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All available B(E2) values in the mass region 8&Z, N &20 relevant to the isovector

electric quadrupole operator are compared to the theoretical B(E2) values based on

Chung-Wildenthal Ods/&-1s&/) Od3/2 shell-model wave functions with harmonic oscillator

radial wave functions, and some selected cases are compared with local and energy depen-

dent Woods-Saxon potential wave functions. The empirical effective charges deduced from

these comparisons are insensitive to differences in mass, state, and dominant single-nucleon

orbit. The value for the effective charge parameter e~ —e„extracted in the harmonic oscil-

lator approximation is consistent with 1.0e. The values extracted with local and energy-

dependent Woods-Saxon potentials, which are more meaningfully related to the underlying

structure of the isovector polarizability, are consistent with 0.7e and 0.6e, respectively.

Some inadequacies in the experimental data and theoretical models are discussed and im-

provements are suggested.

NUCLEAR STRUCTURE 17&3 &39 nuclei: comparison of experi-

mental E2 isovector matrix elements with shell-model predictions; ex-
traction of the isovector effective charge; full basis Ods/&-1s&/2 Od3/f

shell-model wave functions; Chung-Wildenthal Hamiltonians.

I. INTRODUCTION

We are concerned in this paper with the isovector
(IV) component of electric quadrupole (E2) transi-
tions between nuclear states. We extract experimen-
tal values for E2,v matrix elements from radiative
transition data in the region 8 (X, Z &20 and com-
pare these results with the predictions of the shell-

model wave functions (complete d 5/2 s i/2 d 3/p basis

space) of Chung and Wildenthal. ' Our first aim is
to establish the extent to which the conventional
shell-model approximations can account for these
data. The key approximations in this context are
the restriction to one-body operators (the "impulse
approximation") and the factorization of matrix ele-

ments into an explicitly state-dependent, "intra-
inodel-space" term (the shell-model transition densi-
ties) and an approximately state-independent,
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"extra-madel-space" term (the "effective charges"
in the case of electric transitions). A subsidiary as-

pect of these approximations which is critically ex-
amined in the present work is that of the radial
dependence of the single-particle wave functions.
Our second aim, which can be pursued to the degree
that there appears to be a meaningful relationship
between theoretical and experimental matrix ele-
ments, is to deduce the empirically optimum value
of the E2iv effective charge.

The approximate charge independence of the
strong interaction leads to the approximate conser-
vation of isospin for nuclear states. In many shell-
model calculations, including those of Chung and
Wildenthal, this approximate conservation of iso-
spin is introduced ab initio into the model via a pre-
cisely charge-independent Hamiltonian and the re-
sulting wave functions are labeled by the total isos-
pin quantum number on an equivalent footing with
the total angular momentum quantum number.

The consequence of this is that in terms of con-
figuration mixing of shell-model orbitals the same
many-body wave function

~
v,J,T,A & is manifested

in each of the (2T+1) members of an isobaric spin
multiplet, each member being labeled by
Tz=(Z —%/2. The only changes in the wave
function as Tz changes is the apportionment be-
tween neutrons and protons of the nucleons which
constitute the A-particle wave function. Since elec-
tric multipole transitions involve only the proton
components of the wave functions of the initial and
final states, the B(EA,) value for a transition

Tiw &~
I v/~f Tf~

will be different for each nucleus A, Tz in the iso-
baric multiplet. Under the assumption of good iso-
spin there are simple relationships between the iso-
scalar and isovector, or equivalently, the proton and
neutron, components of a transition in a particular
A, Tz and the (different) proton and neutron com-
ponents of the analogous transition in another nu-
cleus of that isospin multiplet. In particular,
for isospin doublets and triplets, Tz ——+ —, and +1,
the proton component in the Tz ——+T nucleus is
equal to the neutron component in the Tz ———T nu-
cleus.

We have exploited this symmetry in the present
work by comparing proton transition matrix ele-
ments Mz from B(E2) values for pairs of transi-
tions

( iv~;~ &~ ~vf~fTf&)TZ +T. ——

This comparison of Mz in the two different nuclei

yields the relative proton and neutron matrix ele-

ments M~ and M„ in either of the two nuclei
separately. Equivalently, the sum and difference of
these matrix elements yields the isoscalar and iso-
vector strengths for the transition. We note that
not all nuclear transitions have both isovector and
isoscalar components. Transitions of
T; =O~T~ ——0 are purely isoscalar, i.e., the proton
and neutron matrix elements are equal, and transi-
tions for which T; +(T/— T;+——1) are purely isovec-
tor, i.e., the neutron and proton matrix elements,
are equal in magnitude but opposite in sign.

It appears from experimental observation that
most strong electric quadrupole (hJ"=2+) transi-
tions are dominated by their isoscalar component.
This feature is consistent with our understanding of
the short-range, attractive nature of the nucleon-
nucleon force. Isoscalar dominance also emerges
from explicit model calculations such as those of
Chung and Wildenthal. ' As a consequence of this
typical isoscalar dominance and of the inescapable
residues of experimental (and nuclear model) errors,
our knowledge of the isovector aspects of E2 phe-
nomena is quite limited. Hence it follows that our
knowledge of the differences between the neutron
and proton components of transitions in a given nu-
cleus is equivalently limited. From the standpoint
of better characterizing experimental nuclear transi-
tions and to better test nuclear wave functions, it is
desirable to know the relative strengths of their neu-
tron and proton (or isoscalar and isovector) matrix
elements individually.

The experimental data on electromagnetic transi-
tions we consider here provide the classical avenue
to study of the subject of isovector strength or rela-
tive neutron/proton transition strengths. Analysis
of these data is facilitated by the fact that the elec-
tromagnetic field operator is the best understood
probe of the nucleus. However, as we shall discuss,
the conclusions which can be drawn from the data
depend significantly upon the degree to which iso-
spin nonconserving features, specifically differences
in radial wave functions of the protons and neu-
trons, affect the empirically extracted values.
Moreover, in practical terms, the errors in the
B(E2) values of decays in proton-rich nuclei are
sometimes so large as to vitiate the extraction of the
isovector strength via comparison to the neutron-
rich values.

II. THEORETICAL ASPECTS

A. Definition of the operators

The A,-multipole transition operator for the pro-
tons in a nucleus is defined by
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z
Op =Jr; Yp(Q;)

A

where J is the total angular momentum, T the iso-

spin, and Tz ———,(Z N—); the indices "v" supply the

additional labels needed to uniquely specify the
states. The reduced matrix elements are defined by

A A

= 2+re Yp(Q;)+ , g—r~r; Yp(Q()
(JM

I
Y„'

I

JM & =(—1}'-~

=A iL=0LT=0+06T=1 ~

We use the convention r,
I p) =+ lp) and

r,
I
n ) =—

I
n ). The analogous A, multipole opera-

tor for neutrons is correspondingly

0„=00—Oi . (2)

The complete matrix element Mp~n for a transition
between initial (i) and final (f ) nuclear states

I v; J;T; TzA ) and
I vfJfTf TzA ) is assumed to be

Mpfn{ Tz) = &vfJfTfTzA
I I0pxn I Iv& Js&& TzA )

(3)

(4)

In this convention the electromagnetic transition
probability is given as

B(EA,,i +f) =(2—J;+1) 'Mp e

B. Isospin dependence of the matrix elements

In terms of matrix elements reduced with respect
to both J and T ("tripled-barred" matrix elements)

( —1) '
Mptn(Tz) =

2 T () T &vfJfTfA I I I0o I I I
v'J'TiA &

+/ T () T &vfJfTfA
I I I

0i
I I I

vc&~~A & (6)

It follows that for T; =Tf T——

Mpi. (Tz)=(2T+I) '"&vfJfTfA
I I loo I I lv J TA&

+/ Tz[(2T+1)—(T+1}(T)] '~ (vfJfTfA I I I0$ I I
Iv;J;TA)

—=M, +/ —TzM&, (7a)

and that for transitions characterized by I T; Tf I
=1 and f—or T; =Tf =0, only the isovector and isoscalar

terms of Eq. (6) contribute, respectively;

M) ——[(2T+1)(T+1)(T)] ' (vfJfTfA I I I
0]

I I I
v; J;T A ),

Mo=(2T+1) '"&vfJfTfA
I I I0o I I

lviJTA&.

(7b}

(7c)

The relationship of Eq. (7) establishes the equali-

ty, pointed out in Ref. 3, which exists between the
neutron transition matrix element M„(Tz—— T)—
in the neutron-rich nucleus and the proton transi-
tion matrix element, Mp(Tz +T), for the sam——e
pair of states in the isobaric analog proton-rich nu-

cleus:

M„(Tz = T) =Mp ( Tz —+ T)—. (g)

It is this equality which provides a connection be-

tween the electromagnetic decay probabilities to the

I

ground states of nuclear isobaric multiplets and the
reduced strengths for inelastic excitation of the
(stable) neutron-rich members of these multiplets by
hadrons which interact with both protons and neu-

trons.
Our present interest is focused on isovector ma-

trix elements Mi which can be extracted from E2
electromagnetic decay data. These matrix elements

can be obtained experimentally either directly from
the electromagnetic matrix elements M& for
isospin-changing transitions (AT=1) or from the
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differences between the values of Mp of a transition

I v; J; Ti & I vfJfTf &

as this transition is manifested in the various Tz
members on an isobaric nuclear multiplet. For
T+0, we can rewrite Eq. (7}as

(9)M& [Mp——(Tz) Mp(—Tz DTz—) ]IETz ~

Since only Mp is extracted from experimental de-

cay data the phase relation is not known and we
will define a quantity EMp as

~~&p =
I I Mp(Tz)

I
+

I M, (Tz ~Tz }—
I I I~Tz,

(10)

where the sign is to be determined theoretically so
that M) ——+EMp. Usually,

IM, I & IT,M, I,
and hence, M~ is obtained by taking the difference
rather than sum in Eq. (10). The sign can also be
determined experimentally via Eq. (8) by inelastic
scattering of hadrons which are sensitive to both
Mn(Tz= T) and Mp(Tz= T).

Most of the available data related to these differ-
ences come from mirror nuclei with Tz ——+ —, and

Tz ——+1. A few T =1~T=1 transitions strengths
have been measured in Tz onuclei. T——he plots of
Mp(Tz } vs Tz for the three members of these T = 1

triplets should be linear in Tz according to Eq. (7).
A few electromagnetic E2 transitions with

I
T~ TI I

=1 hav—e been measured and these pro-
I

vide direct information on the isovector matrix ele-
ments.

C. The shell-model plus
core-polarization approximation

Our theoretical estimates of the "total" matrix
elements Mp«are obtained from "model space"
matrix elements Apr„calculated from shell-model
wave functions. The basis space assumed for the
shell-model wave function of a state in nucleus A is
the complete set of Odqr2, ls~r2, and Od3rg

configur-

ationss for n =A —16 nucleons, abbreviated (sd)".
The wave functions l(sd)",vJT) result from di-
agonalizing the Chung-Wildenthal "particle" and
"hole" Hamiltonians for the regions A =17—28
and A =28—39, respectively, in the (sd)" space.

The model-space transition matrix elements

Apr„(Tz) are calculated from these wave functions
according to

Aprn(Tz}= &(sd)"vIJITITzlloprn ll(sd}"v J T Tz&

(sd) ,f Tz "=QSPME[opr„(jj ')]D~ pr„(jj '), (l l)

where the single particle matrix elements (SPME) of
the operator Op/„between the single nucleon states
of the model space pj and pj' are given by

SPME[opr (jj')~—= &pj I lopr I le &

and the one-body density matrix elements D be-
tween the n body shell--model wave functions are
given by

Dx pr„=(2k+1) ' &(sd)"vIJITy Tz
I
l«J' x&g )pre Il(sd)"vi Ji TtTz & . (13)

The p In representation of the matrix elements A is related to the b, T=0 and 1 isospin coupled representation
by

Tz ( —1) Tf 1 Tf

T 0

Tf 0 Tg

0 T Dz, sr=a+I V'6—
where

Dx, &T [(2~+1}(2~T+1}J'"&(sd}"vIJfTf I I I
(&J' x~; 4r I I I

(sd)"v J T &

and similarly for the single particle matrix elements

SPME(o,'r„}= '2 &pj I I
IO', =oI I lsj )+I—

6
&roj I I

lo', =
I I lpj ) ~ (15)

The one-body densities Dp p/p contain all of the
information about the transition in question which
is embedded in the configuration-mixing amplitudes
of the two (sd)" shell-model wave functions. The
single-particle matrix elements SPME (Opr„) incor-

I

porate our assumptions about the transition opera-
tors and about the radial dependences of the single-
nucleon wave function pj. The principal body of
the theoretical results we present and discuss in this
paper are obtained under the assumption of har-
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monic oscillator radial dependence for the single-
nucleon wave functions. For each A value, the os-
cillator length parameter is chosen to reproduce the
root mean square (rms) charge radius of the stable
ground state. The details of the calculations of the
length parameter and the consequent "b" values are
given in Ref. 4. The consequences of choosing oth-
er forms for the single-nucleon radial dependence
are discussed in Sec. V.

In terms of these model-space matrix elements

Ap/p the total matrix elements Mp/p are assumed to
be given by

Mp ——A~(1+5~p )+A„5~„,

M„=A„(1+5„„)+A~5„~ .
(16)

or

Mp [Apep+A„e„]-—,

M„=[A„ep+Ape„],
(17)

M) ——A )(ep —e„), (18)

where the isovector model-space matrix element A
&

has the same relationship to Ap and A„as M~ does
to Mp and M„. Thus, our theoretical representation
of the total transition matrix element for an isovec-
tor electric-quadrupole transition is the product of a
term which comes from the model-space (sd)" wave
functions and a term, (ez —e„), which depends upon
the effective isovector polarization for this model
space. A y-x plot of experimental values of M~
versus their theoretical model-space analogs A

~

should, under these assumptions, thus yield a
straight line through the origin which has a slope
given by (e~ —e„).

Thus, it is assumed that the total matrix elements

Mp/ which in principle incorporate excitation of
all Z/N protons/neutrons in the nucleus over inde-
finitely many shell-model orbits can be expressed as
the model-space matrix elements Az~„modified by
the addition of two other terms, themselves simply
proportional to the same model-space elements Ap
and A„.

This can be termed the "effective charge" core-
polarization model. The quantity 5„denotes the
renormalization due to the polarization of the core
nucleons (c) by the valence model-space nucleons
(U). Since the core in the present shell-model has
equal numbers of neutrons and protons it is a good
approximation to equate 5pp ——5«and 5' 5&p.
The "effective charges" for the EA, electromagnetic
transitions are then ez ——( I+5&z)e and e„=5&„eand
in units of e,

III. EXPERIMENTAL DATA
AND COMPARISON WITH THEORY

816 e fm BR 5

(E, —Ef (' (19)

where E is in units of MeV and r is in units of ps.
The B(E2) in units of e fm can be converted to
Weisskopf units by dividing by 0.0594 A e fm .
For A =17, 28, and 39 the Weisskopf units are 2.60,
5.05, and 7.86 e fm, respectively. In Table I we
list the experimental information together with the
experimental values for the matrix elements M~
given by

Mq
——[(2J;+1)B(E2)]'~/e

together with the calculated values of Mp calculated
as described in Sec. II with the choice of
5tp =5pn =5' =5nn =o 35

S. Comments on individual
experimental data

The following additions and changes have been
made to the compilations of Refs. 5 and 6.

(i) The lifetime for the lowest —, level in '9F was

taken as the adopted value given by Antilla et al.,
Ref. 7.

(ii) The lifetime for the lowest —, level in 'Ne

was taken from the heavy ion (HI) Doppler shift at-
tenuation method (DSAM) measurement of War-
burton et al., Ref. 8.

(iii) The lifetime for the lowest 2+ level in 2 Ne
was taken from the HI DSAM measurement of
Forster et a/. , Ref. 9.

(iv) The lifetime for the lowest —, level in Na
obtained by Smith et a/. , Ref. 10, was folded in
quadrature with the compilation value.

(v) The lifetime of r =140+30 fs for the —, level
9+

in Mg given by Endt and Van der Leun from the

A. Compiled data

The primary source of our experimental informa-
tion is the most recent compilation by Endt of the
electromagnetic strengths in nuclei with A =6—44.
For data on some transitions which are not included

by Endt we use the adopted average values in the
A =21—44 compilation of Endt and van der Leun.
In either case we start from the adopted average
values for the initial state mean lifetime r, the ini-
tial and final state energies E; and Ef, and the
branching ratio BR and mixing ratio 5(E2/M 1)
for the transition to the final state and calculate the
B(E2) value,
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experiment by Engmann et al." is replaced by
r =80+30 fs from the experiment of Warburton et
al. ' which was not included in the compilation. In
connection with our present interest in comparing
the transition strengths in mirror nuclei we note
that the lifetimes of the —, levels in both Mg and

9+

Na were measured in the same experiment by
Warburton et al. and thus the relative systematic
errors due to stopping power uncertainties (see
below) are reduced. The lifetime of r =110+20 fs9+
that Warburton et al. obtain for the —, level in

Na is in good agreement with the compiled aver-

age lifetime of 110+15fs. To improve the accuracy
of the extracted experimental isovector matrix ele-

ments we strongly recommend that similar experi-
ments be carried out for other pairs of mirror nu-

clei.
(vi) The lifetimes for the 2+ levels in Mg ob-

tained in the HI DSAM measurement of Dybal et
al., Ref. 13, were folded in quadrature with the
compilation values.

(vii) The lifetimes for the 2+ levels in Si were
taken from the recent HI DSAM measurement of
Alexander et al., Ref. 14.

(viii) The mixing ratio for the Si
transition obtained in several experiments differ by
many standard deviations from each other. Sterren-
burg and Van Middelkoop' have suggested a possi-
ble reason for this disagreement and Endt and Van
der Leun5 have adopted their value,
5 = —0.50+0.04, without averaging previous mea-
surements. We instead adopt an average value with
a larger error which encompasses all measurements,
5 =—0.40+0.14.

(ix) The lifetimes of the —, and —, levels in Si
3+ s+ 29

obtained in the HI DSAM measurements of Scher-
penzeel et al., Ref. 16, were folded in quadrature
with the compilation values.

(x) The lifetime and branching ratio data for the
2+ levels in P from the recent experiment by An-

tilla and Keinonen' were folded in quadrature with
the compilation values.

(xi) The lifetimes of the 2+ levels in OS from the
HI DSAM measurement of Alexander et al., Ref.
18, were folded in quadrature with the compilation
values.

(xii) The adopted values given in Ref. 19 for the
lifetimes of the 1.27 and 3.34 MeV levels in 'P are
used.

C. General comments

In the present data set many of the 8 (E2) values,
especially those of the proton-rich nuclei, depend on
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TABLE II. Lifetimes for the 2.704 MeV — state in
9+

23N

(fs)

200+ 110
100+
100+25
65+15'

125+30'
131+10g

110+20
105+20'
110+15'

Error (fs) given by
Endt and Van der Leun'

+100
+60
+30
+15
+30
+30
+20
+20

Reanalyzed~

(fs)

102+25

'Reference 6.
Reference 22.

'Reference 23.
dReference 24.
'Reference 20.

Reference 25.
~Reference 21.
"Reference 12.
'Reference 26.
'Average from Ref. 6.

accurate measurements of lifetimes in the range of a
few hundred femtoseconds (fs). At present most of
the lifetimes in this range can only be measured by
the Doppler-shift attentuation method (DSAM). A
large fraction of the error on the lifetimes in this
method comes from the uncertainty in the stopping
power of low-velocity ( & 2% v/c) ions in solids and

gases. This systematic error is usually combined in
quadrature with the statistical errors. In fact, Endt
and Van der Leun assume a minimum of 15% un-

certainty in the lifetimes due to stopping power un-

certainties and sometimes the error quoted in the
compilation is larger than in the original experi-
mental paper for this reason.

Sometimes the actual error made in the stopping
power is larger than the canonical value of 15%.
This is illustrated in Table II for the —, level in

Na. The small value of ~=65+15 fs obtained by
Meyer et al. lies outside the average given by
Endt and Van der Leun by more than 15%. How-
ever, Anttila et al. ' have reanalyzed the Doppler
shift data of Meyer et al. using a better calibration
of the stopping power parameters and obtain a life-
time of 102+25 fs in agreement with the average.
This case may represent an extreme example of the
systematic errors which arise in the analysis of
DSAM experiments, but it illustrates the basic
problem that in some cases the assumption of 15%
uncertainty is an underestimate. In contrast to
neutron-rich nuclei such as Na, the proton-rich

nuclei can be reached by only a few reactions and
the possibilities for cross checks are reduced. Thus
we feel that the experimental errors on some DSAM
lifetimes, especially those for light-ion induced
proton-rich transitions, have been underestimated.
This may be the reason for some of the disagree-
ments between theory and experiment in Table I in

particular for those involving the Al( —, )z,

P( —, )&, Cl (—, )&, and the Ar (2+)~ states.

It would be highly desirable to improve the relia-
bility of the lifetimes in proton-rich nuclei. This
might be accomplished by a systematic reanalysis of
the DSAM Doppler shift data making use of the
best available stopping power theories and experi-
mental stopping power parameters. New experi-
ments could also be performed making use of the
higher recoil velocities (-5% v/c) obtainable with
light target-heavy beam combinations. At higher
recoil velocities the stopping power theory is more
reliable. Several such experiments have recently
been carried out (Refs. 8, 9, 12, 14, 16, 18, and 19).
Also, more experiments are recommended where
the lifetimes are measured in both members of the
mirror pairs in the same experiment such as in Ref.
12.

D. Isoscalar or isovector dominance'

As can be seen in Table I, the Mz values for only
two of the transitions of interest are predicted to
change sign as a function of Tz, the A =30 and
A =34 2'~0 transitions. Empirically, however,

~M~(Tz)
~

vs Tz for Tz —1,0, +1 is——linear for
the A =30 2'~0 transitions, which means that the
empirical isoscalar matrix element is significantly
larger than predicted and that the empirical isovcc-
tor matrix element is given by the difference in Eq.
(10) (as in the usual case). Thus for the A =30
2'~0 transition bM&(exp) = —1.55+0.30. The sit-
uation for the A =34 2' —+0 transition is not clear
since the Tz ——0 strength is not measured. Thus
there are two possibilities bM~ (exp) =—l. 1+0.3 or
+ 3.8+0.3. In the comparisons below both possi-

bilities will be considered. Allowing for an isoscalar
correction of Mo (5 fm for these 2'~0 transitions
it is easy to bring the signs of b,kf~ (exp) and b1lfz
(th) into agreement, and the "M~" values for these
transitions will be treated as negative numbers in
the comparison of theory and experiment. Hadron
inelastic scattering experiments on S would help
to determine the relative sign of the proton and neu-
tron matrix elements.
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IV. COMPARISON OF EXPERIMENTAL
AND THEORETICAL VALUES OF E2

ISOVECTOR MATRIX ELEMENTS
OBTAINED WITH HARMONIC OSCILLATOR

RADIAL WAVE FUNCTIONS

A. Data considered

In discussing the relationship of experimental
values of Mi to the calculations presented here, it is

convenient to define several categories of transi-
tions. Purely from an empirical standpoint, transi-
tions may be classified as to whether or not the iso-
vector matrix element is determined to "useful" ac-
curacy. We have chosen for this criterion an uncer-

tainty limit of 2 efm. In Fig. l experimental
values of Mi from Table I which meet this accura-
cy criterion are plotted on the vertical axis and the
corresponding theoretical value A ~ on the horizon-
tal axis. If all of the points lie on a straight line it
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e„—e„=1. The two crosses for the A =34 (2'~0) transition are due to the experimental ambiguity discussed in Sec.
III D.
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is unlikely that this is accidental, and we can
reasonably conclude that the shell model calculation
of A i is accurate for all of these transitions. In this
case the value of the isovector effective charge

e&
—e„ is state and mass independent and the nu-

merical value can be obtained from the slope of the
line. 9+ s+

The A =19, —, —, datum is included in Fig.
1 even though it experimental error exceeds our lim-

it of 2 e fm because it constitutes one of the largest
calculated sd-shell isovector matrix elements which

is experimentally confirmed. On the other hand the
A =30, 23+, T =0~0&+,T =1 and A =38,
2+~, T = 1~1~+,T =0 data are not included in Fig. 1

even though their experimental uncertainties osten-

sibly satisfy our accuracy criterion. These experi-
mental values are quite large in the context of the
isovector E2 systematics while the corresponding
theoretical values are quite small. The theoretical
values depend upon the wave functions of J =1+
and 2+T =0 states in double-odd systems and such
wave functions typically are not as reliable in detail
as are the general run of model states. At the same
time, the experimental values upon close analysis do
not appear as securely based as are the typical data
included in Fig. 1. We conclude that while these
data, if correct, may point to significant limitations
to the generality of our mode of analysis, their in-
clusion could contribute a possibly spurious corn-

ponent into our assessment of the dominant trend
of the phenomena.

B. Intruder state contamination

From the theoretical standpoint, the entries in
Fig. 1 may be classified according to whether the
actual nuclear state(s) involved in the transition
have the prevailing mapping onto the model wave
functions or, rather, appear to contain anomalously
large extra-model-space ("intruder state") com-
ponents. If a transition is significantly contaminat-
ed with intruder-state components, its analysis with
the present model wave functions will yield results
which are incommensurate with the dominant por-
tion of the data. The only state represented in Fig.
1 which appears to have non-(sd)" components sig-
nificantly greater than the average run of states
considered is the 2 = 18, 2+i, T = 1 state. Part of the
evidence for its anomalous character is the factor of
2 enhancement of the measured 2+,T= 1

~0+,T=1 M& value over the calculated value.
The character of the 2+, T =1 state presumably af-
fects both the 2+—+0+ and 4+—+2+ data.

Nonetheless, the agreement of the theoretical M~
values of these transitions with experiment is con-
sistent with the general trends of the rest of the
data, which may be either accidental or indicative
that the isovector transition component is less sensi-

tive to configuration admixtures typical of the
shell-crossing excitations than is the isoscalar.

C. Proton binding energy affects

Another criterion by which the entries of Fig. 1

(and Table I) can be classified is the extent to which
the experimental state is bound to proton emission.
For well bound states, the harmonic-oscillator
prescription for single-particle wave functions is not
significantly different from, and is stably related to,
alternate finite-well prescriptions. As the binding
energies become small, however, these prescriptions
diverge and the relevance of theoretical estimates
based on the harmonic-oscillator prescription be-
comes questionable. The quantitative specification,
let alone the solution, of the problem just qualita-
tively described is not straightfoward. We will dis-

cuss the issue in Sec. V. Here we note the general
classes of transitions, together with some specific
examples, for which these problems should be most
acute. The nuclei which consist of an integral num-

ber of alpha particles plus a proton have the small-

est proton binding energies, ranging from 0.1 to 2.5
MeV. The double-even nuclei with two excess pro-
tons are better bound but some states of interest
come close in energy to the proton thresholds in
these nuclei, which range from 1 to 6 MeV. Specif-
ic cases in Fig. 1 which are suspect because of small

&+ s+
proton binding energies are the A =17 ( —, ~—, ),
A =18 (4+~2+), and A =25 ( , ~ ,—)—
[The is i&2 proton state is more susceptible to bind-
ing energy effects than are the d5~2 and d3/g states
because of the I (I + 1) dependence in the centrifugal
barrier. j

D. Apparent discrepancies

The two largest relative discrepancies between
theory and experiment evident in Fig. 1 are for thes+ 1+
transitions A =29 (—, ~—, ) and A =34
(2+~0+). The A =29 case involves a theoretically
negative value of bM& [the P B(E2) is calculated
to be smaller than that of Si] while the experimen-
tal magnitudes are reversed. The calculated and
measured values of Mz for Si agree to within 5'f/o

and from this and other evidence there is no obvi-
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ous reason to question the general features of the
wave functions. Confirmation of the P lifetime
and/or a test via inelastic scattering seems ap-
propriate before attaching excessive significance to
this single instance of "sign reversal. " The A =34
datum rests on a seemingly well-measured S Mp
and much less precise Cl and Ar values which
are each two standard deviations larger than the S
value. Theory predicts a very small isovector term,
such that the three isobars should have essentially
the same value. There has been a tendency for such
differences between neutron-rich and proton-rich
systems to diminish with more precise measure-
ments on the proton-rich side. ' '

V. Effects due to the finite-we11 potential

In this sation the important effects due to the
differences between harmonic oscillator and finite-
well potentials are explored in some detail. In prin-
ciple, the calculations can be carried out for all
transitions considered in Table I; however, for our
purpose it will be sufficient to consider the transi-
tions shown in Fig. 2 which are selected because
they have small experimental error bars or are in-

teresting because they have negative or large AMp
values. The theoretical modifications to the core-
polarization charges in finite potentials are dis-
cussed in Sec. V A. In Sec. V B a potential which is
more general than the usual local Woods-Saxon
(WS) form is given and the parameters are discussed
in Sec. V C. Finally in Sec. V D a comparison with
experiment is made.

A. Modifications to the effective charge
model

Equation (11) for the model-space transition ma-
trix element, with the single-particle matrix element
written out in terms of its angular and radial in-

tegrals, is

where 6 is the ratio,

(21)

and

(22)

Thus, we will formulate the effects of finite-well

depth and the Coulomb potential upon our model-
space transition matrix elements in terms of correc-
tion factors G which are ratios of the finite-well
matrix elements of r to the harmonic oscillator
(HO) results for these quantities.

In the harmonic oscillator limit (G =1) the pro-
ton and neutron radial matrix elements are equal,
and hence, as in Sec. II,

A' „' (T =T)=A„' ' (T = T) . —

However, due to the effects of the Coulomb poten-
tial in a well of finite depth the (j Ir

I
j')z are

larger than the (jlr Ij')„and the equations in.

Sec. II derived under the assumption that the wave
functions have good isospin are not valid; rather
Eq. (20) must be evaluated separately for each Tz
value.

For a single-particle (or hole) transition in the
model-space (Di =+1) the first-order corrections to
Ar can be expressed as a sum over the product of
two-body matrix elements and E2 matrix elements
between proton particle-hole excitations as given,
for example, by Eq. (16.72) in Ref. 27. Because of
the selection rules for the E2 operator (exact in an
oscillator model and approximate otherwise) the
particle-hole state can only have the hE =2 com-
ponents (s) '(sd)" +', (p) '(sd)"(fp)', or
(sd)" '(fdg)'. The total matrix element will be a
sum over j and j ' in the model space of the unrenor-
malized bare amplitude plus first-order corrections
5A~ ~ due to excitations of particle-hole nucleons a'
via the valence nucleon a; e.g., for the proton ma-
trix element

(208)

A&(Tz) =+Ga(r,jj ')A' '(jj '), (20b)

The subscript a =p/n on the radial integral indi-
cates the radial wave functions are those of the pro-
ton or neutron. It is convenient to rewrite Eq. (20a)
in the form

Mr ——QM~ (jj'),

where

In the following formulas for Mp the subscript u'
on 5A ~ will be suppressed.

In the many-body valence system 5A~(jj') is ex-
actly proportional to D (jj '), and hence, to A (jj ')
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G [k(r),J'J'] (s)

G (
i ,

)
a Jj5e ( "}, (23)

as long as the core excitation connects only to one
of the valence particles. The first-order corrections
connecting two valence particles (the two-body ef-
fective charge }, is relatively small and will be ig-
nored. The remaining orbit and mass dependence in
the ratio 5A (jj')/A (jj') is related to the nature of
the effective residual interaction connecting the
valence particle to the particle-hole state of the core.
Our aim here is to make as explicit as possible how
this state and mass dependence is related to the
properties of the valence wave function, in particu-
lar to its rms radius. The analytic results which can
be obtained with 5 function and Q.Q interactions
are useful.

For a 5-function residual interaction,

5A' '(jj') (j ~

k(r) ~j')
A (jj') (j (r ~j')

dence of ps(r) in Eq. (24) on mass. The state and
mass dependence of the effective charge obtained
with the Kuo-Brown 6-matrix interaction is very
close to that of 5e' ', compare in Ref. 30 the 5e' '

given in Table I and the 5e '" give in Tables 10 and
11. In both cases the effective charges are expected
to increase by a factor of 2 in going from A =17 to
A =39. However, it is found empirically that the
isoscalar effective charges are to good accuracy
state and mass independent. This is apparent from
the agreement between theory and experiment in
Tables I and V, where the effective charges utilized
in the theory have been assumed ab initio to be state
and mass independent. This suggests that the effec-
tive interaction Q Q is more realistic and we will

concentrate in the discussion on results based on
Eq. (27). Also, because it lends itself to a simple
graphical representation of experiment versus
theory, we will utilize a model which lies between
the 5 and Q.Q results of Eqs. (26) and (27) which
we will call "Q Q+5."

where

(j ~k )j(' )

and

k(r)=r dps(r)/dr .

(24)

5A'Q Q+ '(jj')=5A'" '(jj')5e (28)

where for simplicity the state and mass dependence
of 5e~ will be ignored.

Summing over j and j ' and taking the difference
&If~ defined by Eq. (9), the following linear equa-
tions in e~ —e„can be obtained

The constant E~ only depends on a and ps(r) is the
ground state proton density. From numerical cal-
culations of the k(r} and r radial integrals with
Woods-Saxon wave functions (see Tables 4, 5, and 7
of Ref. 30), we find empirically

and

aM,(Q Q'=(e, e„)},—+y,

g~(Q Q+s)
( )~(HO)+

p 5 p P2

(29a)

(30a)

6~[k(r)Jj']=[G~(r,Jj')]'
and hence

5A"'(ii') =A. (ii ')5e."'(Ji ')[G.(r'ii ')] '
=A' '(j'j '}5e' '(jj')

X[G.(r'ii'}l '.

(25)

(26)

where

[M +bA„]
y0= (e~+e„),

2

[bA~ —M„]

(29b)

(29c)

On the other hand, if the effective residual in-
teraction has the form Q.Q, where Q =r Y& ', 5A

can be obtained by putting k(r) =r in Eq. (23) and
an effective charge which is completely state in-
dependent can be defined,

and

},=[~,—m(Ho)], (30b)

M ~ = [Agg ( Tz =T) —A(g ( Tz = —T)]/6 Tz
5A'Q'Q'(jj ')=A (jj')5e

=A' '(jj')5e G (r,jj') . (27)

The effective charge 5e' ' depends not only on j
and j' but also on mass number through the depen-

In the harmonic oscillator limit
'=M') ' and Eqs. (18), (29a), and (30a)

are identical. The quantity y0 has been calculated
with e~+e„=1.7 and is usually small (less than 0.2
fm ) except for A & 19.
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B. Form of the potential

The Skyrme-type two-body interactions used in
Hartree-Fock calculations for spherical nuclei '

lead to a spherical nonlocal potential with eigen-
functions 4', (r} and eigenvalues e, which can be ob-
tianed from the following equivalent equation
which involves a local energy-dependent potential

i(i + 1)
z%'L(r) + 2

'PL(r)+VI(r, e )qIL(r)=e qual(r),
2m dr 2m r

(31)

where

VI (r,e, ) =[1—m'(r)/m]e + Vo(r)

+ v,.„i(r), (32}

m*(r) =
I 1+C [p (r)+p„(r)]

+C, [pp(r) —p„(r)]] (33)

%,(r) =[m "(r)/m]' VL, (r) . (34)

2m

16

The potentials Vo, V~, and V„can also be ex-

pressed in terms of the densities and the Skyrme
parameters. However, here we will assume a
Woods-Saxon form for these (for the present results

Vi does not enter since N =Z), so that

V, (r) =U, II+exp(r —r@'")/a, I
-'

and

V„(r}=U„—1d
r dr

(36a)

X I 1+exp(r r„A '~ )/a„I ' . (36b)—

The spin-orbit parameters were fixed at V„=12
MeV, r„=ro, and a„=ao. The Coulomb potential
was derived from the standard uniform density ap-
proximation [Eq. (25} in Ref. 30].

The form of Eq. (32) implies a self-consistent

In these equations the + refers to the potential for
protons/neutrons.

In terms of the Skyrme parameters ti and t2 the
coefficients in Eq. (33) are given by

2m 5t2+3t
g2

I

iteration since rn*(r) depends on p(r) which itself
depends on the potential. However, it is sufficiently
accurate to replace the p(r) needed for m*(r) by
Fermi distributions which are constrained to give
the experimental rms radii and to have a diffuseness
of 0.5 fm.

In the limit when m*(r)/m = 1 Eq. (32) goes into
the local Woods-Saxon potential. In nuclear matter
m'(r)/m is less than unity due to the nonlocality of
the two-body interaction and realistic two-body in-
teractions " give a nuclear matter value of
m'/m =0.6—0.7. However, in finite nuclei there
are additional corrections due to coupling with core
vibrations which tend to increase m*/m. It is
theoretically expected that m*/m increases to near
unity for single-particle states near the Fermi sur-
face and smoothly goes to the nuclear matter value
for deep hole states. Empirically this has not been
confirmed for a given nucleus. The most that is
known is that m'/m=0. 6 is required for deep
holes states in /ight nuclei (see below and Table III)
and that m*/m =1.0 is required for states near the
Fermi surface in heauy nuclei (such as Pb). Since
we do not know how to solve the Schrodinger equa-
tion when m'(r}/m itself depends on energy, results
for two different types of potentials will be present-
ed: for a "local WS potential" when m'/m =1
(Co=0), and for an "energy dependent WS poten-
tial" which has m"(r =0)/m =0.6 with Co ob-
tained from the parameters ti ——572 MeVfm and
t2 ———32.8 MeVfm which belong to the continu-
ous family of Skyrme potentials obtained by Beiner
et al."

C. Parameters of the potentials

Parameters of both the "energy dependent" and
"local" WS potential are chosen independently for
the *'closed shell" nuclei ' 0 and Ca to reproduce
the properties discussed below. Then a simple inter-
polation is used to obtain their parameters for other
sd shell nuclei.

For X =Z nuclei there are four parameters to be
determined: Uo, ro, ao [Eq. (36)], and Co [Eq. (35)].
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TABLE III. Single-particle properties of ' 0 and ~Ca.

]6O

Potential

Harmonic Local Energy

oscillator WS dependent WS

Exp

Ca

Potential

Harmonic Local Energy

oscillator WS dependent WS

Exp

0$1/2

Op3/2

Op]/2

Od 5/2

1s]/2

2.17

2.80

2.80

3.31

3.31

2.08

2.69

2.68

3.49'

4 17"

(r )' 2(fm) 2.726 2.716
(r )' (fm) 3.018 3.038

p (r =0} (fm } 0.071 0.067

(A) Properties of the charge distribution

2 716 2 720(4) (r2) &n(fm) 3.479

3.038 304(4) (r )' (fm) 3.810
0.080 0.075(2) p (r =0) (fm ) 0.106

(B} Neutron single-particle rms radii (fm)

1.94 0$1/2 2.40
2.71 Op 3/2 3.10

2.77 Op]/2 3.10

3.69 3.46(12) Od 5/2 3.67

4.56 4.20(15) Od3/2 3.67

1$1/2 3.67

Of7/2 4.16

lp3/2 4.16

(C) Proton single-particle energies (MeV)

3.477

3.831

0.097

2.42

3.03

2.99
3.54

3.51

3.57

4.06'

4.44

3.477

3.831

0.097

2.30
2.95

2.92

3.57

3.61

3.75

4.28'

4 79m

3.483(3)"

3 83(4)

0.088(2)'

3.89(12)"

4.27(8)"

0$1/2

Op3/2

Op]/2

Ods/2

1$]/2

27.9
14.9
11.6
1.9
0.1

42.1

18.1

13.4
0.6
0.1

42(10)

18.4~

12.1]t

0.6g

0.1~

0$1/2

Op3/2

Op 1 /2

Od5/2

Od3/2

1$1/2

Of7/2

31.2
21,7
19.9
11.5
7.9
8.6

50.5
32.3

t

28.7 I
15.3

8.8
10.6
1.1

46—58'

26—42'

17'

8.3]t

'Reference 36.
References 37 and 38.

'The potential depth was adjusted slightly to reproduce the Od 5/2 binding energy of 4.14 MeV.
BE ( 1$]/2) =3.27 MeV reproduced (see c).

'Reference 39 and Table 14 in Ref. 40.
Reference 41.

~Based on the binding energies of the lowest levels of each spin in A =A, +1 nuclei with A, = 16 or 40.
"Reference 42.
'Reference 43.
"Reference 44.
'BE (Of7/2) =8.36 MeV reproduced (see c).
BE (1p3/2) =6.42 MeV reproduced (see c).

For the two choices of the values of rn'/m or Co
discussed above in Sec. VB, the remaining three
parameters were chosen to reproduce exactly the
(r )'/ and (r )'/ charge radii and the binding
energy of one valence proton orbit (ls~/2 for ' 0
and Of7/p for Ca). The charge density is related
to that of the point nucleons as described in Ref. 40.
Some properties of ' 0 and Ca obtained with
these potentials are given in Table III.

The energies of the deep hole states are in much
better agreement with an energy dependent potential

(WSE) than with the local potential (WSL). Rela-
tive to the WSL potential, the %SE potential yields
deeper binding, and hence smaller rms radii of the
inner orbits. Consequently, it also yields valence or-
bits which have relatively larger rms radii, in order
that the average rms remain the same. These larger
valence radii from the WSE potential are, however,
too large compared to the values obtained for
valence neutron radii from analyses of sub-Coulomb
one-nucleon transfer reaction experiments (see Table
III). The local potential gives valence radii in much
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TABLE IV. Calculated and experimental rms charge radii (fm).

Exp
WSL'

potential

WSEb

potential

Fixed A —+A —1 separation energy
WSL' WSEb

potential potential

16O

zoNe

Mg
2&S~

32S

Ar
Ca

2.720(4)'
3.020(20)
3.035(18)
3.125(3)'
3.263(2)d

3 399(5)
3.483(3)'

2.716
3.001
3.130
3.238
3.336
3.411
3.477

2.716
3.035
3.169
3.258
3.354
3.421
3.477

2.716
2.871
3.009
3.147
3.266
3.365
3.477

2.716
2.875
3.018
3.168
3.304
3.411
3.477

'Local Woods-Saxon.
"Energy dependent Woods-Saxon.
'Reference 36.
See Table III in Ref. 4.

'Reference 42.

better agreement with these data but deep hole
states which are not bound enough. (Comparison
with these valence radii is important of course be-

cause the model-space E2 matrix elements are
directly proportional to the valence rms radii. ) At
present we cannot resolve these inconsistencies and
will take two points of view:

(i) The energy dependent potential is correct and
there is at present some unknown problem in the
method of extracting valence radii values from
one-nucleon transfer data.

(ii) The energy dependent potential is incorrect
for reasons that may be related to the effects of core
excitations, and hence, one should use the local po-
tential simply because it gives fairly good agreement
with valence radii obtained from one-nucleon
transfer.

Xo ——X~+XbA (37)

The radial wave functions were calculated with
the local (WSL) and energy dependent (WSE)
Woods-Saxon potential parameters for the even-

even N =Z sd shell nuclei. The rms charge radii
for these nuclei are compared with experiment in
Table IV. The total point densities used for the
charge distribution were obtained by weighting the

The parameters of the potential turn out to be simi-
lar for ' 0 and Ca with the WSE potential (Up,
rp, gp)=(49.0, 1.27, 0.64) for 0 and (48.3, 1.27,
0.76) for ~Ca. With the WSL potential (Up, rp,
ap }=(49.6, 1.31, 0.53) for '60 and (52.4, 1.26, 0.72)
for Ca. The extrapolation to other sd shell nuclei
was obtained with a mass dependence for X= U, r
or a given by

radial probability distribution of each orbit by the
ground state (Odq/q, lsi/i Od3/2) occupation num-

bers calculated with the Chung-Wildenthal wave
functions (the occupations in the lower and higher
major shells were assumed to be 2j+1 and 0,
respectively). The calculated rms radii are sys-
tematically larger than experiment for both WSL
and WSE potentials. The main reason for this is
that the eigenenergies of the spherical potential
represent the Hartree-Fock centroid energy of all
(sd}" configurations which are typically spread over
several hundred MeV. Because of correlations the
ground states in the N =Z open shell nuclei are
more tightly bound and hence the rms radius is
smaller. The effect of this can be estimated by ad-
justing the spherical potential depths to reproduce
the binding energy difference between ground state
of the nucleus with mass A and the centroid of lev-
els in the A —1 nuclei whose summed spectroscopic
factors for a given nlj value is the occupation num-
ber. The results of such calculations are shown in
the last two columns of Table IV. For both WSL
and WSE potentials the rms radii are significantly
reduced and brought into fairly good agreement
with experiment.

Similarly, for the E2 transitions each [aj &(ai ] in
Eq. (13) can be factored into A~A —1 fractional
parentage coefficients [e.g., Eq. (14.22) in Ref. 27]
to determine the appropriate separation energies for
j and j'. However, to actually carry this out for all
of the transitions we consider at present is much too
laborious. Rather in most cases the transitions in
the nuclei A —1, 3+1, and 3+2 are calculated
with the radial wave functions obtained with the
spherical potential for the even-even nucleus A.
Two exceptions are made in cases where the transi-
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TABLE V. E2 Matrix elements with finite-we11 potentials.

J;~Jf A, Z

Harmonic

Ap

(fm2)

oscillator

A„
(fm2)

Ap

(fm2)

A„
(fm )

Potential

Local

Ap

(fm }

Energy

dependent

A„
(fm )

Exp'

Mp

{fm )

Mp

(fm )

M„
(fm )

Theory'

5&
2 2

5. 1

2 2

9 5

2 2

2~0
T=1~0

1 5

2 2

2~0

2' —+0

1 5

2 2

5 1

2 2

2—+0

3' 3

2 2

2~0

2' —+0

2~0
T=1~0

2—+0

17O

17F

18O

"Ne
18p

' Ne
19F

"Ne

19F

"Ne
"Ne

Mg

'Al

Mg

Mg
26Si

A1

27Si

"Si
29p

"si
30S

"Si
30S

33S

C1
34S

'4Ar

34S

'4Ar

Ar

Ar
"Ca

0.6

6.5

10.4
0.4
9.8
5.2

10.0

6.2

14.3

1.6

0.54

3.40

10.7

7.3
1.2
7.0
4.1

6.7
11.4

10.0
9.6

10.2
—3.9

1.8
5.0

4.2
8.2
8.5
3.0

—3.3
2.0

7.3
0

6.5

0.6
10.4
2.6
9.8
0.4

10.0

5.2

14.3

6.2
—1.6

3.40

0.54

7.3
10.7
7.0
1.2
6.7

4.1

10.0

11.4
10.2
9.6
1.8

—3.9
4.2

5.0
8.5
8.2

—3.3
3.0

—2.0

0
7.3

0.8

10.5

3.3
13.2
0.5

12A

6.2

11.8

7.2

16.6

1.7

0.61

4.63

11.9
8.2
1.3
7.9
4.6

7.4
12.4

10.3
11.2

—4.2
2.0
5.2

44
8.6
8.9
3.3

—3.5
2.0

7.3

8.4

0.7
11.4
2.8

10.7
0.4

10.6

5.5

15.0

6.5
—1.5

0.58

7.7
11.2
7.4
1.2
7.0

4.3
10.4

11.7
10.4
9.8
1.9

—3.9
4.2

4.9
8.4
8.0

—3.3
3.0

—1.9

6.9

1.0

12.4
3.7

15.1

0.6
14.2

7.4

14.2

8.6

19.7
1.8

5.33

13.1
9.3
1.5

4.9

8.2

13.9

12.5

12.8
—4.8

2.5

5.8

5.0
9.6
9.1
3.9

—3.9
2.1

7.6

10.5

0.9
13.5
3.3

12.7

0.5
13.0

6.8

18.1

7.9
1.7

0.62

8.8

12.4

1.4

7.8

4.7
11.8

13.2

10.9
2.3

—4.5
4.7

5.5
9.3
9.9

—3.7
3.6

—2.0

7.2

3.55(2)

11.26(12)

6.8(2)

15.9(7)

5.5{2)

15.1(10)

11.3(7)

15.6(2)

13.8(5)

23(3)
1.30(15)

2.21(2)

5.13(4)

17.6(3)

18.8{9)

3.0(2)

6.0(7)

8.7(2)

10.6(6)

17.6(3)

21.0(12)

14.2(4)

18.2(8)

6.5(3)

3.4(3)

10.2(9)

8.6{17)

14.0(3}

21(3)
4.9(2)

2.8(5)

1.6(4)

11.2(3)

4.7

12.4
8.9

16.4

14.4

11.9

16.1

15.0

22.1

1.3

5.6
17.1

14.5

4.9
9.6
8.4

10.5

19.0

18.0

17.2
—4.0

0.6
7.8

7.3
13.7
13.8
2.3

—2.6
1.4

8.3
3.1

10.0

5.5
14.6
9.2

12.5

6.0
15.0

11.6

20.5

14.9
—1.0

2.8
14.2
16.6
9.1

4.9
10.1

8.3

17.5

18.5

16.6
16.3
0.3

—3.6
7.4

7.6
13.5
13.2

—2.3
1.9

—1.3

3.3
7.9

'Obtained with the "ZBM" basis, see text, Sec. V D.
From Table I.

'Local potential and "Q Q" model with e~ = 1.15 and e„=045 M~ A~. e~.+A„e„and M„=Ace„+A„e~.
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tions are particularly sensitive to separation energy
and have relatively very small experimental errors:

1+ 5+
(i) The A =17 —, ~—, transitions were calcu-

lated with proton and neutron separation energies
based on the experimental binding energy differ-
ences between the A =17 and the ' 0 ground state.1+ 5+

(ii) The A =25 —, ~—, transitions were calcu-

lated with proton and neutron separation energies
based on the experimental binding energy differ-
ences between the A =2S states and the Mg
ground state, since the Mg ground state accounts
for most of the A~A —1 fractional parentage of
these states.

D. Comparison of experiment and theory

The radial wave functions obtained as described
in Sec. VC are combined with the coefficients
Di„(jj') as in Eq. (20) to obtain the amplitudes
A (Tz) given in Table V. In order to obtain an x-y
plot that is linear in (ez —e„), these amplitudes are
combined according to Eqs. (29) and (30) and then
plotted (in Fig. 2) in the form yi vs bJlfz'" ' yo-
for the "Q Q" model, and bA~

' vs 4M&'"~' y2-
for the "Q Q+5" model.

Given the large weight of the A =17 and 18 tran-
sitions in determining the isovector effective charge,
effects due to admixtures of nonclosed shell com-
ponents of the ' 0 core (beyond the b,N =2 excita-
tions taken into account by the effective charge)
have been estimated. The coefficients D~ were cal-
culated in a complete basis of (Opia, Od5~2, Isis)'
using the Reehal-Wildenthal interaction. This
basis will be referred to as the "ZBM" (Zucker,
Buck, and McGrory ) basis. The ZBM basis pro-
vides a good description of the low lying states in
' 0 with configurations up to 4p-4h relative to the
closed shell. The Di„coefficients involving the
Od3/2 orbit were taken from the sd shell calcula-
tions. The matrix elements A~ in the ZBM and sd
basis are compared in Table VI. In Fig. 2 points
obtained with the ZBM calculations are shown with
open circles. The differences between the sd and
ZBM results for the isovector matrix elements is
not very large, as can be seen by comparing Figs. 1

and 2, and these effects will even be less important
forA &19.

For the data in Fig. 2 we have not attempted to
make a least squares fit to e& —e„. Rather we sim-

ply show the lines corresponding to the values for1+ 5+
ep —e„which match the A =17 —, —+ —, transi-
tion. The agreement between experiment and

TABLE VI. Comparison between sd shell and "ZBM"
model-space amplitudes (harmonic-oscillator radial wave

functions).

Ap

(fm2)

A„

(fm )

ZBM

Ap A„

{fm ) {fm )

1 5 0
2 2

0 180

4 2 '0 11.6

0.6 6.5

2.6 10.4

0.4 9.8

theory is a little better with the finite well potentials
than with the harmonic oscillator but it is clearly
not easy to judge which finite well potential or
model is best.

The four transitions 2 =26 (2—+0), A =29
5

( —,~—,), A =30 (2~0), and A =34 (2~0) are al-

ways in relatively poor agreement with theory and
hopefully future improvements in the experimental
situation, or future modifications to the theory, will
resolve these discrepancies. The most significant
improvement in going to the finite well potentials
and the resulting smaller isovector effective charge
is in the agreement for the A =30 (2'~0) transi-
tion. As discussed in Sec. IIID, there is an ambi-
guity about which sign to use in Eq. (10) for the
2 =34 (2'~0) transition resulting in two values
both of which are shown in Fig. 2. The smaller
value is in better agreement with the systematics.

/

VI. DISCUSSION AND CONCLUSIONS

The present study has utilized experimentally
measured strengths of electric quadrupole transi-
tions between matched pairs of levels in isobaric
analog nuclei of the sd shell in an attempt to deter-
mine the basic properties of isovector E2 phenome-
na in the low-excitation region of light nuclei. As
we have discussed, the requirements for extracting
useful information on isovector E2 strengths from
the raw data are (1) enough data, of good precision,
to establish unambiguous trends and (2) a theory
adequate to understand the underlying foundations
of the experimental observations.

Our theoretical analysis naturally factors into
three components: (1) many-body configuration-
mixed shell-model predictions for the microscopic
one-body transition densities, (2) a theoretical
description for the radial wave functions of the
model-space nucleons, and (3) an overall scale fac-
tor, the isovector effective charge, which serves to
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renormalize the model-space result for the omission
of many highly excited configurations so that abso-
lute agreement with experiment is obtained.

There is some uncertainty in the theoretical
description for the radial wave functions associated
with the effective mass or the energy dependence of
the potential. As discussed in Sec. V conventional
Hartree-Fock theory predicts rms valence neutron
radii in ' 0 which are too large compared with
those deduced from analysis of sub-Coulomb one-

nucleon transfer reactions. Ideas have been pro-
posed which may explain this discrepancy but
they have yet to be developed to a stage for practi-
cal application. Given this situation we have made
comparisons on two levels. First, all matrix ele-

ments were calculated with harmonic-oscillator
wave functions with a radius parameter which is
the same for all neutrons and protons within an iso-
baric multiplet but which is determined indepen-
dently for each mass value by fitting to the mea-

sured rms charge radius of the most stable nucleus
in each mass chain. Second, a selected number of
matrix elements were calculated with two types of
finite-well potentials; an energy dependent potential
which has a realistic (conventional) effective mass
and a local potential which does not have a realistic
effective mass but does reproduce the valence neu-

tron rms radii.
The analysis we have presented divides into two

levels. On the first the configuration mixed shell-

model predictions can be tested by the harmonic os-
cillator calculations with an empirical isovector ef-
fective charge that turns out to be ez —e„=1.0.
These results are given in Table I, plotted in Fig. 1,
and discussed in Sec. IV. On this level the experi-
mental E2&v matrix elements are reproduced re-
markably well, with some exceptional cases which
may be due to the experimental uncertainties dis-
cussed in detail in Secs. III and IV.

On the second level we have focused on the
"best" value for the isovector effective charge. We
note that the theoretical isovector effective charge is
dependent on the radial wave functions as well as
what is assumed about the "radial dependence" of
the effective E2 operator. Owing to the radial
dependence in the effective operator, variations of
as inuch as a factor of 2 between different orbits
and different masses in the sd shell are found with
calculations based on realistic two-body interac-
tions. (See, for example, Tables 10 and 11 in Ref.
30.) However, the empirical effective charge, as de-
duced from the strong transitions in nuclei with
3 ) 19, varies from a constant by less than about

10%. This can be seen by comparing the theoreti-
cal M~ values based on constant values for e~ and
e„with the experimental values in Tables I and V.
This implies that the radial dependence of the effec-
tive E2 operator is the same as that of the bare
operator, namely r . This result would naturally
arise if the effective interaction has the form Q Q.
We will base our main conclusions on the Q Q
model. For comparison, in Sec. V A in Fig. 2 a for-
mulation and results based on a model which is iter-
mediate between a short range and Q Q interaction,
the Q Q+5 model, are also given.

From Figs. 2(d) and (f) it can be seen that most
experimental data are, within experimental error,
consistent with a constant isovector effective charge
of 0.68(0.58) with the local (energy-dependent) po-
tential. We suggest that the deviation for A =29
may be due to the experimental lifetimes of the

5 +
lowest —, states [in fact, one of the most recent in-

dividual lifetime measurements of ~( P
) =465+60 (Ref. 48) gives Mz ——18.5+1.2 com-

pared to M~=21.0+1.2 derived from the omnibus

average lifetime from Table I and the theoretical
values of 18.0 from Table V]. The systematic devi-

ation of the 2~0 and 2'~0 isovector transitions in

A =26, 30, and 34 is more indicative of a failure in
the Chung-Wildenthal wave functions, since several
of the lifetimes and branching ratios involved have
been remeasured very recently. ' ' ' ' However,
experimentally there is still the ambiguity in the re-
lative signs of the A =34 2'~0 transitions, as dis-
cussed in Sec. III D, and it is hoped that this can be
resolved by hadron inelastic scattering experiments
on S which are sensitive to both neutron and pro-
ton components of the transition.

In most previous shell-model calculations for
light nuclei the isovector effective charge has been
"determined" or fixed to be close to free nucleon
value, ez —e„=1 (see, for example, Ref. 49). This is
usually because harmonic-oscillator wave functions
were used and jor because the matrix elements con-
sidered were predominantly isoscalar and hence
were not sensitive to the isovector effective charge.
In Ref. 30 the E2 transitions in nuclei with A, +1
and A, +2 around the closed shells A, =' 0 and

Ca were calculated with finite-well potentials.
These potentials were effectively energy dependent
since the potential depths for each orbit were con-
strained to reproduce the empirical separation ener-

gies (as given in Table 3 of Ref. 30). Hence, it is
not surprising that the value of e~ —e„=0.60 ob-
tained for A =18 iri Ref. 30 is essentially the same
as the results from the present work with the
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energy-dependent potential (ez —e„=0.58). An im-
portant new result from the present study is that
isovector transition strengths in all nuclei in the re-
gion A =16—40 are consistent with this quenched
isovector effective charge. Shell-model calculations
for A &40 are restricted to truncations even within
the major oscillator shells, and hence, it is not par-
ticularly meaningful to compare the empirical ef-
fective charges needed for these calculations with
our present results. However, it is interesting that
some quenching of the isovector effective charge

(e& —ea =0.8) is deduced for transitions near
2PsPb. (The dependence of the effective charges
on X and Z for heavy nuclei has been discussed in
Refs. 51 and 53.)

The isoscalar effective charge is much easier to
determine than is the isovector since most of the
transitions in the sd shell are predominantly isoscal-
ar and also there are many strong T =0—+0 transi-
tions which are purely isoscalar. With harmonic-
oscillator wave functions the isoscalar effective
charge is quite state and mass independent and has
a value ez+e„=1.70. From a comparison of the
theoretical quantities A~+A„obtained with
harmonic-oscillator and finite-well potentials in
Table IV, we can see that the corresponding empiri-
cal values based on the finite-well potentials are
about ez+ e„=1.65(1.60) for the local (energy-
dependent) potential.

The renormalizations of the effective charges
from the free-nucleon values ez +e„=1 and

ez —ea =1 (ez ——1 and ez ——0 in units of e), are relat-
ed to the collectivities of the isoscalar and isovector
quadrupole giant resonances, respectively. ' In
the random phase approximation (RPA) model with
a schematic Q Q particle-hole interaction, an at-
tractive interaction lowers the collective particle-
hole state from its unperturbed value and couples to
valence particles coherently in the matrix elements
of the operator Q. For a repulsive interaction the
collective state is raised and couples incoherently.
The polarizability X is defined by

eff bare( 1 +X (38)

X,=(eiE, ) 1, — (39)

where e is the unperturbed energy of the giant reso-
nance which is approximately 2fiw for the quadru-
pole resonance and E is the perturbed energy rela-

where eo =e +e„, e~ =e —e„, and eo'"
=e ~'"——e. In the RPA approximation with a
schematic interaction Q.Q the relation takes the
simple form

tive to the ground state. (It has also been assumed
that the energy difference between the model space
states is much less than e and it is easy to generalize
when this is not the case. ') The original model of
Mottelson based on self-consistency gave Xp ——1

and hence Ep v2——Aw. Experimentally, the cen-
troid of the giant isoscalar quadrupole resonance is
fairly well established in heavy nucleis at

Ep ——652 '~ MeV=(0. 79) (2Rw)

(using A'w=41A '~ established from the proton
rms radii of heavy nuclei) which gives Xp=0.59.
This is the same as the isoscalar E2 polarization
charge we required in the sd shell. Below mass 40
the isoscalar giant resonance is not experimentally
so well established; ' The above comparison im-
plies that Ep ——(0.79)(2fiw) is also applicable to sd
shell nuclei. As an example for Si, using
fiw=12.42 MeV deduced from the Si rms radius
in the oscillator model, Eo ——

. 19.6 MeV. The cen-
troid of the observed strength in alpha scattering on

Si is about 18.3 MeV, which is in reasonable
agreement given the problems inherent in separating
background and multipolarity in these alpha inelas-
tic scattering experiments.

The energy of the isovector E2 giant resonance
has been more difficult to experimentally establish
even in heavy nuclei. In some heavy nuclei, elec-
tron inelastic scattering strength in the region of
E=1302 '~ MeV=1. 58(2Rw) has been attributed
to the isovector giant quadrupole. This gives
X~ ———0.60, which is larger than the value we have
found in the sd shell X,(sd) = —0.3 to —0.4. The
implication is that the isovector giant resonance is
somewhat less collective in light nuclei, but there is
no experimental information. It is interesting to
compare this situation with that of the familiar iso-
vector giant-dipole resonance. In heavy nuclei E&
(dipole)=783 ' MeV=1. 90(A'w), and hence, X~
(dipole) =—0.72 (using e =A'w). The resulting hin-
drance in the low-lying isovector E1 transitions is
well established. ' Based on the experimental ratio
E& /e the isovector resonance becomes )ess coHective
in light nuclei and hence follows the same pattern
suggested above from the isovector E2 effective
charge in the sd shell.

The above comparisons are made transparent by
the schematic Q.Q interaction assumption. Calcu-
lations based on more realistic interactions may give
quantitatively different results (analogs to the
differences between the 5, Q Q+5, and Q Q models
of Sec. VA). It is beyond the scope of this paper to
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discuss all of these differences and we refer the
reader to the literature (for example, Refs. 51 and
58). A general comment which can be made is that
most "realistic" interactions have a short range and
as discussed in Sec. IV A result in effective charges
(polarizabilities) which are more state and mass
dependent than required empirically. This problem
may be associated with the difficulty in incorporat-
ing higher order corrections into the effective in-

teractions which is also manifest in the effective-
mass problem discussed in Sec. V C.
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