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Contribution of three-body force to the trinucleon problem
by an essentially exact calculation
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The hyperspherical harmonic method has been used to calculate the effect of two-pion
exchange three-body force (Fujita-Miyazawa type) on trinucleon systems, with the N-N
Afnan-Tang S3 potential. The Coulomb force and three-body force have been taken into
account nonperturbatively. Simplification in the numerical calculation has been achieved
through the use of an adiabatic approximation in order to decouple the system of differen-
tial equations. Binding energy, charge form factor, and pointlike proton density of both H
and He have been calculated for various values of the cutoff parameter in the three-body
force. Results indicate that the inclusion of the three-body force improves agreement with
experiment. An interesting feature is the possible appearance of nodes near origin in the
hyper-radial wave function.

NUCLEAR STRUCTURE Trinucleon systems; three-body force;
bound states of H and He using hyperspherical harmonic method; adi-

abatic approximation; charge form factors.

I. INTRODUCTION

The progress in the numerical approach enabling
one to solve the few-body problem in physics has
induced physicists to attempt to understand the
data obtained from He and H. The technical part
of the problem has now been well established with
accurate methods such as the hyperspherical har-
monic (HH) method' (applied mostly for bound
systems) and Faddeev equations (a correlation
between the two exists ) at least, to treat the dom-
inant nonrelativistic part of the two-body forces
(2BF). However, even with the advance in these
studies, standard information, such as binding ener-

gies, charge form factors, etc. , cannot be satisfac-
torily obtained in terms of realistic 2BF. Hence, the
problem still resides in the understanding of the
mechanism responsible for the binding of such
physical systems.

Calculations for trinucleon systems using stand-
ard 2BF [for example, Reid soft core (RSC) poten-
tial] have been performed by many authors using
Faddeev equations ' ' or the HH ap-
proach. ' ' ' The results quoted by various au-
thors agree within reasonable limits. The triton is
underbound by about 1.3+0.3 MeV according to the
investigated two-body potentials while the charge
form factor F,h(q) reported in these calculations

shows a striking disagreement with the experiment:
The first diffraction minimum is around q;„=16
fm compared to an experimental value of
q;„=11.8 fm . Also the first maximum of

~
F,h(q)

~

(henceforth called F,„) is ( 1.0X 10
whereas the experimental value for 3He is about
6.0)&10 . Sick et al. have shown that the calcu-
lated pointlike proton density p(r) in He should
present a central depression in order to reproduce
the experimental values of both the position of the
first diffraction minimum and the value of Ii,„.
In fact, no central depression is obtained from most
of the calculations using realistic 2BF. ' ' ' But
Sick and collaborators claim that various effects
such as relativistic corrections, exchange currents,
and finite sizes of the nucleons were taken into ac-
count in their calculations of the proton density.

The discrepancy between the experimental bind-
ing energy (BE) and theoretical calculations with
realistic 2BF (Ref. 21) seems to indicate that at least
something is missing in the interaction. Ballot and
Fabre de la Ripelle pointed out that inclusion of
two-pion exchange (TPE) three-body force (3BF)
might cut out the Gordian knot by introducing
three-body correlation, such that the central depres-
sion in the pointlike proton density can, in princi-
ple, be explained. However, that calculation was in-
complete, since the full effect of the 3BF was not
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taken correctly into account. Workers in this field
have recently focused their attention toward the in-

vestigation of the importance of 3BF and other ef-
fects in the elucidation of this thus far endless prob-
lem. Sato et al. performed variational calcula-
tions including TPE-3BF and obtained an enhance-
ment of BE by 1.16—1.50 MeV (depending on the
choice of 2BF) for H and R,=1.323 fm (the ex-

perimental value is 1.68 fm). Yang also per-
formed a variational calculation including TPE-
3BF and reported an increase of 2.32 MeV in BE of
H and R,= 1.6 fm. None of these calculations

attempted to calculate either E,b(q) or the pointlike
proton density. Hadjimichael, on the other hand,
used impulse approximation to investigate various
effects, including b, resonance on F,),(q) (no calcula-
tion of BE). He reported that the contribution com-

ing only from 6 resonance is too small to reproduce
the experimental data and that the contribution of
other effects [meson exchange currents (MEC),
recoil] is necessary in order that E,s(q) become
comparable with experimental data. Recently No-

gami et al. performed a model and variational

calculation to estimate the effect of TPE-3BF on

He and He. They calculated the pointlike proton
density directly from a simple trial function and
showed that a central depression indeed yielded re-

sults, but only about one third of that reported by
McCarthy et al. for the theoretically estimated
strength of TPE-3BF. Two more works using Fad-
deev equations by Hajduk et al. and Torre
et al. , which include contributions from the
nucleon resonance and 3BF, have been reported.
The magnitudes of E,„and of the central depres-
sion in p(r) obtained by Hadjimichael with the in-

clusion of MEC and recoil effects are larger than
those reported by Hajduk ' and Haftel and
Kloet. (This last reference includes 3BF generated

by an ad hoc unitary transformation. )

Our goal in this work is to include the TPE-3BF
using a basically complete and accurate method of
calculation for trinucleon systems viz. , the HH
method, in which inclusion of 3BF and Coulomb
force do not alter the structure of the equations.
The HH method transforms the Schrodinger equa-
tion in a system of coupled differential equations,
which can be solved to a desired degree of precision

numerically. However, due to practical limits of
available computer time and memory, we have
adopted the adiabatic approximation (AA) to
decouple the system Earlier investigations ' have
shown that indeed AA is applicable to soft core po-
tentials with an accuracy of about 1 —2%. Com-
puter limitations have also restricted us to the total-
ly symmetric S state of the trinucleon system,
which is responsible for about 90% of the trinu-
cleon ground state.

Since there are many versions of 3BF, as well as
of 2BF, some ambiguity in the results is expected.
In this work we use a 3BF which results from the
contribution of the lowest order Feynman diagram
of the TPE. The effect of higher order dia-

grams, corresponding to still shorter range forces,
should be, to some extent, shadowed by the two-

body repulsive core in nuclei. Among the various
above mentioned versions ' of 3BF, here the clas-
sic Fujita and Miyazawa interaction is used.

In Sec. II the theoretical calculations are ex-
plained in five subsections. Some formulas are de-

rived in the Appendix. In Sec. III the results are
discussed and finally, in Sec. IV, we summarize and
conclusions are drawn.

II. THE THEORY

This section is divided into four subsections de-

voted to: (A) the three-body force; (B) the theoreti-

cal method to handle the Schrodinger equation; (C)
calculation of needed matrix elements; (D) the cal-

culation of the charge form factor.

A. The three-body force

The Fujita-Miyazawa ' force consists of two
terms 8', and 8&, which are generated by the s and

p waves of virtual pions, respectively. The effect of
the 8', component, which is drastically reduced by
the o.-meson exchange, will not be considered
here. The 8~ component refers to the Feynman di-

agram in which the intermediate state of the k nu-

cleon (the others are i and j nucleons) is a 6 reso-

nance, and is given by:

8'p(k) =— Cp
9 [5(~; rk)(rk rj)+3(rj rk)(rk ~;.)]X[s(kU(2)(xj )+(~; ~k)U(o)(x; )].

8p4

X[Sg~U(2)(x;)+(ok cr~)U(p)(x;)]+(i~j ),
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where B. The hyperspherica1 harmonic approach

S(J.——3( o; xk )( o J
.xk ) —o; a J . (2)

The 0's and r 's are the usual Pauli operators for
spin and isospin, respectively, and

e
—pz

U(p)(x) =
PX

(3)

In this work we use a HH expansion of the wave
function for solving the nonrelativistic Schrodinger
equation for three nucleons of mass m

2

+~ )+V)z3(xi y;) +(x~ y;)
m l

=EARP( xg, y;), (5)

3 3
U(z)(x) = 1+ +

Izx ((((x )

8
—PZ

PX
written in terms of the Jacobi coordinates (not
unique)

k =1,2, 3 cyclic

X U(z)(x;)U(z)(x, ), (4)

where Ok is the angle between the directions xj and
x;. Since U(z)(x) is a positive, monotonically de-

creasing function, V' ' is negative for the equilateral
triangle configuration and positive for the aligned

configuration. Thus the triangle configuration is
favored compared to the aligned configuration.
This might generate a central depression in the pro-
ton density if the 3BF is strong enough.

where xk —= r,z =r; —rj (cyclic permutations). C~ is
a coupling coefficient ranging in the interval
0.46—1.3 MeV, according to the mNA coupling
constants used in the calculations.

Equation (1) contains three different kinds of
terms: (i) the product of two central potentials; (ii)
the product of one central and one tensor potential;
(iii) the product of two tensor potentials. The first
two cases do not contribute to the space completely
symmetrical S state of the trinucleon bound state
used in our calculation. The effective 3BF acting
on the S state is given by

V' '—= g Wz(k)= g Cz(3cos 8k —1)

xt' rJ rk ~

2 rj+rk
y(= ~3

(6)

where

where r; are the particle coordinates while Vl23 is
the interaction between the three nucleons. This in-
teraction consists of a sum of a two-body force
(2BF), V' ' (which is the sum of three pairwise in-

teractions), and a three-body force (3BF), V' ' (con-
stituted by three terms, each representing a 6 reso-
nance on the kth nucleon line, for k=1, 2, 3).
Equation (6) defines three equivalent sets of coordi-
nates (i= 1, 2, 3) for the description of the three-

body problem. Equation (5) can be solved using, for
example, the hyperspherical harmonic approach'
in which the wave function 4 is expanded in a com-
plete orthonormal set of hyperspherical functions in
the following way:

q'(x; y;)=r '"g~'x, ~.(r»zx, .(x y" 4»
lCa;

(7)

r =x, +y, =xz +yz x3 +y3, x;=——rcos(II;, y;=r sin(I);, (0&(();&ir/2) .

The natations x; and y; mean x;—=(8„,$„), y; =—(8~,$~), respectively. The complete orthonormal sets

[9'z)r ~ (0;)] are the angular part of homogeneous harmonic polynomials of degree 2K (K=O, 1, 2,. . ., 00) in

the six-dimensional space. The label Ka; stands for the five quantum numbers related to the five degrees of
freedom contained in 0;. Substitution of Eq. (7) inta Eq. (5) leads to a system of coupled differential equa-
tions

d' ~)r(~x + 1)
z+ z +k 4x (r)+ g (K.a;

~

u ~K'a )4, , (r)=0,
dl' E'a

where W)r ——K+ —,, k = —(m lk )E (E &0 for baund states), u =(mls ) Viz3, and (u ) is integrated over the
five angles, resulting in a function of r. The elements of the angular basis with total angular momentum
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(L,M) related to the angular coordinates (x;,y;, P;}are

I I„
&2K~(AI)= g (I„.l.tn„, tn», ILM)YI ~ (X, )Y, ~ (p, )'"P,K'(pI},

I t
mx. my

I I

where

1/2
4(K+1)n!(n+1„+1„+1)! („+( /), +( /))

(cospI ) '(sin/I )
' XP„' '

(cos2$; ),
I'(n +1„+—,)r(n+1» + —, ).

(10)

where n is the integer —, (2E —1„—1» ) and P„"b'(x)
is the usual Jacobi polynomial. One should notice
that %2K .(0;) constitute, for any i, an infinite and

complete set of orthonormal functions. Since the
hyperspherical basis %2K is complete for any i,
one can choose this index arbitrarily. For the sake
of simplicity, we will drop from now on the sub-
scripts in the quantum numbers and variables.
When v contains spin, isospin, etc., and operators,
the associated quantum numbers are included into
the u label and in the sum in the matrix elements of
Eq. (8).

C. Matrix elements
of the interactions

In this paper we restrict ourselves to the space
symmetrical S state (for which L =M =0

—1„=1»=1; Ia I ~I0, 0, 1, 1I), and we select the
optimal subset for further reducing the number of
significant coupled equations. Let A (s, t) be the ful-

ly antisymmetric spin-isospin state for total spin
(isospin) S=—, (T= —,). The wave function of the

space completely symmetric S state is given by

%(x,y)=A(s, t)r g +2K(Q)&&K(r),
K=O

(1 la)

where the normalized symmetric HH are

+2K(+) C2K g tSQ P2K(0)]&21+1
I =O, even

X +2K 0 0 I I(+) ~ (1 lb)

The operator Sp is defined by

Spf(ItI)—:3 f(0)+f +f

and

K

(C2K) = g (21 + 1)[Sp( P2k(p ))] . (11c)
I'=0

In practice we are obliged to consider two separate
expansions, one for the 2BF and another for the
3BF. The matrix element of 2BF between two HH
is given by

«+i U"'~ J."u'&=«~i &U"'(r;;) i&'~'&
l (J

=3 (Ka
i

v ' '(x I )
i

E'a' )5~ ~

=3 g ( —) (K ~K" iE')uzK (r),
K"=0

where
+lit

U2K (r)=, I u' '(ur)PK '' (1—2u )+1—u u du,
~ r(Ic"+-')

are the so-called potential multipoles, ' and

(12)

(13)

C2KC2K' P2K" (0}
16

min(K, K')

X g (21'+ 1)Sp( P2K(p) )Sp( P2K (p) )
I'=0

(14)
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The last 3I' matrix element in Eq. (14) is defined as'

m/2

~2K"i2 I ~2K I
~2k'+2) fo d'(t'»n'icos''(('"~2K" +2((t') ~2K(f) ~2x'+2(p) .

The effective potential u' '(x&) is taken to be half
the sum of the singlet and triplet even central po-
tentials for the space symmetric S state. The differ-
ence between the singlet and triplet even central po-
tential generates the mixed symmetry S state which
contributes around one percent to the wave func-
tion' and that we neglected.

The factors (K
I

K"
I

K') are geometrical coeffi-
I

cients independent of the shape of the interaction.
A similar procedure is used to obtain the matrix ele-

ments of 3BF. It is given by

(Kal u' 'IK'a') =3 g ( —) (KIK"IK')u2x'-(r),
E"=0

(16)

where the potential multipoles are

3/2 1
E" E"

u2x"(r)= cp (0IK IK
C " g v 2 + I o 2'" (0)I

I =O, even

Ei+E2 2 I A,

X g ( —1) ' 'U2x. (r)U2~ (r)g(2A, +1)
() () ()

Ei,E2 A

X &"'~2x, +2 I

'"&z'x-
I

' '~ex, +2)

~2Ki+2(0) ~2K2+2(

where cz
——(I /A' )Cz and

7
s

U2r(r) = (K+ —,)(K+ —, ) U~2~(r'r)2Fi( K,K+4;—, ;r' )+1 r' r' —dr' . —
15m

(18)

In the Appendix we explain how to obtain the 3BF multipoles.
From Eq. (8) we can write the system of coupled equations where 2BF and 3BF are taken into considera-

tion:

d' ~d ~ac+!) E" ii r (2) (3)
2 + 2 +k @K(r)+3 g ( —) (K

I

K"
I

K')(u2K" (r)+u2&" (r))C'K'(l )
dr r K', K"=0

D. Charge form factor

For the S state, the charge form factor is given
by1

GEs(q) and GEv(q) are the scalar and vector electric
form factors of the nucleons and are given in Refs.
38 and 39. The pointlike proton density for the ful-
ly symmetric S state is given by

T3 3GEs(q)+2T3GEv(q)
E(q/ 3),

T3+—
oo

p(r)= f F(q/v 3) sin(qr)qdq .
2 r

(22)

where T3 ———, for He and T3 ————, for H, and
1 3 1

(20)
It is obviously the inverse Fourier transform of Eq.
(20) when GEs ——GEv ———,.

III. RESULTS AND DISCUSSION
KE'E"

+Kr+K r

X 2
dr.

(qr)
(21)

To reduce the complexity of the numerical calcu-
lations we use the adiabatic approximation to ap-
proximately decouple the system of equations. Jus-
tification of this approximation has already been ad-
vanced. ' Comparison between exact and approxi-
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m ate calculations showed that the approximate
binding energy is reliable to within 1 —2% even for
a relatively strong soft core. ' Table I illustrates a
comparison of adiabatic approximation with exact
calculation using the NS Afnan-Tang S3 poten-
tial. ' Since our primary aim in this work is to in-
vestigate the enhancements in BE and charge form
factor (CFF) due to the inclusion of 3BF, rather
than to try to reproduce experimental results with
realistic forces, we have chosen for two-body in-
teraction the Afnan-Tang S3 central potential, '

which is reasonably realistic, although quite simple
in structure.

Calculations are performed with twelve partial
waves (E'=0, 2, 3, 4, . . . , 12) ensuring the conver-
gence for the S3 potential. Only five multipoles
of 3BF [E"=0, 1, 2, 3, 4, and 5 for v2x-(r) in Eq.
(19)]have been used since the increment of BE from
four multipoles to five multipoles for a typical cal-
culation is about 0.01 MeV, which is about the limit
of accuracy of the adiabatic approximation. ' This
also sets the accuracy of the present calculations to
be about 0.03 MeV in BE. Table II shows that
CFF attains a convergence with about five 3BF
multipoles, even though the BE is still increasing
slowly. However, at very short distances, the effect
of mN vertex factor, p exchange, etc., becomes im-

portant and makes the form of Wz and hence V{3)

uncertain. Furthermore, the 2BF repulsive core
prevents particles from reaching short distances.
Since we use a soft-core 2BF, we introduce a purely
phenomenological cutoff parameter xp to restrict
the 3BF at extremely short separations:

U(2)(xp), x (xp,
U{2)(x)= U ( )

Treating xo as a parameter, we investigate the ef-

TABLE I. Comparison of adiabatic approximation
with exact calculation (Ref. 2) using S3 potential for 3H.

N represents the various numbers of coupled differential
equations.

Binding energy (MeV)
Adiabatic

approximation Exact

1

2
4
6
8

10
12

0.3647
2.0495
5.0712
6.0582
6.3153
6.4381
6.4889

0.346
3.120
5.196
6.208
6.470
6.5923
6.6403

feet of the 3BF on the trinucleon systems. Howev-

er, according to the previous discussion, very small
values of xp must be forbidden. A physically
reasonable value of xp should be around the 2BF
hard core radius.

Our calculations show that both BE and F,s(q)
depend strongly on xo. In Fig. 1, we show a prelim-
inary plot of BE and F,„[v laeuof the first max-
imum of

~
F,),(q)

~ ] as functions of xp for H, cal-
culated with twelve 2BF multipoles and only two
3BF multipoles and C&

——0.90 MeV. Figure 2
shows similar results for He (calculated with

Cz
——0.46 MeV). Both curves show the same quali-

tative behavior: BE increases gradually with de-

creasing xo, until a critical value, then decreases
discontinuously and starts increasing again, simul-
taneously, giving rise to a node near origin (NNO)
in the hyper-radial wave function gp(r). Decreasing
xp further, the BE again suffers a discontinuity at a

TABLE II. Convergence behavior for various 3BF multipoles. (C~=0.9 MeV, 1M=0.7
fm ', xo ——0.340 fm, no node in hyper-radial wave function. )

Calculation
Number of

3BF
multipoles

BE
(MeV) Value at

q=1 fm '

F,b(q'&
I

Position of
first zero (fm )

F,„y.10+'

H

He

1

2
3
4
5

1

2
3
4
5

6.86
7.63
7.63
7.65
7.66
6.15
6.89
6.90
6.91
6.92

0.613
0.632
0.631
0.631
0.632
0.590
0.609
0.609
0.609
0.609

16.10
16.53
16.41
16.42
16.47
16.68
16.46
16.33
16.34
16.38

1.52
1.86
1.96
1.96
1.94
1.08
1.34
1.41
1.41
1.39
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FIG. 2. Same as Fig. 1 for 'He.
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FIG. 1. Calculated binding energies and F,„as a
function of xp for triton.

still smaller value of xo, simultaneously, giving rise
to an extra NNO. Discontinuity in BE proceeds
from an extra node in the wave function which in-

creases the kinetic energy. F,„also exhibits
discontinuity at the same value of xo, however, it
reaches a maximum between two consecutive

discontinuities.
As xo decreases, the contribution of 3BF in-

creases very rapidly, generating a sharp fluctuation
in the effective "lowest eigenpotential" coo(r). Fig-
ures 3 and 4 show typical plots of cop(r) Ave.ry
narrow and deep attractive part in coo(r) causes
nodes in that region. Typical plots of go(r) with 0,
1, or 2 NNO have been shown in Figs. 5 and 6.

TABLE III. Results of calculation for the bound states of trinucleon system and comparison with experimental data.

Description Xp

(fm)
Number of

nodes
BE Value at

(MeV) q =1 fm
Position of
first zero

(fm )

rms

charge
E,„)&10+ radius (fm)

H (2BF) (calc.)

H (2BF+ 3BF)
(calc.)

3He (2BF) (calc.)
He (2BF+ 3BF)

(calc.)

H (expt. )

He (expt. )

0.9 0.340

0.270
0.240

0.9 0.340

0.46 0.277
0.220
0.188

6.489
7.658

8.274
8.992
5.789
6.922

6.485
7.356
9.031
8.482
7.718

0.590
0.617

0.626
0.635
0.565
0.592

0.581
0.599
0.628
0.622
0.576

15.98
16.47

15.43
14.81
15.91
16.39

15.54
15.20
15.57

11.8

1.50
1.94

3.01
3.89
1.06
1.39

1.58
2.23
2.86

1.82
1.74

1.71
1.68
1.89
1.81

1.84
1.79
1.70
1.70+0.05
1.84+0.03
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IOO;- 100:~

0
tLt

3

50r-

H

Cp 0 9 M8V p' 0. 7 f m

0 - 02TOfm

3
50--
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FIG. 3. Calculated cop(r) for H.

Nodes appear in go(r) for r & 0 5fm. .
In Table III we present the results of a more

complete calculation with five multipoles of 3BF,
for several values of C~ and xo. The largest values

of F,„are given for a definite number of NNO.
Table III, together with Figs. 1 and 2, gives an idea
about the enhancement in BE and F,„due to the
inclusion of 3BF. The obvious question is: What
should be the value of xo? From the nature of Figs.
l and 2, it is clear that xo cannot be chosen as a free
phenomenological parameter to fit experimental
data. The NNO are generated by the very narrow

and extremely deep attractive part in coo(r) (Figs. 3

and 4) introduced by the 3BF, which is very singu-

lar at the origin and attractiue for the equilateral tri-
angle configuration. It is conceivable that the ex-

tremely narrow and attractive well may bind one or
more states with lower energy and the lowest one
without nodes. But such a state will be extremely
peaked at that point (resembling a 5 function) and
consequently not "physical. " Hence, we tentatively
designate the states exhibiting one or two nodes (in-

FIG. 4. Calculated cop(r) for 'He.

dicated in Table III and Figs. I, 2, 5, and 6) as
"physical states. " It is important to notice from
Figs. 5 and 6 that these physical states, exhibiting
one or two NNO, differ very little from the zero

0.5

& Ifm)

FIG. 5. Calculated wave function goir) for H.
Parameter values are xp ——0.34 fm (dotted curve),

xp =0.27 fm (continuous curve) xp =0.24 fm (dashed-

dotted curve); C~=0.9 MeV and p=0.7 fm ' for all

curves.
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0.5"

10

BF
BF (Xo-0 277&m)
BF {Xp=0.22 fm )

BF (Xo=0.188 fm )

FIG. 6. Calculated wave function gp(r) for 'He.
Parameter values are xp ——0.270 fm (dotted curve),
xp =0.220 fm (continuous curve), xp ——0.1 88 fm
(dashed-dotted curve); C~=0.46 MeV, and JM =0.7 fm

for all curves.

N
C7

V

10

node solution (for larger xp) except for r (0.6 fm
where nodes appear.

Even then, one cannot admit an arbitrary number
of NNO, which will increase rapidly as xo de-
creases. The problem is that 3BF is attractive and
extremely singular in the equilateral triangle config-
uration and hence, with any soft core 2BF, will
cause the same behavior. %e can bypass this prob-
lem using a hard core 2BF. For example, with the
hard core radius of 0.42 fm of the Reid hard core
(RHC) potential no NNO will appear in gp(r). For
a soft core 2BF one can choose xp to be either the
hard core radius or the value corresponding to the
maximum of F,„ for zero NNO. However, neither
is completely satisfactory, since the former is artifi-
cial, while the latter is an (arbitrary) attempt to fit
experimental data. This leads to a more fundamen-
tal and profound problem: The value of xp (or
more precisely, the form of 3BF for extremely short
separations) must come from more complete con-
sideration of the origin of 3BF.

In the absence of an accurate theory of 3BF for
extremely short separations, we choose the value of
xp corresponding to the maximum of F,„ for zero
NNO. The enhancement of both BE and Fm», seen
in Table III, is insufficient to explain experimental
data.

In Figs. 7 and g ~F,h(q)
~

are plotted as func-
tions of q for several values of xo. The improve-
ment of F,„and of the position of the first zero of
the F,h toward the experimental data is much too
small, although a slight tendency to move towards
experimental data can be seen. The comparison
(Fig. 9) between the calculatmi pointlike proton den-

sity of He for three values of xo, and the "experi-

/
I
] /
l f

10

10
0

I

10.
I

20.
q (fm )

FIG. 7. Calculated charge form factor for H

(Cp =0.9 MeV and p =0.7 fm ').

mental" curves of Mccarthy et al. , shows that
there is a small "central hole" in p(r) only for two
NNO solution.

IV. SUMMARY AND CONCLUSION

The understanding of trinucleon properties (espe-
cially binding energy and charge form factor) using
realistic 2BF has been a stumbling block for a long
time. The 2BF which well reproduces the proper-
ties to two-nucleon systems, obstinately fails to
reproduce the BE (by about 1.5 MeV) and the first
maximum of ~F,h(q)

~
by about a factor of 6,

among other things, for three-nucleon systems. An
obvious suggestion made by various authors '
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10

{Xo= 0 277 fm
{ Xo=0.220frn )

{ Xo=0. 188 frn)
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r (ttT))
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FIG. 9. Calculated pointlike charge density for H
(for 3BF, C~ =0.9 MeV and p=0.7 fm ').
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15,
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considerations, enhances both BE and F,„ from
the values calculated with 2BF only towards experi-
mental values, and that both quantities depend
strongly on the cutoff parameter xo of the 3BF soft
core [Eq. (23)]. Phenomenologically one would ex-
pect that xo should be around the hard core radius
of the 2BF. For the xo ——0.42 fm (hard core radius
of RHC potential), the enhancements due to the in-
clusion of 3BF are small (-10% and 50% of the
discrepancies in F,„and BE, respectively). It can-
not explain the differences between 2BF calculation
and experimental data. No central hole in p(r) oc-
curs for this value of xo.

On the other hand, for smaller values of xo, both
FIG. 8. Calculated charge form factor for He

(C~=0.46 MeV and @=0.7 fm '). The experimental
points are taken from Refs. 20 and 39 (closed circles)
and from Ref. 42 (open circles). 0.15—

'He

was that the 3BF is partially responsible for such
discrepancies. In this work, we set out to examine
the validity of this thesis.

%e have solved the Schrodinger equation with a
semirealistic 2BF (Afnan Tang S3 potential ') and
the dominant 3BF (given by Fujita and Miyazawa )

using the HH method.
For practical limitations of computer time and

memory we have restricted ourselves to use: (i) the
space fully symmetric 8 state of the trinucleon sys-

tem; (ii) a semirealistic 2BF (S3 of Afnan and

Tang '); and (iii) an adiabatic approximation.
From the results quoted in Sec. III it is evident

that the inclusion of 3BF, as expected from general

Q

0,10

0.05

0
0 1. r (frn)

FIG. 10. Calculated pointlike charge density for He
(for 3BF Cp 046 MeV and JM 07 fm ).
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BE and F,„depend strongly on xa, exhibiting
discontinuities, and simultaneous appearance of one
extra NNO in (0(r) as xa decreases (Figs. 1 and 2).
It is produced by the highly singular 3BF, which is
attractive in the equilateral triangle configuration.
The solutions containing one or two NNO corre-
spond to a substantial increase of BE and F,„
(Table III). The solution with two NNO produces a
small central hole in p(r) (Fig. 9, but almost none in

Fig. 10).
In conclusion, it is evident from this work where

the Coulomb effect as well as 3BF has been taken
into account nonperturbatively, such that: (a)

enhancements of BE and F,h(q) are in the right

direction compared with experimental data, al-

though they are too small. This conclusion con-

firms previous approximate or model estima-

tions; (b) the hyper-radial wave function (0(r)
has NNO's for small values of the cutoff parameter

xa of 3BF; and (c) xa cannot be arbitrarily small,

for a given soft core 2BF. This requires a further

study of 3BF for very small particle separations.
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APPENDIX: MATRIX ELEMENTS FOR THE 3BF

To calculate the matrix element

( +2K(Q )
I

u'"
I
+2K'(Q ) ~

of the three-body force b'tween two space fully
symmetric HH one must expand the 3BF in terms
of the same basis.

One notices that there is a single HH iri this sym-

metry for each of the lowest values 2E of the grand
orbital for K=O, 2, 3, 4, and 5 (for E =1 there are
only mixed symmetry states). Therefore, the HH
decomposition is unique for K&6. In agreement
with Eq. (11) the HH expansion of 2BF is given by:
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g u(r; )=3m g( —1) (0~K ~E)9' (Q)u (r) .

(Al)

The coefficients (0
~

E
~

E ) can be found in Ref. 1:

&E+3, K=3n,
(0~K ~E) =(E+I/3)' X V'E —1, K=3n+1, (n integer) .

v'K+I, K=3n+2,
(A2)

In order to obtain an expansion of the 3BF similar to (Al), one defines the 3BF multipoles:

u2x(r)= ~ (%2x(Q)
~
tur(k)),OK K (A3)

where urz(k) may be any one of the terms in Eq. (4).because %2x(Q) is space fully symmetric. To calculate
(A3) let us start from Eq. (4), where we write

2

3cos Hk —1= g Yz~(rx)Y2~(rjk) .
5 m =—2

Hence,

Sn. 2

wz(k) = c& g ( Y2~(r~k) U(2~(r~k))( Y2~(rjk) U~2~(r&k )) .
m =—2

(A4)

Each term in parentheses can be further expanded in terms of hyperspherical harmonics'
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(F2 (r k) Ui2l(r;k))= g ( —) U2K(r)
8 It =0

5(21t+1)(2l2+1)
' 2 It 12 2 ll l2

x ( —) 2 0 0 m —m~ —m2
l)m)
1&m2

2K+2(haik)~tim (cal) I2m2(CO2) P2K+2(4) ~ (A5)

where p;k=0, 2tr—/3 and 2n. /3 correspond to the interparticle distances rl2, r23, and r», respectively, and

U2K(r) are the tensor multipole in the six-dimensional space given by Eq. (18). By using the expansion (A5)
for the terms between parentheses in Eq. (A4), the result projected on the basis %2K p o t t(Q) = & 2Kt(Q) is
given by

7T3
(&2Koott(~)

~
to~(k))= c~ g ( —1) ' 'U2K, (r)U2K, (r)

128 ~~ ~

I) I2 2 l) 12 2
X g(2li+1)(212+1)(21', +1)(212+1)

l ),l~

l) l) I 12 l2 I lq lp I

000000 l)l)2
I r r I

P2K&+2 ~
P2K

~ 2K2+2 ~ P2Ki+2(haik )( )P2K2+2(itikj )

(A6)

In choosing i = 1, k =2, and j=3 which corresponds to ptk ——0 and pkJ ———2m/3, the above equation is sim-
plified because It ——0; thereby one obtains the 3BF multipole given by Eq. (17).
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