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Cross section and polarization in deuteron photodisintegration: General formulas
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The differential cross section and the outgoing nucleon polarization in the disintegration

of unpolarized deuterons by polarized photons are given as expansions in Legendre func-

tions.

NUCLEAR REACTIONS d ( y, n)p. Differential cross section and po-
larization. Legendre function expansion.

I. INTRODUCTION

Recently, we made an attempt' to resolve the
long standing discrepancy between theory and ex-
periment in the forward differential cross section,
do/dQ (0') (Ref. 2), for the yd +np reac—tion, tak-

ing into account the relativistic corrections to the
charge density p coming from the nonrelativistic
reduction of the nucleon Dirac current. The com-
monly used analytic expressions of the differential
cross section do/dQ and the polarization P of the
outgoing nucleons are those given by Partovi, even

if extensive work carried out by the Yale group is
also worth mentioning. Partovi's paper has been
often quoted by both theoreticians and experimen-

talists since it gives the general expressions for
do /dQ, o„„and P valid for arbitrary photon polar-
ization and for all the electromagnetic (em) mul-

tipoles, and neglects only the possibility of a polar-
ized deuteron target. However, these quantities are
given in Ref. 3 by expansions in terms of reduced
rotation matrices combined in a complicated way
which depends on the multipolarities of the transi-

tions involved. This results from expressing them

by means of summations over the magnetic quan-

tum numbers of the initial and final states. Instead,
it is possible to sum over these quantum numbers

and arrive at an expansion in Legendre functions,
P„(cos8), of der/dQ and of most of the functions
of 8 defining P, 8 being the center of mass (c.m. )

angle between the outgoing nucleon and the incom-
ing photon (see Fig. 1). This was the purpose of our
work, which is organized as follows. The Legendre
function expansions of do/dQ and P are deduced
in Secs. II and III, respectively, and our conclusions
are stated in Sec. IV. The coefficients of our expan-
sions are compared with those appearing in
Partovi's expressions in the Appendix.

II. DIFFERENTIAL CROSS SECTION

The differential cross section is given by

=Tr(Tp;„T ),

where T is the transition matrix and p;„ is the densi-

ty matrix of the initial state. Since the deuteron
target is unpolarized, the matrix elements of p;„are

(mdl I p. I mdl ')=
3 &, , (V

I pr I
e')

= —,6,(p i
1 —X 0

i
p'), (2)

in the c.m. frame with the polar axis coincident
with the photon momentum q. In Eq. (2)

~
mdp) is

the state with photon helicity p =+1 and projection
md ——+1,0 of the deuteron total angular momentum
on q; X is the Stokes vector describing the polariza-
tion of the photon beam, and 0. are the Pauli ma-
trices. Shown in Fig. 1 is the relative orientation of
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usual combination of S and D states

ui (r)
~

md)= g Yi i (r),
ld ——0,2

with the spin-angle function defined by

Y~ (r)= g (1m', sm, ~jm)Y, (r)g'
m&m,

(3)

(4)

FIG. 1. The two c.m. coordinate systems for deuteron
photodisintegration.

in terms of Pauli spinors X* and spherical haimon-
S

ics Y (r ), with r = r Ir.
The final np state is characterized by k, the spin

s, and its projection m, on k. In the (xyz) frame we
have the Blatt-Biedenharn expansion in partial
waves of the final wave function with ingoing
asymptotic behavior

)sm, )= gV 4nl(10, sm. , (jm, )e 'U~, i, (
~jm, ),

A,jl

tile two c.lii. coordinate systems (x'y'z') and (xyz)
necessary for the description of the deuteron photo-
disintegration process, with the z axis parallel to
the photon momentum q, and the z axis parallel to
the relative momentum of the NN system,

k =(ki —kz)/2 .

As in the work of Partovi we take they axis in the
direction q X k and the x' axis in the direction of
the linear photon polarization (if any) so that

X» =0, X„=Xi is the degree of linear polarization,

and X, =X, the degree of circular polarization.
The wave function of the deuteron is given by the

with

j
Upg i (kr) Jm, „

Ajm, )= gi' Uigi Yp, '(r),

where 1=2I+1 and the radial wave functions are
defined by the asymptotic behavior

J l'm j
Up ~i(kr)~sin kr — +5iS 2

5i are the eigenphases and U@i the coupling matrix
defined in terms of the coupling parameter e by

s=1, l=j —1

l=j
l =j+1-

s=1, l=j

A, =1
cose

4

J—sme

0

A, =2 A, =3 A, =4
0 sine 0
1 0 0
0 cose 0
0 0 1

Obviously, there are only two j =0 states and the corresponding coupling matrix reduces to a 2&(2 matrix.
In the first order perturbation theory, the T matrix is proportional to the em transition Hamiltonian and, in

Coulomb gauge, we have
' 1/2

kM
(sm, (

T
(
pmg)=-

4&CO I d x e'q'"(sm,
~ e„j(x)

~
dms),

where co =
~ q ~

is the energy of the photon, e& is its polarization vector, and. j (x) is the nuclear current den-

sity.
Following the conventions of Edmonds for the rotation matrices D(R), the multipole expansion of Eq. (9)

reads

(sm, i
T

i
pm')=

' 1/2
kM
2N

gi ~LD~„(R)(sm, ~E +@M ~~md),
LM

(10)
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where R:—(0,8,4) and (8,4) are the polar angles of k with respect to q. In Eq. (10) the magnetic M ~ and
electric E multipole operators are the usual ones

ML = f d x j (x).A s(x),

E = f d x j(x) A, ~ (x),
with the transverse ML and EL vector potentials given by

A, (x)=jL (qx)Y&™&(x),

(1 la)

(1 lb)

(12a)

(12b)

Here, Y~i (x ) are the vector spherical harmonics, defined as the spin-angle functions in Eq. (4).
Inserting Eqs. (10) and (11) in (9) we obtain

(sm,
I
T

I
@md)= g ')r 4@ije "U~,i( —)

+'+
LMAjl

l s j j L 1

0 m —m — MS S S
(13)

in terms of the electric ~ ~z and magnetic P'i J reduced matrix elements defined as in the work of Partovi.
Explicitly we have

1/2
kM

&xJ+Pz) =
2N g i L 'V L Ui, i„(l'sj'A,

I IE +p,M
I lid ),

1's'ld

(14)

with the definition

ui;i (kr)
(I's'J~l IE'+i M'1 14)= f «r' ' (I's'J

I
IE'+vM'I 1411)

kr r

Because of the time-reversal invariance, W~z, 5 ij are real, and, because of the parity conservation, they
satisfy the following symmetry relations:

~G
L

( )L+i+J~G
Aj Aj ~

~L ( )L+A+j +1~L
AJ A,J

Working out the trace in Eq. (1) and using expression (2) the differential cross section takes the form

(16)

& (sm.
I
T i md)(sm. 17' le'md)*(v lsr lv') .

srn md

(17)

The insertion of Eq. (14) in Eq. (17) leads to an expression containing the product of two D matrices, for
which the Clebsch-Gordan series yields

L L' J L L' J
D~„(R)D~,q, *(R)=( —) ~ g J . . . D~, (R) .

J
The sum over the magnetic quantum numbers in Eq. (17) can be easily made twice exploiting a well known

relation between the 6—j and 3 —j symbols (see, for example, formula 6.2.8 of Edmonds ), giving the result

g ( —)"~pp(v I '»o, i-p(R)cos(&i. —8)(v lpr li ')(~~L, +I ~ij)(~i:J+v'~tj'»
JSPP'p,p'

(19)

where E =L +L'+J and p, p' indicate the set of quantum numbers (Ljlk, ) and (Lj''1'A, '), respectively. In
Eq. (19) we have defined
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l'Jl I'J l j j'J
000 j s j' L'L 1

(20)

Performing the sum over IM =+1, the part of do. /dQ proportional to the photon circular polarization X,
vanishes because of the symmetry relations (16) and the condition 1 +1'+J =even, following from

I'Jl
000

Thus, we again recover Partovi's expression for do /dQ:

=ID(8)+XI cos(24)I~(8)do

=Io(8)(1+XIX(8)cos(24)), (21)

where the second equation defines the asymmetry function X(8). The angular distributions Io(8) and I&(8)
have the following expansions in terms of Legendre polynomials and associated Legendre functions

Io(8)= g AJPJ(cos8),

with

J=O

I~(8)= g BJPJ (cos8),
J=2

(22)

' 1/2
(J—2)!

BI——g Wpp (1,—1)
spp'

cos(5~ —5 j~ )

AJ= g WPP(11}cos(5j. 5()—[4,e.en(~~)~~;+~tj~~;) —4,.dd(~g, ~g, +~gj~g )],
spp' (23)

L L' ~L ~L' L ~L' ~L L'
+ [5',even(~jj~kv'j' ~ kj~ X'j )+5N, 'odd(~j j~ kj™k'j ~X'j')] ~

where 5&,„,„,5& ~d are shorthand notations for

(1+(—)")
2

and

I

combinations of reduced rotation matrices of the
form

d i,M(8}d i,M(8}+d i, -M(8 }dI,-~(8}

(1—( —) )
2

respectively.
The total cross section and the zero degree dif-

ferential cross section follow immediately from Eqs.
(21} and (22) because of the normalization and the
orthogonality pmperties of the Legendre functions

Otot=4~~O
(24)

( —) (dtM(8)d i sr(8)+d ) M(8)d ( M(8))

respectively, I. and L' being the multipolarities of
the transitions considered and 0(M(2. From
these rather involved expansions, Partovi calculates
the coefficients in the expansion of Io(8) and I~(8 )

in a series of circular functions

Io(8)=a +b sin 8+c cos8+d sin 8 cos8+e sin 8,
(25a)

(0')= gAJ .
J I~(8)=sin 8(f +g cos8+h sin 8), (25b}

As a comment to our expressions for do/dQ, we

may compare them with those given by Partovi.
As already recalled in the Introduction, the expres-
sions for Io(8) and I~(8) in Ref. 3 are expansions in

having truncated the multipole expansion to the
dipole-octupole interferences. Incidentally, we may
note that the dependence of I&(8 ) on Pz (cos8 ), [see
Eq. (22)], makes clear the factor sin 8 in Eq. (25b).
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Of course, Partovi does not give the expression con-
necting the coefficients a,b, . . . , and the reduced
transition matrix elements a~&, P'g&, because of
their complexity. Now, besides pointing out the
simplicity of our expansions (22) for I0(8) and

Ii(8) in Legendre functions, together with the ex-

plicit expressions (23) for the coefficients AJ and

BJ, we would also like to emphasize that our expan-
sions in orthogonal functions are the most appropri-
ate for fitting the experimental results. In fact, as
noted by various authors, the coefficients of
Partovi's expansion (25) cannot be determined

unambiguously from the data. Indeed, the number
of terms in a polynomial required to give a statisti-
cally valid fit to the data depends upon the number

and distribution of data points, and the lack of for-
ward and backward data leads to different and

equally possible sets of parameters. On the con-
trary, expansion (22) allows the determination of a
unique set of coefficients thanks to the orthogonali-

ty of the Legendre functions. In conclusion, the
parameters experimentally derived without ambi-

guity are the coefficients AJ, BJ of our expansion
and not the coefficients a,b, c, . . . , of Partovi's ex-

pansion. On the other hand, the last ones are easily
connected to the first ones, through the expansion
in Legendre functions of sin"8cos 8, and the for-
mulas relating the two sets of coefficients are given
in the Appendix.

Expressions (23) are rather transparent for pick-
ing out the main multipoles contributing to AJ and

BJ The case of A0 is particularly important since it
is directly related to the total cross section see Eq.
(24)]. Its expression in terms of a i J. and Wiz is im-

mediately obtained putting J=0 in Eq. (20). It fol-
lows that L'=L, j'=j, l'=I, and then %=even in

Eq. (23). It is a simple matter to obtain

III. POLARIZATIONS OF THE OUTGOING
NUCLEONS

The polarization (do/dQ)P(a) of the outgoing
nucleon a = 1,2 is given by

P(a )=Tr(0 ~ Tp;„T~),
6(0

(27)

where o ~ is twice the spin operator for the nucleon
in the representation of the final np scattering states

i sm, ).
Explicating the trace in (27) we have, for the

spherical component q of P

using the orthogonality of the U matrix,

1 Jg UgiUgi =5i. i, .
ls

For the other coefficients, one has simply to read
the formulas, remembering the decreasing impor-
tance of the various electric and magnetic mul-

tipoles with increasing L. The first contributions to
A i deriving from L =L'= 1 multipoles signify
N =odd in Eq. (23), and then El —Ml interfer-
ences. In the case J=2, the same L =L'=1 mul-

tipoles give N =even and then separated E1 and
M 1 contributions to A2 and Bq. The first mul-

tipoles contributing to A3, 83, are L =1, L'=2
through the E 1 E2 and—M 1 —M2 interferences,
and so on. Obviously, the exact percentage of im-
portance of the first contributions thus identified in
determining the value of the coefficients can be es-
tablished only by the calculation.

(s'm;
~
~,

~
sm, )(sm,

I
T

I em~)(V I S» I
V')('m'

I

T
I
V'm~)'

sm, s'm, ' m&

PP

(28)

With respect of the calculation of da/dQ, there are some complications, i.e., the two T-matrix elements in-
volve different spin states, so that M'+M, and there is one more matrix element (that of o&).

Following the same procedure as above, we first use the Clebsch-Gordan series [Eq. (18)] and then we per-
form the sum over M,M', m~ in Eq. (28) by means of the same relation 6.2.8 of Edmonds. Finally, the last
summation over m„m,' of the product of four 3—j symbols can be made with the sum rule obtained by de-
Shalit, resulting in

with
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~ I

XJ(a,a';qjj„jJ,') = g xJ(6l sj 1's j'')' UI JUJ, J„(—)'+'+J
3

I' I x x 1 J L L' J
000 0 —qq IM

—IM'p' —p

1

S

1

12

(30)

where F=l +I'+J and a and a' indicate the set of
quantum numbers (LjlAs) and (Lj''1'A, 's'), respec-
tively.

The x,y,z components of the polarization vector
P easily follow from Eq. (29) and can be written in
Partovi's form

I

Ip(8)P~p(8) = g CJPJ'(cos8),
J=1

Qs )(8)= g [DJ(dg, f (8)—d g, )(8))
J=2

+EJ(dg )(8)+dP t(8))],

Q»2(8)= g [EJ(dz t(8) —dp )(8))

P„(1)=Xi sin(24)Q„z(8)+X, Q„3(8),
@f0 J=2

+ J(dg )(8)+dP ((8))],

PJI ( 1 ) =Ip(8 )P&p(8 ) +XJ cos(24 )Q& ](8)
Gf C7 Q„3(8)= g FJPJ'(cos8),

(32)

P,(1)=Xl sin(24 )Q,z(8 ) +X,Q, 3(8 ) . (31)
80

In deriving Eq. (31) use has been made of the
symmetry relations (16) together with the selection
rules coming from the (3—j) symbols in Eq. (30).
This is the cause of the annihilation of two terms,
one proportional to X, in P~ and one independent
from the photon polarization in P» and P, .

The polarization functions in Eq. (31) are given

by

Q,z(8) = g GJPJ (cos8 ),
J=2

Q 3(8)= g HJPJ(cos8)
J=O

As is easily seen, not all the polarization func-
tions can be expressed by means of Legendre func-
tions. In fact, Q„z(8) and Q~~(8) are combinations
of reduced rotation matrices, which, however, do
not depend on the multipolarities L,L' of the transi-
tion involved.

The coefficients in (32) are the following:

CJ —— 2
&(J+1)

' 1/2

XJ(a,a', 1, 1,1)sin(5J„5$ )—

X [5N,~d(WJ.J5'J J'+~JJ~J J ) 5N, ~ (~ J J—~J:J'+~gj&g j )]L L' L L' ~L L' L L'

DJ QXJ(a, a——'; l, l, —1)sin(5~ —5( )
aa'

X [5Nyeven(~ Aj~ k'j' ~jj~A'j')+5Nyodd(~ AJ~A'j' ~A j~ A'j')] ~

~L L' L ~L'

EJ QXJ(a,——a'; l, l, —1)sin(5~ —5f. )
aa'

I L L' L L' L L'
X[5N~d(~J J~J'J ~JJP'JJ')+5N e„e„(axjP'g j —P'tja x j )],

p. — 2
J(J+1)

' 1/2

XJ(a,a';1, 1,1)cos(5~ 5$ )— (33)

L' I L L' I

x [5N, e ee(a~xJ~J'J'+~J J~ g'j') 5N, ~d(~ JJ~g'J'—+~JJ~J'J )]
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1/2
~(~ —2).

Gq ——g; Xq(a, a';0, 1,—1)sin(5~ —5$ )(J+2)~

Lt I L L' L L'
& l:4,~d(~ ~,~ ~ —~~j~~vj )+4,--(~~i~~v,'—~xj~~v~ ) 1

HJ ——QX&(a,a', 0, 1,1)cos(5~ —5$ )
aa'

I / I L L' L L'+ l5N, -(~ xj'~~y +~~j~x'J' ) 5N, o—dd(~~, ~v, +~x,~z'J')]

Having chosen the y-axis coincident with q)& k,
P~ is the only component of the ejected nucleon po-
larization, for an unpolarized photon beam, because
of parity conservation. It is worth noting that the
surviving term Io(8)P~o(8) is simply expressed in
(32) as an expansion in associated Legendre func-
tions Pz'(cos8 ). For the sake of comparison, let us
recall that this polarization function is given by
Partovi as an expansion in terms of the polarization
patterns

d], —M(8)d~ ~ M(8)+d& M(8)dy I ~(8)

from which he draws the coefficients of the expres-
sion

Io(8)P&0(8)=sin8(i+j cos8+k sin 8

+I sin 8cos8) .

Here, the sin8 term is an immediate consequence of
the expansion in Pz'(cos8). As before, this form re-
sults because of the inclusion of the em multipoles

up to the dipole-octupole interferences. Again, the
formulas relating Partovi's parameters to our CJ
coefficients are given in the Appendix.

Dealing with expression (33) of Cz as above for
AJ, BJ, one easily sees that the first and fundamen-
tal contributions to C& are given by the E1—M1
interferences. In addition, since CJ is proportional
to sin(5~ —g ), only transitions to different final
states contribute.

IV. CONCLUSIONS

In this paper we have considered the disintegra-
tion of unpolarized deuterons by polarized photons
below the pion production threshold, using the
standard theory of the nuclear em interaction (first
order perturbation theory with expansion in mul-
tipoles) and of the nuclear interaction (Schrodinger
equation), with the aim of obtaining expressions for
the measurable quantities in a way easier to handle
than that of Partovi. Indeed, by summing over the

I

magnetic quantum numbers and exploiting the sym-
metry relations due to the time-reversal invariance
and parity conservation, we have naturally arrived
at expansions in series of Legendre functions for
do. /dQ and for the nucleon polarization with unpo-
larized photons. All the coefficients of these expan-
sions are explicitly given in terms of the reduced
matrix elements of the em multipoles.

Our formulas are simpler and more useful than
earlier results. As expansions in orthogonal func-
tions, they are particularly suitable for comparing
with experimental data. Thus, our coefficients AJ,
Bz, and Cq follow from experimental results with
fewer uncertainties than the coefficients a,b, c, . . . ,
of the expansions of do/dQ and Io(8)P~O(8) in cir-
cular functions.

When the photon beam has arbitrary polariza-
tion, five additional functions of 8 are necessary for
determining the nucleon polarization. Three of
these are expressible by means of I.egendre func-
tions, while for the other two the reduced rotation
matrices are the natural basis.

APPENDIX: COMPARISON BETWEEN
THE EXPANSIONS OF der/dQ

AND Ip(8 )P&p(8 )

IN CIRCULAR AND LEGENDRE FUNCTIONS

J=0 n=0

(Al)

the right-hand side being the obvious generalization
of Eq. (25a). One has just to exploit the relations

Since Partovi's coefficients a, b, c, . . . , of the ex-
pansions of Io(8), I&(8), and Io(8)P&p(8) in circu-
lar functions are largely used in the literature, we
derive below formulas connecting them to the coef-
ficients AJ, BJ, and CJ of our expansions in Legen-
dre functions.

As for the differential cross section for unpolar-
ized photons, it is convenient to start by rewriting
the two expansions of Io(8)

g AqPz(cos8 ) = g (a„+b„cos8 ) sin 8,
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n! + ( —)" [2(n+k) —1]!!
1

2 k

(2n —1)!!„,(n —k)! 2'(k!)2

n! + ( —)" [2(n+k)+1]!!
(2n+1)!!k 0 (n —k)! 2k(ki)i

for getting the general relations

( —)" k! [2(k +n) —1]!!
2" n! 2 „(k n—)! (2k+1)!!

( —)" k! [2(k+n)+1]!!
2"(yg ~) (k —n)! (2k +1)!!

To be explicit, the first coefficients of Partovi's expansion are given by

~=~0= g Am
k=o

(A2)

(A3)

1

b =a i =——,(3Ap+10A4+21A6+36As+55A, 0+ . ),

e=a2 ———,( A4+1 A6+ As+ oAip+ . ), (A4)

c=bp g A2k+i
k=0

d =bi ———
2 (5A3+14A5+27A7+44A9+65Aii+ ) .

The simplest way for deriving the other relations we are interested in is to exploit the definition of Pz (cos8 )

in terms of Legendre polynomials. Indeed, applying the operator

d
d (cos8)

to (Al), we obtain

AJPz '(cos8 ) =sin8 g [(2n + 1 )b„—2(n + 1 )b„+i
—2(n + 1 )a„+,cos8 ] sini"8

n=0

which has to be compared with the two expressions of Ip(8 )P&p(8 )

g CqPq'(cos8)=sin8 g [i„+j„cos8]sin "8 .
n=0

(A5)

Here we have written the general form of the expansion (34) for the polarization. Thus, the coefficients i„,j„
are given by

i„=(2n + 1)b„—2(n + 1)b„+i,
j,=—2(n + 1)a„+i,

where a„,b„are those in (A3) with the substitution A~ ~C~. Explicitly, we have

(A7)

( —)" 1 + (k+1)! [2(k+n)+1]!!
2"n! (ii +1)! „(k—ii)! (2k +1)l! +

( —)" 1 ~ k! [2(k +n) 1+]!!C
2"&! (n+1)!„„,(k n —1)! —(2k —1)!!

and the first relations read

(A8)
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i =—io =C] +6C3+ 15C5+28C7+45C9+66C) ) +
j—=jo =3C2+10C4+21C6+36CS+55Cio+

k:i—t
————,(5C3+35C5+ 126C7+330C9+715C) t + ),

11=—jt = — (35C&+189C6+594Cs+1430Cto+ ' ' )

Deriving once again (A6), it is a simple matter to get

g CzPJ (cos8) =sin 8 g [(2n+1j)„—2(n+1j)„+& 2(—n+1)i„+&cos8] sin "8 .

(A9)

(A10)
J=2 n=o

On the other hand, the expansions of I&(8) are

gBzPz (cos8) =sin 8 g (f„+g„cos8)sin2"8,
n=0

(Al 1)

and thus

f„=(2n +1)j„—2(n +1)j„+~,

g„=—2(n +1)i„+t,
(A12)

the coefficients i„,j„being given by (A8) with the substitution CJ~BJ. The relations valid for every n follow
as

( —)" 1 ~ (k+1)! [2(k+n)+1]!!
2"n! (n +2)! k „+, (k n —1)!— (2k —1)!!

( —)" 1 (k+1)! [2(k+n)+3]!!
2"n! (n+2)! k „+, (k n —1)! (2k ——1)!!

the first of which are

f=fo =3(B2+—15B4+70B6+210Bs +495Bto+ ' ' '
)

g
—=go ——3(5B3+35Bs+ 126B7+ 330B9+715B ) t + . ),

3h:f t = —
~
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