those results already
obtained, by performing calculations that were not
rigorously correct, were valid. In these respects, the

solution put forth by Giraud and Le Tourneux is
also not satisfactory. They suggest the addition of a
second constraint —on the square of the quadrupole
operator. Although this procedure can eliminate
the problem caused by an external potential which

goes to minus infinity, one would then be faced
with the calculation of a two-body operator's matrix
elements instead of a one body operator. This
would constitute a serious handicap, and it is there-
fore not surprising that calculations using this pro-
cedure have not been carried out.

Here it will be shown that one may introduce a
modified constraint which has all of the desired

features; it is simple to implement, introduces no
new parameters, and is useful in determining the
validity of the results of previous, nonrigorous cal-
culations.

THE MODIFIED CONSTRAINT

The usual constrained variational calculation in-
volves the minimization of the Hamiltonian

where H is the Hamiltonian, A,~ the Lagrange mul-

tiplier, and Q is the quadrupole operator, r Y2o.
The lack of a solution follows from the property
that letting the system extend to infinity, in some
direction, will lead to infinitely large, negative
values of the expectation value of H~, 8'.

Since one wishes to limit the extent of the system
whose deformation is being considered, one rather
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obvious possibility is the introduction of a second
constraint on, for example, the expectation value of
r . Because this is a one-body operator, closely re-
lated to the quadrupole operator, it will not intro-
duce the complexity that would accompany a qua-
dratic constraint nor will it, as will be shown, in-

troduce any undetermined constant, such as a cutoff
length. Since r is itself an unbounded operator,
one would encounter the same difficulty as with Q
if one considered the constrained Hamiltonian

II„=a+X~r' .

Here no minimum would exist for Aii ~0, since r
is unbounded from above. However, the constraint
is not being imposed on H. Rather, to the problem
of minimizing the expectation value of

Hg H —A,g
——Q

from some fixed value of A,g, one imposes the con-

straint that (r ) be less than some finite, but un

specified value. Since (r ) will obviously be infin-

ite for a wave function with infinite extent, this im-

plies that the total external potential be bounded.

Thus the Hamiltonian to be minimized, for a fixed

A,g~ 1s

4 =H —kgQ+)iver

and only values of A, ii can be considered which re-

sult in

—A,gQ+Aiir,
being bounded from below. Specifically, since the

quadrupole operator is

Q =2z —p (suppressing v'5/16m ),
and since

and this is accomplished for any A,z satisfying the
inequalities. Thus, since r is a positive definite
operator and since only positive values of A,~ satisfy
the inequalities, the minimum allowable value of A,z
is the optimal choice.

The constrained Hamiltonian thus becomes

and

A =H —AgQ+2Agr for Ag )0

=b d ~ (2n, +I) —A,g+
2

+b 'd '"(2n-+ -I m
I + i)(kg+4),

where b is the volume parameter and d the defor-
mation parameter. For any value of A,z satisfying
the inequality, the quantities ( —i(,g+ A, ii&2) and
(i(,g+i(,ii) are positive so that the matrix elements
are bounded from below for all values of b and d.
Thus solutions to the constrained variational prob-
lem in an oscillator basis will exist for any b and d,
and these parameters may properly be determined

by the condition that the constrained energy be
minimized.

NUMERICAL ILLUSTRATION

4 =H —itgQ —Agr for Ag (0.
Because the external potential thus defined is

bounded from below its matrix elements will also be
bounded from below. In the deformed harmonic
oscillator basis, for example,

(nmn,
~

—AgQ+Aiir
~
nmn, )

I" =Z +P

the values of kz of interest satisfy

A,z)2& for A,&yD

A,ii )—A.g for A,g (0 .

The expectation value of A, designated by 8'~,
will be a function of A,~. In the usual application of
Lagrange multipliers, the value of A,z would be
determined by requiring ( r ) to have some

prescribed value. Here, instead, A,z is to be deter-

mined by the requirement that 8'~ be minimized.

This is possible because the purpose of the r con-

straint is to exclude solutions with infinite extent

The procedure suggested here will be demonstrat-
ed for the many body, Hartree-Fock calculation
studied in detail with a single constraint. Con-
strained Hartree-Fock calculations were carried out
for ' C using the Skyrme interaction in the de-
formed harmonic oscillator basis with three shells.
For simplicity, Coulomb effects and pairing were
ignored. Previously, without introducing the
second constraint, i.e., with A,z ——0, the expectation
value of the constrained Hamiltonian had no abso-
lute minimum as a function of the oscillator param-
eter d. This is shown in Fig. I. An optimum"
value of d could erroneously be obtained by calcu-
lating the energy,

(H) =g'+kg(Q),
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FIG. 1. The constrained energy and (H ) as a func-

tion of d. The quantity which should be minimized is
8', and although it has a local minimum, no absolute
minimum exists. The quantity normally minimized is

(H) but this does not correspond to correctly solving

the variational equations.

and finding the minimum of this quantity. This is
not a valid procedure, since in the method of
Lagrange multipliers it is g' itself which must be
minimized. Nevertheless, (H) does have an abso-
lute minimum, as is shown in Fig. 1, and this pro-
cedure, through not mathematically valid, was fol-
lowed in many calculations of nuclear properties.

If one introduces the constraint on r into these
calculations, then the expectation value of P does
exhibit an absolute minimum. This is shown in Fig.
2. In arbitrary units the quadrupole Lagrange mul-

tiplier A,~ was fixed at 0.05. Thus, since A,z must be
twice A,~ according to the suggested procedure, the
solid line, calculated with Aa —0.1, is the quantity
of interest. Here (A ) happens to have a second
minimum at a value of d much larger than the op-
timal one, but the d at the absolute minimum is
quite close to the result of the invalid calculation.
The dependence of (A ) on A,z is also shown in

Fig. 2. If A,~ &0.1 the minimum is only relative
with (A ) going to negative infinite for infinitely

large d.
Although the various quantities shown in Fig. 2

are grossly different for most values of d, for small

values of d their dependence on d is quite similar.
This is shown in Fig. 3. The curve labeled 8'z is
the expectation value of the constrained Hamiltoni-
an with A,z ——0.1. The curve labeled 8' is the same

quantity with no radial constraint, i.e., A,q
——0. The

curve labeled E is the energy obtained from 8' by
adding back the constraint energy, A,~Q. It is the
latter quantity which was previously minimized to
obtain the optimal value of d. Of course one should
minimize 8' if one is considering bounded operators
or, in this case, 8'~. As can be seen from the figure,
the dependence of these quantities of d is quite
similar and the resulting optimal d would be nearly
the same for any minimization. In spite of this the
minimization of E and 8' are, in principle, not
correct procedures. For the former, one is not solv-

ing the variational equations, while for the latter no
absolute minirnurn exists.

In Table I the properties of the wave functions
corresponding to the usual procedure and the sug-
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FIG. 2. Results with the modified constraint. The
quantity which should be minimized is the expectation
value of the constrained Hamiltonian. This quantity is
shown, for various values of A,q, as a function of d.
The curve labeled A,~ ——0.1 is the only meaningful result.
The others are included for illustrative purposes.

FIG. 3. Comparison of different results. Here it is
seen that 8'~, a rigorous solution to the variational
equations, and 8', a quantity which goes to negative in-
finity for large d, have similar dependence on d for
small values of d. The quantity E is the quantity nor-
mally minimized in a constrained calculation.
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TABLE I. Comparison of calculated quantities. The energy, quadrupole moment, and radius obtained with the modi-
fied constraint, labeled "new, "are compared to the corresponding quantities obtained by the usual calculations. Note that
only for very large d is there any appreciable difference in these quantities. The latter wave function is not, however, a
solution for the variational equations.

E,
(MeV)

Enew gold Qnew Rgg

(fm)
R new

0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

10.0
20.0
50.0

100.0
200.0
500.0

—26.73
—41.87
—45.70
—46.29
—45.59
—44.04
—42.64
—40.86
—39.01
—37.11
—18.68

+ 2.34
+ 39.54

+ 76.44
+ 123.09
+ 337.46

—26.71
—41.84
—45.66
—46.26
—45.55
—44.24
—42.62
—40.85
—39.01
—37.15
—18.65

+ 2.34
+ 39.43
+ 76.14

+ 122.34
+ 202.22

—170.49
—119.12
—89.99
—68.67
—51.32
—35.91
—22.98
—10.67
+ 0.91

+ 12.14

+ 1010.42
+ 1628.48
+ 3034.08
+ 4840.59
+ 7710.0

+ 17985.0

—170.28
—118.82
—89.61
—68.25
—50.92
—36.04
—22.82
—10.77
+ 0.37

+ 10.85

+ 1010.61

+ 1627.00
+ 3028.00
+ 4824.54
+ 7670.7

+ 14138.0

4.18
3.82
3.66
3.57
3.52
3.50
3.48
3.48
3.48
3.49
6.80
8.46

11.37
14.28
17.98
27.40

4.17
3.81
3.66
3.57
3.52
3.50
3.48
3.48
3.48
3.49
6.80
8.45

11.36
14.26
17.93
24.30

gested modified constraint are compared. The
former, which are in principle not valid are labeled
"old" while the latter are labeled "new." Small
differences in quantities other than the quantity be-

ing minimized are not significant since they are not
determined variationally and thus may be less
stable. The "energy" should converge more quickly
than other quantities and, since the iteration pro-
cedure is halted when a certain degree of self-
consistency is obtained in it, there is some uncer-
tainty in these other quantities. It is significant to
note that, except for extremely large values of d,
there is no essential difference between the quanti-
ties calculated with the old and new wave functions.
It is, of course, this region of the parameter space,
with unreasonably large values of R, one wishes to
exclude.

CONCLUSION

It has been shown here that it is possible to intro-
duce a further constraint in deformed variational
calculations so that rigorous solutions to the result-

ing equations do exist. The additional constraint
introduces no complexity to the calculations be-

cause the operator involved is a one-body operator
which is closely connected to the quadrupole mo-
ment operator. Furthermore, no new parameters are
introduced, such as a cutoff distance, because the
Lagrange multiplier associated with the additional
constraint is determined uniquely by an optimiza-
tion condition.

Finally, it has been shown that the traditional
method for obtaining solutions, even when no
rigorous solution exists, yields results quite close to
those obtained by a mathematically correct pro-
cedure. This can be understood by the following
considerations. The constrained Hartree-Fock
Hamiltonian, hQ, is given

hp =ho —Agq =ho —A,g(2z —p }

=Ap —2A, Q T + 3A,Qp

where hp is the usual unconstrained Hartree-Fock
Hamiltonian. For XQ&0, the modified constraint
leads to the Hamiltonian

A ale~ —AP Argq +Arg P

=A p
—A,Q g +2XQ P'

—AP +3XQP o
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Thus the nonspherical part of the external potential
is the same in the two calculations. From perturba-
tion expansion arguments it then follows that the
admixture into the unconstrained wave functions of
basis states with different angular properties will be
the same and thus the wave functions should indeed
be similar. The effect of the different spherical
parts in the external potentials should be small since
the spherical part of ho would normally be very
large.

The same argument holds for negative values of
A,g. Then

Ag =hp+3gp —3/gz

and, since A,~ ———A,g,

h„,„=hp —Ag(2zz —p2) —Ag(z +p )

=ho —3i,gz2 .
In spite of this rather fortuitous result, it is clear-

ly preferable to introduce the additional constraint
and minimize the correct quantity.

Finally, it should be noted that the introduction
of the volume conservation in the Nilsson model is
a way of solving the related divergence of the ener-
gy in that model. There the coefficients of the
spherical and deformed parts of the one-body po-
tential, analogous to A,a and Ag, are not related un-
til volume conservation is imposed. Without such a
relation a similar phenomena occurs; there is no
minimum in the quantity being minimized.
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