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We examine the complementary types of motion induced by the time-dependent mean

field and the related residual interaction in the frame of quasispin systems. The time-

dependent Hartree-Fock law of motion is used to generate an instantaneous basis, where

the residual interaction induces transitions that deviate the exact motion with respect to the

simple Slater determinant evolution. Geometric images of both kinds of dynamics are

given and definite time scales are extracted for the validity of the time-dependent Hartree-
Fock description, its second order correction, and the building up of a noticeable relative

polarization of the exact wave function. It is seen that in addition to the time-dependent

Hartree-Fock motion over the Bloch sphere, the exact dynamics contains an "inwards"

component as well as additional rotations.

NUCLEAR STRUCTURE Time-dependent Hartree-Fock; moving

basis; residual interaction; complementary motions; quasispin systems;
Slater determinant; time scales; rotations and nonrotations on Bloch

sphere; polarization.

I. INTRODUCTION

The motion of antisymmetrized, uncorrelated
many-fermion wave functions in a nonlinear mean
field exerts a strong fascination on nuclear theorists.
A Slater determinant of single particle (sp) orbits,
subject to nonlocal forces that adjust themselves to
the changing quality of the space where their
sources are located, satisfies most claims of simpli-
city and elegance for a zero-order model of many
body evolution. The success of mean field or time-
dependent Hartree-Fock (TDHF) calculations in

describing and giving a deep understanding of
several features of nuclear dynamics' follows the
consideration of some difficulties, inherent to ei-

ther the sp picture or the determinantal way of
thinking. Comparisons of TDHF with the exact
Schrodinger dynamics have been performed in
several workable situations and attempts to go
beyond the uncorrelated particle model have come
into sharp focus. ' lt is nowadays customary to
speak of "collisional TDHF dynamics" with refer-
ence to a frame that incorporates irreversibility as a
consequence of two-body scattering processes in-

duced by the residual interaction. However, the nu-

merical complexity of these approaches, that bring
the time evolution of the many fermion system
close to the kinetic decay to equilibrium of a quan-
tum Boltzmann gas, ' postpones any criticism of its
predictions.

A finite nucleus is far from a system in the ther-
modynamic limit [N~ 00, V~ ao, lim(N/V) =po]
that undergoes irreversible evolution and approches
a thermal equilibrium situation described by a Fer-
mi distribution. As a matter of fact, it is a rather
localized object, its Hamiltonian spanning a discrete
spectrum, and its "not-so-many" body density ma-
trix would oscillate over the cons, should one build
it in an arbitrary initial condition. The exact
dynamics of discrete spectra, say, poses a problem
that cannot be tackled by resorting to kinetic, i.e.,
collisional TDHF, equations. Of course, we firmly
believe that much interesting physics can be learned
from nuclear "half-matter" encounters or slab col-
lisions, a theme that currently enjoys high populari-
ty. But, in the present work, we accept the chal-
lenge of trying again a comparison between TDHF
and exact dynamics of a small N, finite discrete
spectrum„ interacting fermion system. We focus
our attention on the complementary types of
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motion induced by the time-dependent mean field
and by the related residual interaction, and give
quantitative views of their rates of competition.
The geometrical frame in which quasispin systems
are inscribed allows a simple interpretation of the
dynamics and we are able to measure the departure
of the exact wave function from the TDHF, as well

as from an arbitrary Slater determinant. We find
that several peculiarities of determinantal dynamics
as compared to the full evolution could be traced to
the law of motion, rather than to the selection of an
uncorrelated wave function, and we suggest a few
alternatives, each of them deserving a separate
analysis.

In Sec. II, we briefly review some current
knowledge about TDHF and confront several points
of view. The separation of the exact motion in
mean-field and residual interaction paths is carried
out in Sec. III, where we also define what we call "a
TDHF moving basis. " Section IV contains the
description of the dynamics of quasispin systems
and the calculations performed in this work are de-

tailed in Sec. V. The summary and final con-
clusions are the subject of Sec. VI.

II. THE TDHF EQUATIONS OF MOTION

h HF (1)=Tr2H ) (1,2)p(2)+ Ho(1}, (2.1}

while the total energy contained in the collective

path reads

8'HF ——Tr)hHF(1)p(1) .

The full many-body Hamiltonian is written as

N
H = Q h HF(i) + V„,=P Hp+ V,

(2.2)

(2.3)

where the residual interaction V„, is usually negli-

gible with respect to MHF. The TDHF equation is

'P =[~HF(P) Pl (2.4a)

Many derivations of the TDHF equations are
available from the literature. '" Far from at-

tempting to summarize them all, we are going to
discuss briefly three different insights. In one ver-

sion, the TDHF evolution may be regarded as the
first approach to the motion of a many-body in-

teracting system insofar as the collective effects are
the most important ones, as it is often argued.
From this point of view, one averages the two-body
Hamiltonian with respect to the one-body density

13-16
p~

or

with

i
I 4& =~HF(

I 0&)14& (2.4b)

(2.6)

while the collective path corresponds to a given
class of trial vectors, i.e., to the Slater determinants.
The extremal principle is not too easy to understand

by itself, as pointed out by several authors (Ref. 25
and the references therein}. If one examines the
variational formulation in the context of a path-
integral approach to the time propagator, it follows
that the principle just states the stationary phase
condition and thus gives rise to the classical
path. ' In this sense, improvements upon the pre-
dictions of the TDHF method will be furnished by
semiclassical, higher order approaches.

The third insight is provided by the kirietic equa-
tion theory. ' ' It briefly tells that TDHF
equations are collisionless kinetic ones. Now, an ar-
bitrary kinetic equation may be written as

ip [~HF p] ++(p ) (2.7)

where [MHFpj is the conservative flow term and
E (p) is the so-called collision term. In this picture,
there are two ways for the many-body system to
propagate from one uncorrelated (sp) state to anoth-
er. One way of evolution is reversible oscillation in-

duced by the mean field, that acts upon a sp state as
an external force would do. The other way is
represented by the collision term and takes place via
two-particle scattering, on the assumption that such
a process is very fast and essentially instantaneous,
as compared with a typical period for the HF flow.
However, an important requirement for the ex-
istence of a kinetic regime is the decay of any two-

body .correlation other than those created as a
consequence of the dynamical evolution. This im-

plies that the two-body Hamiltonian is of such a
kind that the particles become asymptotically free
for large times and is only consistent with a con-
tinuous spectrum for the full I and the asymptotic

(2.5)

This formulation of the TDHF picture suggests
that it may give rise to a zeroth-order approach to
the time propagator in a time dependent perturba-
tion theory.

A second point of view is contained in the varia-
tional description": One takes the trajectory

I
4& of the many-body system as the solution of
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H0. ' Systems with a pure point spectrum do
not admit a kinetic improvement of the TDHF
equations.

III. TDHF VERSUS EXACT EVOLUTION

V es(t) UHF(t}V es(t) UHF(t} '

It follows that
f

UHF(t} i f dt UHF(t}UHF(t }
0

(3.4)

In order to analyze the rate of departure of the
TDHF Slater determinant with respect to the true
many-body state vector, it will be useful to utilize a
time-dependent basis that includes the Hartree-Fock
state as one of its vectors. First we note that the
equation for the TDHF propagator is

i UHp(t) =P Hp(t) UH p(t), (3.1}

with 4 Hp
——MHF. In general, [~HF, UHF]@0. It is

interesting to introduce a "residual interaction rep-
resentation" through the removal of the HF motion
from the exact one, i.e., let U(t) be the evolution

operator in an interaction representation,

X V„,(t') U(t') . (3.5)

We now select a basis

where

I
i ) = UHp(t)

I
4&; ) . (3.6)

{ I @0&, I @M & I

for the Hilbert space of the system, where
I
40) is a

Slater determinant representing the initial state for
the motion under consideration. Let us define a
"TDHF moving basis" as the set

U(t) =U„„(t)U(t), (3.2) Then, if

with

= V,„(t)U(t), (3.3}

where U is the true propagator. One easily finds

iU(t)= UHpV„, UHp is the true state vector at time t, the one predicted
by the TDHF equation of motion is

I
0), while the

expansion of
I
4) in the moving basis is given by

the amplitudes

f
aj(t}=&j(t}I

+(t) & = &j I
UHF(')

I
+'o& —t f dt'& j(t')

I
UHF(t}UHF(t'}V-. (t'}

I
+«') & . (3 7)

We now use { I
j(t')) j as an intermediate basis to

decouple the operators in (3.7) and take advantage
of the somehow obvious properties,

&j(t)
I

UHF(t} (~j I

(j( )
I
U„( )U ( ')=(j( ')

I
.

(3.8a)

(3.8b)

In particular, it is interesting to examine the evolu-
tion of the coefficient ao ——(OI 4), since

I ao
I

measures the overlap between the true and the
TDHF state, at any time. We also recall here that
the residual interaction does not connect the TDHF
state with any other vector differing from it by the
action of a one body operator. Then

ao(t) =1 i g f dt'(0—(t'}
I V,~(t')

I
k(t'))ak(t'}

k

(3.10)

We readily obtain the coupled equation
f

a (t)=5 i X f dt—(j(t )
I

V (t'}
I
k(t') &«(t }

k
(3.9)

U(t)= UHp(t}U(t)

=UHp(t) 1 i f dt'V, (t'—)U(t') (3.11)

We clearly see that the TDHF path is a good ap-
proximation to the full evolution of the many-body
system, provided U(t) differs only slightly from the
identity. An obvious first-order estimate,

gives straightforwardly a means of measuring the
departure of the exact wave function from a deter-
minant, at the expense of populating the moving
orthogonal subspace { I

k+0) I.
A final remark for this section is the following.

The residual interaction representation (3.2) might
be considered as giving a description of the overall
evolution with two complementary sorts of motion,
namely the TDHF collective path "dragging" the
propagated state U(t)

I
4p). Expression (3.5) indeed

1s
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U(t) -1 i—f dr'V, „(r') where J=(J„J+,J } is the quasispin operator
whose components, related to the fermions through

-1—iO,~t, (3.12) J,= —, Z~ o.a ~ (4.2a)

relates the correction to a typical magnitude Q,
representing the residual strength over the time in-
terval of interest. If such a quantity 0„,exists for
times t- T~F, where TzF is a characteristic period
of the collective orbit, the correction is proportional
to TiiF/T, . This figure is, of course, much small-
er than unity if the residual interaction is weak
enough as compared to the mean field energy and
implies that the collective motion is fast, with
respect to the "collision time" T„,. In this sense,
this decomposition of the evolution could be regard-
ed as complementary to the usual adiabaticity as-
sumption that demands that the TDHF motion be
slow compared to the unperturbed, intrinsic particle
motion.

IV. TIME SCALES IN QUASISPIN SYSTEMS

In the spirit of the preceding section, we believe it
is stimulating to study in some detail the decompo-
sition of the full time evolution into TDHF and
complementary motions. We have found it useful
to work with a model that accomplishes a twofold
purpose. On one hand, it allows a fast classification
of relevant orders of magnitude of the admixture
rates

(j(r')
~

V,,(r')
~

k(r'))

of Eq. (3.9}. This fact permits a straightforward in-

terpretation of the calculated figures and illustrates
a more general method. On the other hand, an ap-
pealing, geometrical description of the competition
between both types of motion is possible, due to
some simple topological properties of compact Lie
groups.

We then consider one of the simplest, nontrivial

many-body Hamiltonians proposed by Lipkin,
Meshkov, and Glick. i It describes an assembly of
N fermions with two allowed states separated by a

jump of height e, that interact through a force able

to scatter two particles across the gap. The Hamil-
tonian is usually written as

(4.1)

Pqg'= +

J+ = g Op+Op
+

Jj

J =(J+)

(4.2b)

(4.2c)

generate an SU(2) algebra.
The completely symmetric representation

J=N/2 of the SU(2) group is the one of interest

provided that the unperturbed ground state belongs
to it. In such a case, rotations of the ground-state

~
J,=—J) give rise to the Slater determinants, that

are in one-to-one correspondence with the atomic
coherent states.

~

4(1 ) ) =R (7 )
~

—J)

where

(4.3)

(4.4)

and

R (r) =exp (rJ r~J ) —. (4 5)
tan

The parameter r=tan(8/2)e ''P may be represented

by points on a differentiable manifold, actually the
Bloch sphere, to which we assign the radius J equal
to the modulus of the vector

&~( )
~

J ~@( )&.

Any state
~

4) such that

I (r)
~
4(r) ) = —J

~

4(r) ) (4.6)

where I,(r) is the z component of the rotated
quasispin vector

I =R(r) JR '(r},
i.e.,

cannot be a Slater determinant; we will say that it
belongs to the "interior" of the sphere.

A Slater determinant fulfills the eigenvalue equa-
tion

I,
I+
I

1

1+ /r/'

Jg
J+
J

(4.7}
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The rotated Hamiltonian reads

H= e[(1—Irl')I, +r'I++rI ]

+ 2 [(r +r~ )(2I, —, I+I——,I I—+)+(r* r)—(I+I,+I,I+)1+ Ir I'

+(r r~)(—I I,+I,I )+ —,(1+x )I+ + —,(1+v )I ] 1+
(4.8)

The equation of motion for the TDHF Slater
determinant is simply [here X= V(N —1)le]

—T3

~=i@ ~+X
1+ lrl' (4.9)

while the Hartree-Pock Hamiltonian can be written,
as a function of the one-body generator I,

~HF QO J+QHF

(ii)
I
4~&=R(g)

I

—J&

is a Slater determinant or atomic coherent state for
some position g on the Bloch sphere. In this case,
the states

I
g(t) & are TDHF Slater determinants for

different intitial conditions of the system; in Eq.
(3.9), the summation

g lk(r')&&k(r')I

=Q0J+Q,I,+Q+I++Q I
where

)fC 3

Q+ —Q* =
1+ I.I' 1+ I.I'

(4.10)

(4.11)

ought to be replaced by

J dg
I

g(r') & &g(r') I,
(see Refs. 34 and 35). For a given initial condition

the complementary subspace in the moving
framework,

Furthermore, the energy contained in the HF trajec-
tory

I
0& =R(r(t))

I

—J &

1s

&OIA HFI0& J(QO fl

1+ lrl' .

2+x~
1+

I
r

I

'
.

(4.12)

The TDHF moving basis (see Sec. III) depends
upon the choice of the stationary basis

I
O'1 & and

the Lipkin model yields at least two possibilities:

(i) Ie, &=NJ(J+)&I —J&

is a Dicke state containing j 1 particle-1 hole excita-
tions. In this case,

[ lpr)&=UHF(r) lg& garo]

is not orthogonal to
I
r(t)&= IO&. Owing to this

feature inherent to coherent states we prefer to
select (i) as our TDHF moving basis.

At this point we notice that there exists an arbi-
trariness regarding an overall time dependent phase
for the TDHF state and the remaining vectors of
the moving basis (see Sec. III). More precisely,
since the one body density p is linear in I, (Ref. 7),
the TDHF equation of motion ip=[M~F, p] turn
into an equation of evolution for I, of the type

iI, =Q+I++Q I (4.14)

Thus, any term of the form Q,I, in (4.10) intro-
—iQ (j —J)t

duces a phase e * in each vector
I
j(t)&,

without modifying Eq. (4.14). We choose to lift
this arbitrariness requiring that the matrix elements

&
j'

I I+ I j & remain constants of the motion

'd, &J'II+ lj&=&j'I I+ —[&nF 1 I+]
I j&

I I (r) &
= UHF(r)

I @J &

=NJ [I+(r)]J
I
0(t) &; (4.13)

=0 (4.15)

The local variation of I+ is obtained with (4.7) and



26 QUASISPIN DYNAMICS BEYOND THE BLOCH SPHERE:. . . 2315

(4.9). From condition (4.15) together with (4.12) we
obtain (4.17)

The total Hamiltonian can then be written as

and

X
1 —I~I' (4.16)

=QHF I+ I a I,
where a denotes a 3)&3 matrix,

(4.18)

2hp

a= (2—N)ht h2

, (e+—ht)——,(N —1)(1—
I
r

I
)h)

(2—N)h i

—,(&—h))+ —,(N —1) (1—I~I )h) (4.19)

where

ho ——V
(I+ I~I')'

Q3

hg ——V
(1+

I
rl')'

y l+~g4
h2 ———

(I+
I ~l 2)2

The matrix elements of the residual interaction in the moving basis are

(k
I

V,~ lk&=ok +h [03 k—4Jk —k (N —1)k Irl ]-,
(i

I V,„I
@+1&=2kh', [(2J—k)(k+ I)]'~',

(k
I Vges I

k+2& =hp[(2J —k)(k +1)(2J—k —1)(k +2)]'

(4.20a)

(4.20b)

(4.20c)

(4.21a)

(4.21b)

(4.21c)

(0
I

V,
I

1& =0 . (4.22)

On the other hand, one can recognize that the ele-

ments in Eqs. (4.21) represent different characteris-
tic rates for the motion of the components of the
true wave function on the TDHF basis. Indeed,
deriving Eqs. (3.9) one gets

2

iaj(t)= g QJJ+paj+p(t),
p= —2

(4.23)

It is clear from these formulas that the TDHF state
is not connected with the "first excited" configura-
tion

I
1 & by the residual Hamiltonian

I

residual interaction between t;he HF independent
particles [see Eqs. (4.18)-(4.20)] and from the
motion of the selected basis. In particular, the am-
plitude of the TDHF determinant in the true state
evolves according to

iao(t) =Q02(t)a2(t) . (4.25)

np2 ——4vh2J =2VNh2 . (4.26)

The parameter QO2(t) then measures the rate of
departure of the exact wave function from the sur-
face of the Bloch sphere, to which

I
0(t) & belongs,

into its interior, Its value is

with

Q,;,+, =&J
I
v...lJ+p&. (4.24)

%e observe that the order of magnitude here is VN,
comparable to the characteristic frequency X of the
TDHF motion as seen in Eq. (4.9).

Equations (4.21) display the dependence between the
frequencies in (4.23) and the particle number. In
addition, it is worthwhile to recall that the time
dependence of QJ ~+~ is twofold, as seen in (4.24); it
arises from both the instantaneous definition of the

V. NUMERICAL EXAMPLES

We have performed the evaluation of the ampli-
tudes given in Eq. (3.9) for the Lipkin model as
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described in the previous section. The results
displayed in Figs. 1 to 3 correspond to an initial
condition

l apl =0.3, tpp=0 and to a mean-field
strength X= 1.5. The TDHF trajectory r(t) is ob-
tained after numerical integration of Eq. (4.9) and it
has been found that it is periodic with THF -4.2 in
units A'/e. The maximum

l
r

l

is about 0.58, while

y stays in the interval [0.17, —0.17].
In Fig. 1, we display the quantity

l
ap

l

=
l
(0

l
4)

l
as a function of telfi for N =6. The

solid line corresponds to the complete calculation,
while the dashed line gives a second-order correc-
tion to TDHF (

l
ap

l

=1 for all t) obtained as the
solution of the coupled equations

ap(t) = —iQp2(t)a2(t),

a2(t) = —»o(t)ao(t) —iQz2(t)a2(t)

(5.1a)

(5.1b)

ht «(1jvx)-THF .

One can easily see that the integrals of these equa-
tions reproduce those of the complete system (4.23)
to the order (At), i.e., for

Qo2Qpo(b. t) =
l
(2

l V„, l
0)ht

l
«1 .

Since the modulus of the quantity h2 given by Eq.
(4.20c) lies within the interval [—,, 1], as can be easi-

ly verified, we realize that the second-order correc-
tion is valid for

This is what we see in Fig. 1, that, in addition, gives
a quantitative estimate for ht of about THF/8.

The time interval displayed in this figure approx-
imately corresponds to a full period of the exact
motion and to about STHF. One can recognize
three different rates of variation of

l
ap l: (i) slow,

associated with the exact evolution (T,„„,-5THF );
(ii) medium, associated with the decay of

l
ap

l
to

about 5 to 6 percent of the TDHF value,

(Td„,„-THF) and; (iii) fast, related to the short-
time evolution governed by the second-order correc-
tion (T,h«-0. 1THF). As mentioned at the end of
Sec. IV, the latter measures the rate of departure of

l
%'(t) ) with respect to the TDHF state.
A second illustration of the above discussed

features of TDHF vs exact dynamics is given in
Fig. 2, the same as in Fig. 1, but for a system of
E= 10 fermions. The strength g, being the same as
in the preceding case, implies that we attend to the
same TDHF trajectory r(t) The d.ecay of the deter-
minant component of the exact wave function oc-
curs at a slower rate (Td„,„-2THF), while the
descriptions based on the second-order approxima-
tion are identical in both figures. A possible quanti-
tative explanation of the difference in decay trends,
related to the particle number, could be given as fol-
lows. We have seen that the short-time evolution of
the system is ruled by the second-order correction,
actually by the admixture of two particle-two hole

la, l'
CTION

0,5-

FIG. 1. The weight
l
ao

l

'=
l
(0

l
4) of the TDHF Slater determinant in the exact state vector as a function of time.

The solid and dashed lines correspond to the exact calculation and to the second order correction described in Sec. V,
respectively. The time unit is R/e and the particle number is N —6.
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la, l'

0.5

FIG. 2. The same as in Fig. 1, but for N =10particles.

te/0

excited configurations in the moving basis into the
initial Slater determinant. For even higher times,
the "first neighbors" are admitted in the dynamics
of a2(t) through the transition frequencies Qi 2+i
and their effect is propagated into the remaining
components. We notice from Eqs. (4.21) that in the
vicinity of k =0, we have Qkk+i-I/~N. From
Figs. 1 and 2 we find

decay ( ) 1.86

Td ,y(6) 1.38

while V 10/v 6=1.29. This estimate suggests that
indeed Tdec,„-VN, bringing some support to the
assertion that the drastic departure of the exact
wave function, with respect to the TDHF deter-
minant, is dominated by the excitation of one-
particle —one-hole configurations (we always think
of excitons in the moving frame). Such a trend
would imply

Tdecay
N~ao

It is interesting to study the time evolution of the
polarization vector (0'

~

I
~

'0). Indeed, in the
TDHF picture the tip of this vector always lies on
the Bloch sphere, i.e.,

f
(0 [ I

f
0)

f

=J=N/2 .

In other words, UHF(t) could be regarded as the
generator of tangent displacements. The exact time
evolution contains as well those radial displace-
ments directed towards the interior of the sphere,
generated by U(t). From the preceding discussions

we can learn that these radial displacements reflect
the fact that the exact wave function, in the course
of its evolution, admixes excitons of the moving
frame [notice that at any t, the states

~
j(t)) are

eigenstates of I„thus being instantaneously aligned
with the TDHF state vector]. In Fig. 3, we show
both the modulus

~
(%~ I ~4) (

and the relative
angle

P= tan-'((I„)'+ (I, )')'"/(I, ),
between (4

~

I
~
4) and (0

~

I
~
0). These calcula-

tions correspond to N =6. We can see that during
most of the time evolution over about five TDHF
periods, the expectation value of the quasispin vec-
tor lies on a shell of thickness unity below the sur-
face of the Bloch sphere. On the other hand, an in-

teresting observation is the following: We see from
Fig. 1 that after Td,y-5 8e/fi has e.lapsed we
reach a minimum of ~ao

~

. Now, at this time we
find

~
( I )

~

-2.96=98.6%%uoJ

and P-85'. We could possibly interpret that the
proximity of the exact state to the surface of the
Bloch sphere is an expression of its will to be a
Slater determinant, although not precisely the
TDHF one, to which it only assigns a weight of
about 0.05 and from which it further distinguishes
by orienting the quasispin vector in a quasiorthogo-
nal direction.

As a summary of the inspection of this figure, we
can say that, if one selects the parameter

~

('P
~

I ~%')
~

/J as a measure of the degree of
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FIG. 3. The modulus and one of the angles relative to the current TDHF position of the exact polarization ( 4'
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Details are the same as in Fig. 1.

"determinantality" of the exact wave function, it
would yield a reasonable 70% for most of the time
evolution. What this wave function rather dislikes
is the law of motion that the TDHF approach as-
signs to determinants, since over a time length of
the order of Td„,„,it builds up a 90' polarization in
the moving TDHF frame. The scale for this pro-
cess is proportional to V N /X, as compared to I/X
that is the typical TDHF period. As a consequence,
when 1V increases towards the thermodynamic limit,
it takes an infinite length of time to introduce a no-
ticeable phase shift' between exact and TDHF polar-
izations.

VI. SUMMARY

We have performed a comparison between TDHF
and exact dynamics for a two-level system with a
finite number of particles interacting via a two-body
monopole force (Lipkin model). The exact time
dependent wave function has been expanded as a su-
perposition of the TDHF Slater determinant and its
k-particle —k-hole excitations. The latter vectors
expand a subspace that changes in time in order to
keep orthogonality with respect to the former. The
trajectory in the mean field is the locus of a point
on the Bloch sphere, r(t) while the TDHF state vec-
tor is an atomic coherent state obtained, at any time
t, by a rotation R(r(t)) of the unperturbed quasispin
vector whose tip lies on the south pole. Assuming
that the initial state is a determinant or point on the
Bloch sphere, deviations of the Schrodinger state
vector from the predicted TDHF path are due to
the increasing admixture of moving excitons and,
from the geometrical point of view, provoke the

motion of the average quasispin vector towards the
interior of the sphere.

The evolution operator written as the product
UHF(t)U(t), where U(t) is the propagator in the
residual interaction representation, supports the
geometrical picture and makes room for a quantita-
tive estimate of the validity of the TDHF approach.
Indeed, U(t) does not differ significantly from the
identity if t «

~
Qp2

~

', where Qp2 measures the
rate of admixture of two-exciton components. Thus
the full motion is essentially a rotation on the Bloch
sphere and the polarization (4

~

I
~
4) of the exact

wave function remains constant at the initial value
(modulus J and direction rp). As the competition of
2-particle —2-hole moving excitations becomes im-
portant, the motion induced by U(t) contains a
large radial component that pulls the polarization
towards the interior of the sphere. For even larger
times, the total evolution consists of radial-plus-
tangential motion due to the residual interaction
and proceeding via U(t), times the pure tangential
HF displacement.

The residual interaction is responsible for two ef-
fects with different rates. The frequencies Qp2 Q2p
are related to the radial motion, as seen in Figs. 1

and 3, where one can appreciate the decreasing
trend of

~
( I )

~
during the interval of validity of

the second-order correction. By contrast, the fre-
quencies Qi2 (in general, QJ I+i) are associated with
rotations of the polarization vector, taking place at
a rate X/v N and introducing a phase shift P be-
tween the exact and the TDHF quasipins. We pose
special emphasis upon this issue since it reflects a
general property of exact dynamics, as related to
collective motion in the mean field. The Lipkin
model is especially adequate to exhibit these two
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well defined, different ways of departure of full
time evolution with respect to TDHF motion,
namely, (i) the determinant decay as a consequence
of the so:ond-order approximation, plus (ii), the
building up of an angular correlation that does not
exclude the possibility of determinant regeneration.

We have scen as well that the full wave function
differs dramatically from the TDHF state vector
after a typical oscillation period of the mean field,
TzF. This time could be regarded as an upper
bound for the validity of a TDHF description of the
motion of quasispin systems. A lower bound is
given by the typical time for two-exciton admixture,

~
QM

~

'. This agrees with the estimate of the life-
time of a Slater determinant presented by Lichtner
and Griffin. The model discussed here possesses a
peculiarity, namely that upper and lower bounds
coincide. Consequently, severe doubts ought to be
raised regarding the use of the Lipkin model for
TDHF calculations. In more realistic cases, it
would be beneficial to use a previous estimate of the
leading admixture rate, before involving oneself in
the use of Slater determinant dynamics.

We have illustrated the behavior of the exact po-
larization and showed that over a period of full
motion, its modulus stays mostly above 70% of the
Slater determinant parameter, while it can point 90'
away from the TDHF trajectory. The fact that the
polarization vector lies within a moderately thin
shell near the surface of the Bloch sphere suggests

that the true wave function is close to a deter-
minant. Now, among the possible orientations of
determinants the TDHF trajectory r(t) is not the
inost favored. One is tempted to think of alterna-
tives to the TDHF approximation that coincide in
the determinantal picture but differ in the evolution
law. In this spirit, several possibilities could be
enumerated, whose deeper analysis we postpone for
a later work in view of the increasing numerical
complexity: (i) the multiconfigurational TDHF ap-
proximation, that substitutes the exact wave func-
tion by a linear superposition of determinants, and
(ii) the maximum overlap criterium to select a
determinant, that has been proven to be identical to
the variational criterium in the static case, if the
bare interaction is replaced by a reaction matrix.
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