PHYSICAL REVIEW C

VOLUME 26, NUMBER 5

Coupled adiabatic approximation in the three-body problem

J. L. Ballot and M. Fabre de la Ripelle
Division de Physique Théorique, Institut de Physique Nucléaire, F-91406 Orsay Cedex, France

J. S. Levinger
Department of Physics, Rensselaer Polytechnic Institute, Troy, New York 12181
(Received 10 February 1982)

In the framework of the hyperspherical formalism, we present a study of the coupled
adiabatic approximation for the case of three nucleons interacting via central spin-
dependent two-body potentials. We analyze the convergence of the ground state eigen-
values versus the grand orbital quantum number (2K) and compare the results to that of
the coupled equations. We also compare with two simpler but less accurate approxima-
tions: the uncoupled adiabatic approximation and the extreme adiabatic approximation.
The former provides an upper and the latter provides a lower bound to the ground state en-
ergy.

NUCLEAR STRUCTURE Few body bound states, reduction of
hyperspherical equations applied to triton, quantum few-body problem.
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I. INTRODUCTION

In recent years the ground state of the three nu-
cleon system has been analyzed by many authors
using different methods which were stimulated by
the feasibility of solving numerically, in various
ways, the few particle equations. Among these ap-
proaches we may distinguish between the Faddeev
integral equation methods' ~® and the Schrédinger
variational methods’~!”7 which have yielded in the
last decade successful calculations in the bound
state problem of the *He and *H nuclei.

In this work we use an adiabatic approximation,
proposed by one of us ten years ago,'8 to find the
triton binding energy and wave function for central
two-body potentials. The idea of the adiabatic ap-
proximation was introduced in the past by Born and
Oppenheimer to solve the bound of electrons and
nuclei in a diatomic molecule. That is, the electron-
ic wave function and eigenvalue U are calculated
for frozen internuclear coordinate R. This eigen-
value U(R) is then used to determine the vibration-
al and rotational level of the molecule. This ex-
treme adiabatic approximation was later proved by
Born!®? and the reader can find a discussion of
these approximations by Kolos.?!

Recently, this method was used by authors treat-
ing two-electron and three-electron problems with
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hyperspherical harmonic expansions.”>~2¢ The ex-
treme adiabatic approximation (EAA) was used
both for the ground state and for the continuum
state. More recently, the extreme adiabatic approxi-
mation and the uncoupled adiabatic approximation
(UAA) were used?”?® to find numerical values for
the triton binding energy for different choices of a
central two body potential and the accuracy was
judged by comparison with the corresponding value
of the triton binding energy calculated as the solu-
tion of coupled differential equations (CE) (Refs. 10
and 12).

In Sec. II we present the mathematical develop-
ment of the coupled adiabatic approximation and
demonstrate the basic inequalities

E(EAA)<E(CE)<E(CAA)<E(UAA),

where the binding energies for fixed grand orbital
quantum number (2K) are those in the EAA, the
coupled differential equation (which gives the exact
result for a given value of K), the coupled adiabatic
approximation (CAA), and the UAA, respectively.
In Sec. III we apply our three forms of the adia-
batic approximation to find the triton energy and
wave function for five different two-body poten-
tials. The accuracy of the approximation is found
by comparison with the results of the coupled dif-
ferential equations'? for the same two-body poten-
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tial.

In the last section we estimate accuracy with the
coupled adiabatic approximation and also with the
EAA and UAA. We discuss possible applications
of these adiabatic approximations to several other
problems.

h2 d?

s —— +(LHQ)—(D—1)(D -3)/4)r~?

II. THE ADIABATIC APPROXIMATION

The Schrodinger equation for a wave function
W(r,Q)=r~P=D"2(r,Q)

in hyperspherical coordinates is as follows:

u(r,Q)=0. (2.1

D =3(4 —1) is the space dimensionality for a system of 4 particles after elimination of the center of mass X.
L*(Q) is the grand orbital operator while ¥ (r,Q) is the potential.

The idea leading to the adiabatic approximation is the following. Instead of using the hyperspherical har-
monic (h.h.) basis in order to solve the Schrodinger equation one chooses the basis B (7,{2). This set consists

of the eigenfunctions of the angular operator

2
{—%[LZ(Q)—(D —1)(D —=3)/41r 24+ V(r,Q)

where 7 is a parameter.

The eigenvector B, (r,Q) is for the eigenpotential
U,(r). In using the complete B, basis for the ex-
pansion of the wave function U (r,Q), the equations
obtained in projecting (2.1) on this basis become
coupled by the first and second derivatives of
B, (r,Q) with respect to . When the variation of
B, with r is small we expect to generate nearly
decoupled equations which can be easily solved us-
ing the eigenpotential U, (r).

For improving the solution in which only one
equation is taken into account one uses the concept
of optimal subset; i.e.,, one assumes that only the
equations directly coupled to the main equation
contribute significantly to the solution.

Let us write Eq. (2.1) using

u(r,Q)=B,(r,Q)u,(r),

'ﬁ2d2

i +Up(r)—E

B (r,Q)u;(r)=0

(2.3)
where

[ |By(r,0)|2d0=1. 2.4)

ui(r)+ 2‘, U (rud(r)=0
j=0

7
m

_d_
dr?

where

ﬁZ

mr?

L¥Q)—

Ui (r)= <B(;f)‘— 2

(D —1)(D —3) VG,

B, (r,Q)=U,(r)B,(r,Q) , (2.2)

[
Taking the derivatives of B, (r,{}) one generates two
new orthogonal elements B} and B{?:

dB?» =C, B”’

dr (2.5)
d’B, dc,

dr? =C1C233~2)+-dr By’ —C\’B, ,

where the normalization constants are chosen in
such a way that

(B (r,0) | BY(r,0)) =8 ,

BY'=B, . (2.6)

The bracket means an integration over the surface
of the unit sphere in the D dimensional space as in
Eq. (2.4).

One expands the wave function according to

2 .
w(r’Q)zr—(D—l)/Z EB&I)(',’Q)”(U(’,) 2.7
i=0

The Schrodinger equation (2.1) is transformed into
a set of three coupled equations

(2.8)

(2.9

-

#
>+ Wil sij + —r;P}"
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FIG. 1. Comparison of the eigenpotentials | Uy(r)|
determined from the two-body interactions: Volkov
(continuous line), G2 (dashed line), S4 (dotted line), and
S 3 (dotted-dashed line).

and W4 is given in terms of the normalization
functions C;(r)

ﬁZ
A m

1 2
W —wO L w2

while P}” are the following differential operators:

PO =P =2y T2y

2 @
C% Wy =;C2 s

(2.10)

P‘2”=—P‘12)=21/—C—2§;\/5_ , 2.11)

PO=pP=_c,C,.

The elements B(r,Q) orthogonal to B’
(i =0,1,2) do not give an equation coupled to the

by (a)
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FIG. 2. Comparison of (a) the eigenfunctions by (r)
and b"(r) determined from two-body interactions: Vol-
kov (continuous line), G2 (dashed line), and S 3 (dotted-
dashed line), and of (b) the eigenfunction b(r) deter-
mined from two-body potentials: Volkov (continuous
line), G2 (dashed line), S4 (dotted line), and S 3 (dotted-
dashed line).

main (i =0) equation and are neglected in the op-
timal subset approximation.

The B constitute the optimal adiabatic subset.
The main equation without coupling is called the
uncoupled adiabatic approximation (UAA)

# d*

_;E‘?+U‘,~°’°)(r)—E ud(r)=0. (2.12)
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TABLE I. Convergence of the triton binding energy in
terms of K for the Volkov potential for each adiabatic ap-
proximation EAA, UAA, CAA, and the corresponding
coupled equation (CE) results.

Volkov potential (Ref. 31)

K EAA UAA CAA CE
2 8.190 8.036 8.074 8.079
3 8.475 8.278 8.330 8.330
4 8.524 8.324 8.375 8.376
5 8.568 8.363 8.414 8.416
6 8.598 8.389 8.440 8.443
7 8.607 8.397 8.448 8.451
8 8.615 8.402 8.453 8.457
9 8.619 8.406 8.457 8.461

10 8.621 8.408 8.458 8.463

11 8.623 8.4086 8.4591 8.464

12 8.624 8.4092 8.4597 8.465

Here

(0,0 7
Uy’ (r)=Uk(r)+Tn—C, (r) . (2.13)

The neglect of C;? in (2.13) leads to the extreme
adiabatic approximation (EAA). The extreme adia-
batic approximation provides a lower limit to the
ground state binding energy, as shown below.

Let us assume that the exact solution of (2.1) is
given by

ux(r,Q)=Bx(r,Q)ux(r) .

The projection of the Schrodinger equation on any
B(r,Q) orthogonal to By(r,()) disappears and the
Schrddinger equation becomes

TABLE II. Convergence of the triton binding energy
in terms of K for the Afnan-Tang (S3) potential for
each adiabatic approximation EAA, UAA, CAA, and
the corresponding coupled equation (CE) results.

S'3 potential (Ref. 33)

K EAA UAA CAA CE
2 2.396 2.050 2.112 2.12
3 4.976 4.480 4.593 4.594
4 5.602 5.072 5.191 5.196
5 6.252 5.655 5.785 5.775
6 6.733 6.076 6.211 6.208
7 6.899 6.219 6.355 6.355
8 7.033 6.334 6.471 6.470
9 7.130 6.417 6.554 6.557

10 7.172 6.453 6.589 6.592

11 7.203 6.480 6.615 6.620

12 7.226 6.501 6.634 6.640

TABLE III. Convergence of the triton binding ener-
gy in terms of K for the Eikemeier-Hakenbroich (S4)
potential for each adiabatic approximation EAA, UAA,
CAA, and the corresponding coupled equation (CE) re-
sults.

S4 potential (Ref. 32)

K EAA UAA CAA CE
0 4.596 4.596 4.596 3.667
2 4.919 4.697 4.738 4.741
3 6.106 5.842 5.891 5.891
4 6.400 6.133 6.181 6.182
5 6.722 6.443 6.493 6.490
6 6.980 6.686 6.736 6.735
7 7.075 6.773 6.824 6.824
8 7.158 6.846 6.899 6.898
9 7.222 6.902 6.955 6.957

10 7.251 6.927 6.980 6.982

11 7.275 6.946 7.000 7.002

12 7.293 6.961 7.015 7.018

# d

ﬁZ
m ﬁ—*— Ux(r)+ —nTCXZ(r)_EX uX(r)=O ’
where Uy(r) is the matrix element (2.9) in which
A=X for i =j =0, while Cy is taken from (2.5).
Let us label A=0 the ground state.

The inequality Uy(r) < Ux(r) results from the
property that By(r,Q) is associated with the lowest
eigenpotential Uy(7).

Therefore, the extreme adiabatic equation

# d*

TABLE 1IV. Convergence of the triton binding energy
in terms of K for the Bell-Delves (BD) potential for each
adiabatic approximation EAA, UAA, and the corre-
sponding coupled equation (CE) results.

Bell-Delves Potential (Ref. 34)

K EAA UAA CE
0 2.541
2 3.148 3.137 3.140
3 3.559 3.539 3.542
4 3.652 3.629 3.633
5 3.739 3.713 3.717
6 3.808 3.780 3.785
7 3.835 3.806 3.810
8 3.858 3.829 3.833
9 3.878 3.848 3.852

10 3.888 3.857 3.862

11 3.897 3.865 3.871

12 3.905 3.873 3.878
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TABLE V. Convergence of the triton binding energy
in terms of K for the G2 potential for each adiabatic
approximation EAA, UAA, CAA, and the correspond-
ing coupled equation (CE) results compared to the inter-
polated formula values.

G2 potential (Ref. 12)

Interpolated
K EAA UAA CAA CE (formula X)
0
2
3 3098 2303 2502 2.504 2.46
4 4864 3.870 4.116 4.125 4.07
5 6517 5293 5572 5.589 5.54
6 7.618 6254 6534  6.560 6.52
7 7976 6.564 6.844  6.873 6.846
8 8253 6.808 7.084 7.117 7.097
9 8447 6982 7253 7290 7.275
10 8527 7.056 7.323 17.362 7.35
11 8.588  7.113 7377 7417 7.408
13 8633 7.156 7416  7.458 7.451

provides a lower limit to the binding energy. We
have the following sequence:

EE <EX <Ec <EU 5

where the ground state binding energies E refer,
|

#
—Lx(Lg+Dr = Uy(r) b\ (1) +

K
K'=0

Lg=2K+(D —3)/2 for bosons ground state and
D =6 for the triton. UZ (r) is the potential matrix

UE (1) =(P(Q) | V(r,Q) | P (Q))
=33 (—DX(K|K" | K )Vogr(r)
ra

where V,g~(r) are the multipole of the potential (see
Ref. 17).

According to Egs. (2.4) and (2.5) the by} (r) and
the normalization constants are given by

dbQ)(r)
bl((],i.(r):Cl_l I:;i d )

(3.4)
d? 1 dC; ¢

dr® C, dr dr

b () =(C,Cy)!

+ C12 b]((?)A(r) 3

S UK b

respectively, to the extreme adiabatic (E), exact (X),
coupled adiabatic (C), and uncoupled adiabatic (U)
equations. Of course the inequalities for E- and
Ey follow immediately from the variational princi-
ple.

1II. DETERMINATION OF
THE EIGENBASIS B, (r,Q)

Let us assume that we have to solve a problem in
which the wave function is expanded on the h.h.
basis Pyx(2):

Kmax

u(r,Q)= z PZK(Q)uzx(r) , (3.1)
K =0

where K varies from zero to K,y
Equation (2.8) is solved in using the same trun-
cated h.h. basis for the expansion of BY:

Kmax .
BP(r,0)=3 b{, (nNPy(Q) . 3.2)
K=0

The set b}(?i(r) is a solution of the system of
linear equations

A (r)=0. (3.3)

with

Ebl(é)kbl(fl)}» = 5ij ’
K

2
d
012=§ ;b,‘éfhr)} ,
d? 1 dC; 4
C,C,P= a2 frta L ce
[€iC] % 2 C ar O

2
X b}é};(r)] .

Using the expansion (3.2) the bracket in Eq. (2.9)
becomes
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LZ(Q)_(_D_#Q r“2+V(r,Q,) B§{)>
- - 2 ’
=2b,(<§a(r)b¥fk(r){:rzLK(LK+1)8KKr+U,’§(r) . (3.5
KK’

IV. NUMERICAL RESULTS

In order to get some idea of how the results of
the different adiabatic approximations should look
with different kinds of interactions, we perform cal-
culations on the triton binding energy with five cen-
tral two-body potentials having typical behavior:
Volkov (V) (Ref. 31), Afnan-Tang (S3) (Ref. 33),
Eikemeier-Hachenbroich (S'4) (Ref. 32), Bell-Delves
(BD) (Ref. 34), and G2 (Ref. 12).

For a given potential we calculate the matrix ele-
ments of the bracket of formula (3.3) which reads:

m

7

X 3 (— 1K (K | K" [K'YVypn(F)
2

M]I((’(r)z (2K+;‘)(2K+%)r—2+3

where V,g+(r) and (K | K" |K') stand for the mul-
tipoles of the potential and the three-body hyper-

04+

02}

01}

0.5 1 2 345 r(fm)

01

FIG. 3. Shape of the normalization function C,X(r)
for three potentials: Volkov (continuous line), G2
(dashed line), and S'3 (dotted-dashed line).

spherical coefficients,!” respectively. We diagonal-
ize the matrix ME (r) for every value of . To con-
struct the eigenpotential, we select after the diago-
nalization at the lowest r value 7y, and among the
eigenvectors b$) (o), that one which is completely
decoupled and characterized by the unity for
b{(ry) and zero for all the b\ (#) with K5£0. We
select the corresponding eigenvalue which is the
value of our eigenpotential at r,. Then for all the
next steps in » we have to follow this eigenvalue by
continuity and select its corresponding eigenvector.
Indeed we have to be careful with the crossing of
the eigenvalues in the successive diagonalizations,
also the choice at each r step of the lowest eigen-
value may be dangerous for instance if we introduce
the mixed symmetry state with the G 2 potential.

If we compare the selected eigenpotentials U, (r)
in accordance with the analyzed potential, one can
see in Fig. 1, that eigenpotentials U, (r) have very
different asymptotic behavior according to the
hardness of the interaction, but all of them go
through zero near r =1.5 fm.

2
(C,C)

0.5t

-

0. 2 Sl N Ll

01 s 1 2 345 r(fm)

FIG. 4. Shape of the normalization function [C,C,]*
for three potentials: Volkov (continuous line), G2
(dashed line), and S'3 (dotted-dashed line).
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FIG. 5. The *H charge form factor calculated with
three wave functions CE (continuous line), CAA (dashed
line), and UAA (dotted line) determined from the G2
potential.

The set of eigenfunctions b’} () shows structure
at short distance and has different straight asymp-
totes for large  values as shown in Figs. 2(a) and
2(b). The determination of the basis by (r) and
b,(g;e(r) is done numerically with a five points dif-
ferentiation formula from the basis b\%(r) accord-
ing to the Egs. (3.4). At short distance up to r =0.8
fm we use a Stoer-Padé extrapolation and interpola-

tion of the basis b,?;e(r) and b (r) to remove spuri-

ous numerical oscillations. Then each basis, by} (r)
and b3 (r), is reorthogonalized to obtain accurate
orthogonality relations [Eq. (2.6)]. These two last
procedures are necessary to minimize the errors in
the determination of the coupling amplitude
Ust?(r) [Eq. (2.9)].

In Tables I—V we give the results obtained for
the binding energy of the triton for each adiabatic
approximation EAA, UAA, and CAA, the accura-

TABLE VII. Percentage of the three partial waves
[Eq. (2.7)] in the CAA.

P(ud P(u)) P(u?)

V 99.954 0.039 0.007
S3 99.951 0.037 0.011
S4 99.962 0.032 0.006
G2 99.919 0.062 0.018

cy of which is found by comparison with the cou-
pled equation (CE) results for the same two-body
potential. The UAA results agree with independent
calculations by Das et al.?”” The extreme adiabatic
approximation gives an energy below that of the
coupled equations because in the EAA one defines a
lower limit of the eigenpotential. The energy differ-
ence between the EAA and the UAA depends on
the hardness of the interaction and it increases with
the strength of the core. The UAA effective poten-
tial differs from the EAA one by the normalization
function C\X(r). This function contains all the in-
formation about the variation of the eigenfunction
b)(r) and its amplitude increases with the hard-
ness of the interaction. In Fig. 3 we show the shape
of CXr) for three different potentials. The great
difference between the amplitude of C,%(r) for Vol-
kov and G2 potentials accounts for the energy
difference between the EAA and UAA of these two
potentials. This energy gap is characteristic of the
hardness of the interaction. Using the value of this
gap it is possible to estimate the CE energy with the
very simple rule

Ece)= Ewaa)+0.20 [Egan)—Eyan)](X) .

The normalization function [C;C,]? has a shape
similar to that of C,%(r) (Fig. 4) and a more impor-
tant amplitude; however, its role in the coupled
equations (1.8) is decreased by the presence of the
coupling interactions P;j(r). The uncoupled and the
coupled adiabatic approximation both give energies
above the coupled equation energy because we are
using trial functions with the complete Hamiltoni-
an. The CAA energy is lower than UAA since
CAA trial function has greater flexibility. Lower
limits that are reasonably close to the exact energy
are hard to find in quantum mechanics. For the tri-
ton problem we do have the use of the Hall-Post
lower bound. But even for a simple two body po-
tential, Humberston?’ finds that the Hall-Post lower
bound falls 1 MeV below the triton energy. Howev-
er, Brady3° finds that the Hall-Post lower bound
misses by tens or even hundreds of MeV for more
realistic potentials. The EAA should prove useful
both for its simplicity and for providing a lower
bound relatively close to the true energy.

In Table VI we compare the percentages of the
partial waves obtained for the five potentials in the
uncoupled and coupled adiabatic approximation
compared to the coupled equation ones. We see sig-
nificant differences among the percentages for the
first partial waves despite the fact that all the ener-
gies are very close. This difference is due to a slight
change of the partial wave amplitude but not a
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change of the shape, then it does not modify the
shape of the charge form factor F;,(g?) (Fig. 5).

In Table VII we give, for comparison, the percen-
tage of the three partial waves occurring in the ex-
pansion (2.7). As expected, the most important is
the first wave B’ (r), which accounts for more
than 99.9% in the wave function, the amplitude of
the two others BS"(r) and B2 (r) increasing with
the hardness of the interaction S 3 and G 2.

V. SUMMARY AND OUTLOOK

The ground state of three particles interacting
with central forces is susceptible to be found with a

2309

discrepancy about 0.5% by means of the coupled
adiabatic approximation. The amount of computer
time used is rather modest and it is reasonable to
view realistic calculations with this method, or at
least to use the coupled adiabatic wave function as a
trial wave function for the coupled differential
equations. At present an extension of the CAA
method using a higher number of coupled equations
is not interesting, because of the complicated nature
of coupling amplitudes. Of course the CAA is
quite general and can be applied to a large variety
of problems using coupled differential equations in
single variable.
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