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Uncoupled adiabatic approximation for the hyperspherical harmonic approach
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The accuracy of the uncoupled adiabatic approximation is investigated for bound trinu-

cleon systems. The quality of this approximation is related to the strength of the repulsive
core of the nuclear potential.

[NUCLEAR STRUCTURE Quantum few bod-y problem. ]

I. INTRODUCTION

The few-body problem in physics is still an area
of intensive investigation. Powerful and exact ap-
proaches, such as the hyperspherical harmonics for-
malism, ' Faddeev equations, and Yakubowski
equations were developed in order to set up the
problem. It seems that in most cases, for bound
state calculations, the hyperspherical harmonic ap-
proach is becoming adequate and quite popular.
For the three-body problem, for certain kinds of
physical interactions, one cannot use the Faddeev
equations in the t-matrix form because the Schmidt
norm of the kernel of these equations diverges. But
they could be used as well and the results are com-
parable with the hyperspherical harmonic (HH) ap-

proach, if they are written in the configuration
space involving differential equations. All ap-
proaches will eventually result in difficult numeri-

cal calculations. ' ' In configuration space the HH
expansion method leads to the solution of an infin-

ite system of coupled differential equations. '

Many papers' ' ' have been published in order to
handle this difficulty. For practical purposes the
system is truncated according to certain mathemati-
cal procedures leading to the solution of a desired

accuracy. ' However, the resulting numerical

problem is still not so simple. Our goal in this pa-
per is to test an approximate method (which we call
the uncoupled adiabatic approximation) which

decouples the truncated system to a single differen-
tial equation. A technique for the reduction of the
system of coupled differential equations to three
coupled equations for the hyperspherical harmonics
formalism was proposed by Fabre' in 1972. But
the technique was not followed with a numerical

application. In this work we calculate the first of
the three coupled equations.

The same approximation has already been used

for atoms. ' ' But in that case the problem is

simpler because in hyperspherical coordinates the
Coulomb potential appears as a product of an angu-

lar function times a function of the hyper-radius.
The smooth variation of the potential does not then

generate any significant coupling between the three
coupled equations of Ref. 13, which leads to a good
accuracy when only the first equation is used.

Our purpose in this work is to investigate the
quality of this approximation when we have to deal

with nuclear potentials which exhibit rapid varia-

tions in short range, inducing coupling between the
three equations of Ref. 13 which, this time, could
not be negligible. The results are extremely en-

couraging. The binding energies obtained using
current physical potentials found in the literature
are quite close to the exact values. ' ' An achieve-

ment of less mathematical and numerical complexi-

ty is by itself rewarding. The reason for choosing
the name adiabatic approximation has its roots in a
basically similar approximation used in molecular

physics.
In Sec. II the method is recalled and applied to

the three-body case. In Sec. III, numerical results
are given, leading to the conclusions.

II. THE METHOD: (N =3)-BODY CASE

The nonrelativistic Schrodinger equation for
three particles with masses m ~, mz, and m3, respec-
tively, may be written as

(V-„+V- )+ Vtqs(x;, y;) %(x;,y;)
2m

=ET(x;,y;), (1)

where the c.m. motion is removed using the Jacobi
coordinates (not unique)
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Xl=
mjmk

(m, +m„)m

1/2

(rz —rk),
(2)
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X

mj+mk

where r; are the particle coordinates while V123 is
the interaction potential among the three particles,
M =m1+m2+m3, and

1m= mmj .
l (J=2

For pairwise interactions

3 3

V]23 — $ VJ( r; —rj ):—$ Vk
i(j =2 k=1

(3)

In Eq. (2), i,j,k are (1,2,3). The sign of x; is fixed
by the condition that (i,j,k) should form a cyclic
permutation of (1,2,3). Equation (2) defines three
equivalent sets of coordinates (i =1,2, 3) for the
description of the three-body problem. ' Equation
(1) can be solved using, for example, the hyper-
spherical harmonic approach' in which the wave
function %' is expanded in a complete orthonormal
set of hypergeometric polynomials in the following
way:

%(x;,y;)=p '/ g4~ (p)P„(x;,y";,P;), (4)
Ea;

where p =xi +y] ——x2 +y2 ——x3 +y3, x;==pcosp;, andy;=psin((]; (0&((];&]r/2). The notation x; andy;
means x;=—(8».,]i()» ), and y;=—(8»., ]p» ), respectively. The complete orthonormal sets of angular functions

t Pz~ (0; ) j are the angular part of the homogeneous harmonic polynomials of degree E in the six-dimensional

space. The label Ea; stands for the five quantum numbers related to the five degrees of freedom 0;. Substi-
tution of Eq. (4} into Eq. (1}leads to the system of coupled differential equations

d' ~x(~ac+1}
2+ 2 +k @le~(p)+ g (Ea; iud%'aI )4, , (p)=0,

dp p'
EC'a,'

P]r (0;)=

where Wz E+ , , k =——( —2m—/A' )E (E &0 for bound states}, U =(2m/A' ) V]23, and (U) is integrated over
the five angles, resulting in a function of p. The elements of the angular basis with total angular momentum
(L,M) related to the angular coordinates (x;,y;, P;) are

1/2
2n!(X+2}(n+l„+1»+1)! l l (l +(]/2), l +(]/2))

(cos(();) '(sin]}!);) 'P„' '
(cos2$;)

I (n +l„+—,)I (n +l„.+ —, )

(l„l»m„m ELM
i
)I'i ~ (x;)Yi ~ (y;),

lm„m
l l

where n = —,(E—l„—l„.), and P„" '(x} is a Jacobi
l l

polynomial. One should notice that the P]r~ (0;)
constitute for any i an infinite and complete denu-
merable set of orthogonal functions. Since the
hyperspherical basis P~~ is complete for any i, one

can choose this index arbitrarily, and for notational
convenience we have dropped the indices i in the
quantum numbers and variables. For practical pur-
poses, the solution of Eq. (5) is obtained numerical-
ly by truncating the sum over the E' and o." quan-
tum numbers. This procedure is justified by the

fact that the convergence of the solution is reached
for the first few E', a' values. ' The rate of conver-
gence is determined by the shape of the interactions
itself. " In many realistic calculations the number
of coupled equations needed for good accuracy be-
comes large enough to make the solution hard to ob-
tain. ' ' In the literature one finds approaches,
such as an optimal subset' generated from poten-
tial harmonics, which reduce the number of coupled
equations, but still the number of coupled equations
needed for a good accuracy may be large.

For reducing again the number of significant
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coupled equations we used (in Ref. 13) a diagonali-
zation procedure in the angular space and generated
a set of three coupled equations. The first of our
equations is precisely the one proposed by Macek'

I

for atomic problems. This equation is transformed
in this paper in order to be used in connection with
nuclear interactions. Let us write Eq. (1) in hyper-
spherical coordinates:

where

d' L'(Q) —(D —1)(D —3)/4 +v( Q)+k .C,( Q) 02+ 2 +U pp + '
py

8p p

—(D —i ) /2@( Q )

The procedure is the following: Instead of Eq. (4), one can expand %(x,y) in the complete orthonormal basis
functions Bi (p, Q), which are the eigenfunctions of the equation'

I
—[L2(Q)—(D —1)(D —3)/4Jp +v(p, Q)JBx(P,Q)=coi(p)Bi(P, Q),

where L (Q) is the grand orbital operator in the D dimensional space (six for the three-body case). Namely,

%(x,y)=p ' "/ ggi(p}Bi(P,Q) .

Next, each of the eigenfunctions Bi(P,Q) can be expanded for any given value of p in the complete set of
hyperspherical harmonics Px (Q):

Bi,(p Q)= y&ir, i.(p)Pir (Q)
Ka

(10)

so that Eq. (8) holds. The Xxa i (p) are real numbers which for a given A, constitute the coordinates of a vector
Bi in the Hilbert space and fulfill the orthonormalization conditions

g ~Ka, i~Ka, i,' ~A, , A,
'

Ka

We can multiply Eq (8) by .Px (Q) and integrate over the unit hypersphere leading to the matrix equation:

~x(~x+1)
6K,E +«~

I
v

I

&'ix'& &ir' ',dp)=roi, (p»ir. , i,(p»
K'a'

(12)

where the eigenvalues aii„(p) and the eigenvector Pxa i(p) are parametric functions of p. Using Eqs. (10) and

(9) the partial waves in Eq. (4) are given by

(13)

Substituting Eq. (13) into Eq. (5) using Eq. (12), and taking the inner product with Xxa i, one obtains:

~&xa, i.(p) ~'&xa, i, (p), +l i,(p)+k'J 4i.(p) —2 P
&

&x,i,(p) &' —gg (p) &,i.(p)
8p X'Ka dP Gp Gap

=0.

Differentiating Eq. (11)with respect to p once one obtains

~+Ka A,
' +Ka, A,g &x,i.(p) ~

' +&x,i,
Ka ~P ~P

Differentiating once again for A, =A, ' leads to

~'&x,dp) ~&x,dp)
&x,i.(p)

isa ~p xa ~p

Substituting Eqs. (15}and (16) into Eq. (14), one obtains

(14)

(15)

(16}
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2
d2 d&~, ~(p)

, +~q(p)+k'+ g
dp dp

d4 (p) . d&~.,~(p)
CA(P)+ y 2

d y&E, A, '(p)
dP Ka dP

d'&x, dp) =0 . (17)
dp

d 2 d+Ka, O

, +~o(p)+k'+ g
dp Ka dP

2

go(p) =0 .

(18)

This equation is similar to the one of Macek when

we have to deal with a Coulomb interaction, but in

using relation (16) it immediately appears that the
variation with p of the basis B~ [i.e., the last term in

the brackets of Eq. (18)] weakens the binding. On
the other hand, by truncating expansion (9) to one
term only, one reduces the Hilbert space. Conse-

quently, according to the Rayleigh-Ritz principle,
Eq. (18) provides an upper limit of the ground state
binding energy.

For bound states the hyper-radial wave function

gz(p) is normalized according to

f, g l&x,dp)4(p) I'dp
Ka

leading to a normalized wave function %(x,y) [Eq.
(4)].

The partial waves 4x (p) in Eq. (4) are given in

the uncoupled adiabatic approximation by

Up to now Eq. (17) is still exact and equivalent to
Eq. (5). When one neglects the sum over A,

' in Eq.
(17) we have to deal with the so called uncoupled
adiabatic approximation. Hence for the lowest
eigenpotential coo one obtains the approximate un-

coupled equation

d80 d80

dp dp

d+Ka, o

dp

'2

The name "adiabatic approximation" used for
this method originates from the decoupling operat-
ed between the hyperorbital and hyper-radial
motions. This procedure is similar to the one used
in solving the molecular problems in which the elec-
trons and nuclei motions are nearly decoupled:
First the average field in which the nuclei move is
deduced from the eigenenergy of the electrons for
fixed nuclei and then the problem is solved intro-
ducing the differential equation for the nuclei only.

The method proposed in Ref. 13 contains three
coupled equations. The most important is Eq. (18).
The other equations are generated by taking the
derivative of the basis B~(P,Q) with respect to p,
which is a parameter in the diagonalization of the
matrix appearing in Eq. (12), which in turn is
equivalent to Eq. (8). The approximation of using
the single Eq. (18) is justified if the variation with p
of the eigenvectors B~(P,Q) is small enough that
the coupling introduced by the first and second
derivations of Bq with respect to p (Ref. 13) can be
neglected.

The term g&,+& in Eq. (17) contains precisely
the projection of the derivatives of [X~I on the vec-
tors [X& [ orthogonal to [X~[. They disappear, as
they should, when B~(P,Q) becomes independent of
p [e.g. , for a potential of the form
U(Q)p + V(p)]. The magnitude of the coupling
can be estimated, for instance, for the ground state
in calculating the first derivative

The procedure for solving Eq. (7) is reduced in two
numerical steps when using the uncoupled adiabatic
approximation:

(i) perform the diagonalization of the matrix
equation (12);

(ii) integrate the single second order differential
equation (18) for the suitable potential co~(r).

For both calculations a standard accurate numerical
algorithm exists.

The integral

(&o)'= I, g '
ko(P) 'dP

Ka dP
(21)

is a measure of the inaccuracy of the decoupling in
the equation describing the ground state A, =O. The
larger (Xo), the larger the difference between the
exact binding energy and the one given by the adia-

batic approximation.
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Equations (8)—(13) are quite general and can be
applied to any system of coupled differential equa-
tions (5). For many-body problems (E & 3) in
which 8~ is expanded in the hyperspherical har-
monic basis IPx~I one now has to deal with a set
Eu of 3X —4 quantum numbers where E is the
grand orbital quantum number, while

D —3
WK ——E+

2

We did not discuss up to now the symmetries re-

quired for describing the physical states in expan-
sion (4). As a matter of fact the basis Pz does not
have any definite symmetry in the exchange of par-
ticles, and for either boson or fermion systems the
wave function %' must exhibit the required symme-

try. This task is accomplished in combining ap-
propriate spin and isospin states with the I'K func-
tions for fixed K, in order to obtain a linear com-
bination of spin, isospin, and harmonics exhibiting
a definite symmetry under any exchange of two
identical particles.

For instance, when we have to deal with the
trinucleon system one generates the so called S state
(L =M=0) occurring in the description of the
ground state by combining the completely antisym-
metric spin-isospin state A (s, t) with the fully space
symmetric S state. '

The ground state wave function of the trinucleon

system becomes

monies basis:

v (p, Q) = g vz(p)Px (Q), (23)

where (K
~

K"
~

K') are geometrical coefficients, in-

dependent of the shape of the interaction.
With this expansion in potential multipoles the

matrix equation (12) is diagonalized, with p as a
parameter. Then Eq. (18) is solved numerically,

subject for the bound states to the appropriated

TABLE I. Comparison of the adiabatic approximation
with exact calculations for chosen potentials and various

numbers (1V) of coupled differential equations for H.

Binding energy (MeV)
Potential N Adiabatic approximation Exact (1)

Baker 1

4
6
8

10
12

9.2048'
9.5982
9.7409
9.7532
9.7544
9.7546
9.7547

9.2077
9.6150
9.7661
9.7795
9.7808
9.7811
9.7812

where uz are the "potential multipoles" and the ma-
trix element (K

~

v
~

K') can be expanded in the
f0&11

(K
i

u
i
K') = g ( —) (K

i

K"
i
K')ux-(p),

%(p, Q) =A (s, t)p ~ g 9'x(Q)@x(p), (22)
K=0

where 9'x (Q) is a linear combination of the Px (Q)
symmetric in any exchange of two particles. The
grand orbital E is even, in agreement with the pari-

ty of the ground state.
When the so called optimal subset is chosen for

the expansion as in Refs. 1 and 2, only one Hx(Q )

occurs for each K (even) in the expansion of the
wave function and the potential u (p, Q).

III. NUMERICAL RESULTS

Volkov

S3

1

2
4
6
8

10
12

1

2
4
6
8

10
12

7.7076'
8.0348
8.3227
8.3876
8.4013
8.4065
8.4082

0.3647'
2.0495
5.0712
6.0582
6.3153
6.4381
6.4889

7.708
8.079
8.376
8.443
8.4575
8.4630
8.4648

0.346
2.120
5.196
6.208
6.470
6.5923
6.6403

As an application we have chosen to solve the tri-
ton ( H) with four different simple potentials for
which exact calculations by the hyperspherical har-
monic method exist. ' As in Ref. 1 we used the "op-
timal subset" corresponding to the hyperspherical
harmonics which are directly connected by the po-
tential to the first term E =0 in the expansion. The
wave function is given by Eq. (22) while the poten-
tial U is expanded in the same hyperspherical har-

1

2
4
6
8

10
12

3.6670'
4.6958
6.1319
6.6793
6.8396
6.9217
6.9583

3.667
4.741
6.182
6.735
6.898
6.9820
7.0182

'The small discrepancy is due to the choice of step size
in the p mesh.
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that the convergence trend for the adiabatic approx-
imation is the same as the one of the exact calcula-
tion. '

Besides too(p), we have also calculated coi(p), the
first excited eigenpotential. They do not differ
much from one potential to another, as can be seen
from Fig. 1. The accuracy of the adiabatic approxi-
mation is therefore certainly not connected to the
difference [coi(p) —coo(p)]. Instead it clearly ap-
pears that the inaccuracy is largest for the potential
exhibiting the strongest variation at short range
(i.e., S3). In Fig. 2, we plot the charge form factor

i F,h(tI} i
calculat& for the S3 potential; we also

indicate the experimental points. The approximate
result compares remarkably well with good varia-
tional calculations. '

IV. CONCLUSION

From the foregoing it appears that the adiabatic
approximation is generally good whenever the
hyper-radial dependence of (K

i
v i%') is smooth

and does not have sharp singularities. The calcula-
tion of the eigensolution of a large number of cou-
pled differential equations is extremely difficult.
This task is remarkably simplified (with much less

computer time and memory requirements} by using
the adiabatic approximation. The price that we pay
for this is not so critical for the binding energy, and
is certainly acceptable for the charge form factor
when q & 20 fm, for most soft core potentials.

Finally the calculation of the ground state is ob-
tained by the following procedure:

(1) calculate the potential multipoles [vxa(p)];
(2) construct the auxiliary matrix

(Ea
i

v iK'a');
(3) solve the matrix Eq. (12); select the lowest

eigenvalue too(p) and the lowest eigenfunction

&x,o(p};
(4) substitute too(p) and [dXx o(p)]/dp, calculat-

ed in steps (1)—(3) for various values of p, in Eq.
(18) and find the eigensolution.

Although we have taken the hyperspherical har-
monic approach for the triton problem as an exam-
ple, this method can be used in other areas of phys-
ics where coupled differential equations are generat-
ed by an expansion of the wave function in a suit-
able basis. Macek has shown' that it should work
well in atomic physics.
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