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Examination of the sum of all ladder and crossed ladder exchanges between three parti-

cles leads to a set of relativistic three-body equations of the Faddeev type in which two of
the three particles are restricted to their mass shell. The choice of which two particles are

on shell at a given instant is uniquely determined by the requirement that they be spectators

either before or after the interaction. It is shown that these equations satisfy the cluster

property, and the two-body amplitudes which drive the equations are known in principle.

Three-body unitarity is proved. 'Three-body forces which arise from the underlying dynam-

ics are discussed, classified, and estimated numerically for a spinless example. It is found

that the three-body forces tend to cancel to some extent, are sensitive to the details of the

dynamics, and that contributions to such forces, primarily of relativistic origin, can be im-

portant.

' NUCLEAR STRUCTURE Relativistic Faddeev equations from ladder

and crossed ladder exchanges. Unitarity, cluster property, and three-

body forces.

I. INTRODUCTION
AND DIAGRAMMATIC DERIVATION

OF THE EQUATIONS

In this paper we present relativistic Faddeev
equations for three spinless particles. ' It is assumed
that the dynamics which should describe such a sys-
tem is the sum of all ladder and crossed ladder dia-

grams describing meson exchange, and analysis of
this class of diagrams leads to the idea that two of
the three particles should be restricted to their mass
shell. This eliminates the dependence of the ampli-
tudes on the relative energies in a covariant way,
and gives equations which depend only on two rela-

tive three-momenta as in the nonrelativistic case.
The relativistic two body amplitudes which drive

the equations always have one of the two interact-

ing particles on shell, and a two body theory for
these amplitudes has been given in Ref. 2, to be
called I. The entire approach taken in this paper is
a natural extension of the ideas discussed in I.

Working from the underlying dynamics, it is pos-
sible to treat three body forces in a consistent way,
and considerable attention is devoted in this paper
to a discussion of how this might be done. Three
body driving terms are introduced from the begin-

ning, and the composition and size of such terms is

discussed in Secs. III and IV. It is found that the
three body forces are very sensitive to precisely how
the dynamics is handled, and while naive examina-
tion of the diagrams suggests that they should can-
cel in leading order, we find that the cancellations
are incomplete and that depending precisely on how
the equations are treated, three body forces of pure-
ly relativistic origin could be important. This result
is potentially very interesting, and unexpected.
More work on this aspect of the problem is needed,
and the realistic situation of spin —, particles needs

to be investigated.
Our equations bear some resemblance to those in-

troduced by Alessandrini and Omnes, who also
considered a Green's function in which two parti-
cles were restricted to their mass shell, but in other
respects their Green's function is different from
ours. Their equation does not satisfy the cluster
property, ' the two body amplitudes which drive their
equation depend explicitly on the energy of the
third particle in a nontrivial way. It is shown in
Sec. II that our equation does satisfy the cluster
property. %'e also show in Sec. II that elastic uni-
tarity is satisfied, in common with other three body
equations. ' It appears that it would be straightfor-
ward to include bound states in the two body sec-
tors, but this is not discussed in this paper, and will
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be published elsewhere.
The remainder of this section is devoted to a di-

agrammatic derivation of the equations. An expli-
cit algebraic form for the equations is given in Sec.
II, where the proofs of three body unitarity and the
cluster property are given. Section III enumerates
the contributions to the three body irreducible ker-
nel in lowest (sixth) order and presents some crude
estimates of the size of the various terms at thresh-

old. In Sec. IV the treatment of identical particles
is discussed. Spurious singularities arise from this

approach, and one method of removing them which
seems to work well for identical particles is present-
ed. Removal of these singularities forces a recon-
sideration of the size of the three body forces, and

the new estimates give somewhat smaller results
than those obtained in Sec. III.

A. Relativistic fully-off-shell Faddeev equations

Using diagrams, we first review how a set of
three body relativistic integral equations of the Fad-
deev type can be constructed. Since all three parti-
cles are first allowed to be off their mass shell, the
three body Green's functions depend here on two re-

lative four-momenta. Our underlying dynamical
assumption is that a satisfactory approximation to
the relativistic three body scattering amplitude M is
the infinite sum of all ladder and crossed ladder di-

agrams due to the exchange of scalar mesons. In-

stead of trying to sum these directly, it is customary

to construct an integral equation which will repro-

duce the sum when iterated and will ensure that the
result is unitary. The solution of the equation is re-

garded as the physical content of the infinite sum

and will exist even when the sum diverges.
For the three body problem, following the Fad-

deev approach, we construct a set of coupled equa-

tions for some partial amplitudes, each of these am-

plitudes corresponding to the separate summation

of a subclass of three-body diagrams. We introduce

the set of partial amplitudes W' and W such that

I
I +" +

I
I
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FIG. 1. A small sample of the sum of ladder and
crossed ladder diagrams showing how the partial ampli-
tudes a arise naturally.

of the diagrams of one particular subclass (this is
done for a in Fig. 2) immediately suggests an in-

tegral equation for this partial amplitude, in which
the two body scattering amplitude M' (where i is
the index of the noninteracting particle) emerges as
a driving term from the gathering of all the discon-

nected parts that are singled out at the end of each
diagram. The other partial amplitudes will obey
similar equations so that we obtain a set of four
coupled integral equations. In the a equation, the
driving term is P, constructed by iteration of all

three-body irreducible diagrams (whose sum is
represented by Pi ). We call this new driving term
the three body unitarized force (TUF). This is illus-

trated in Fig. 3. Diagrams which contribute to the
irreducible three body force will be given in Sec. III.

These relativistic, fully off shell equations are de-

ceptively simple in appearance. They are actually

quite complicated because as they stand, the three

body Green's function depends on eight variables,
the components of two relative four-momenta. The
similar nonrelativistic theory depends on only six
variables. Several approaches have been developed
which eliminate the additional two variables (rela-
tive energies) in a completely covariant way. ' ' To

(See Fig. 1.) This set will be referred to collectively

as ~ (Greek indices run from 0 to 3, Latin indices
from 1 to 3). The amplitude W' will contain all dia-

grams where particle i does not interact in the last

part (left) of the diagram (i.e., where particle i ends

as a spectator) while u will contain all diagrams in

which the last part is three body irreducible (i.e.,
where the last part of' the interaction can be defined
as a three body force). Inspection of the structure
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FIG. 2. Illustration of how the equation for W arises

from the sum of ladder and crossed ladder diagrams'.
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FIG. 3. Diagrammatic representation of the equations
for 2 and the P

motivate the procedure introduced in this paper re-
quires that we return to the original sum of ladder
and crossed ladder diagrams and look at the same
dynamics from a different point of view.

B. Relativistic Faddeev equations
with one particle off shell

We begin by looking at the simplest diagrams
that are of significance in the three body problem,
i.e., those of the sixth order. There are three basic
types (to which we must add the permutations hav-

ing the same topology) shown in Figs. 4 and 5. The
first type, in Fig. 4, can be separated into two
disconnected pieces by one three body cut. Across
this cut, one of the nucleons is interacting while the
other two are spectators; later, our analysis will sug-

gest that we put these spectators on their mass shell

which will make these diagrams have a structure
comparable to the pole diagram shown in Fig. 4(b)
in which the amplitudes are directly related to those
introduced in I. Hence we may regard these dia-

grams of the first type as an iteration of the two-

body force and they will make no contribution to
the three-body force.

The other two basic types of sixth order diagrams
are shown in Fig. 5. Those shown in Figs. 5(a) and
(b) can be separated into a connected and a discon-
nected piece while those in Figs. 5(c) and (d) cannot
be reduced at all (of course in higher order there are
many diagrams that can be reduced into two con-
nected pieces). The latter are clearly part of the
three body force while the former will be separated
into two parts. One part is designed to be obtained
from the iteration of two-body amplitudes like the
diagrams of the first type (Fig. 4) while the other
part will be included in the three body force.

The way in which the diagrams 5(a) and (b) are
separated into two pieces is the major idea of this

paper. Before discussing this in detail, we take a
broad look at the physics of the three body problem.

A central idea in any Faddeev theory of three
particles scattering without large three body forces
is that most of the effective three body force is gen-

erated by a succession of two body scattering. In
order for this to be true, it must be true that the di-

agrams in Figs. 5(a) and (b) dominate over the cor-
responding diagrams in Figs. 5(c) and (d). This is
indeed the case at low energies where this domi-

nance is often understood in terms of unitarity cuts.
The first two cases have elastic three-body cuts with

a threshold at 9M, while the next two have no elas-

tic cut, and a correspondingly higher threshold at
(3M+.p, ) .

—P+kI

3
L P+q

I I

g q-k k-q'g
'
, -.'P-p'-q'

I I )—P-p-k - P-p -k

I IP -P
3 P+P ~ P+p

I
I

I
I

I I

I
I'

q'-k+p' p
I I

I I

—P+p+q -kI

(b)

3 P+q+q -k "P+ q+q'- k3

l (
I

(c)

FIG. 5. Four representative diagrams discussed in the
text.

(b)

FIG. 4. (a) Sample diagrams which can be cut into
two disconnected pieces, with one three body cut. (b)
Representation of the sum of such diagrams. The )&'s

always represent a particle on mass shell.
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FIG, 8. Successive interactions involving the pairs

(1,2) and (2,3) with the spectators put on shell (marked

with an X). Examination of the cuts shows how the re-

quirement that two particles are always on shell comes
about.
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FIG. 6. Location of the singularities in the complex ko
plane for the four diagrams shown in Fig. 5.
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FIG. 7. Separation of the diagrams of Fig. 5 into parts

which are reducible (a) and (b), and parts which are ir-

reducible (c) through (f) and destined to be included in the

three body force.

In terms of the ideas presented in I, the domi-
nance of the first two diagrams over the latter two
is understood in terms of the location of singulari-
ties in the complex ko plane, where ko is the virtual
loop energy, labeled in Fig. 5 for each of the dia-
grams. There are 10 poles in the ko plane for Figs.
5(a) and (c) and 12 poles for 5(b) and (d) corre-
sponding to the positive and negative energy poles
of the nucleon and meson propagators. The loca-
tion of these singularities is shown schematically in
Fig. 6 for the four diagrams. Note that if we close
the ko contour in the lower half-plane, Figs. 5(a)
and (b} are dominated by the contribution from the
nucleon pole close to ko ——0 (shown circled in the
figures). This is because the residue of the in-

tegrand at this pole will be quite large because of its
proximity to the two other nucleon poles in the
upper half-plane also near ko =0. Furthermore, the
dominant piece of these diagrams has a direct phys-
ical interpretation; it corresponds to placing the
"spectator" nucleon of the loop on its mass shell.
Hence we have a very nice physical result. The
dominant parts of Figs. 5(a} and (b) come from that
part of the interaction where the spectator is a
physical on shell particle. In Figs. 5(c) and (d)
where there is no spectator there are also no such
poles to dominate and this explains why these con-
tributions are much smaller than the reducible ones.

The next step is to separate out the leading pole
contribution from the reducible diagram and lump
the remaining contributions from the other poles
with the irreducible diagram. This decomposition
and rearrangement of terms is illustrated in Fig. 7.
In the first two diagrams, the spectator is on shell
and these leading contributions will be included in
the iteration of successive two body scatterings im-
plied by the Faddeev equation. The last four terms
will be taken together and constitute a new defini-
tion of the irreducible part of the three body in-
teraction, i.e., of the intrinsic three body force.

The above discussion can be extended to interac-
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FIG. 9. Diagrammatic representation of the 12 cou-

pled equations discussed in the text. Mass shell particles
are marked with an )&. When they are associated with

internal particles, the vertical dashed lines represent the
average of the two possible choices for on shell particles.
With external particles they represent two equations for
the two possibilities. The )& on all TUF's and a~s also
represents the spectator.

tions of all orders, i.e., one can always find a label-

ing of the loop momentum which will show that the
dominant energy singularity occurs when the spec-
tator particle is on shell. When there are a series of
interactions as shown in Fig. 8, placing the specta-
tor on shell will ultimately force neo of the particles
to be on shell, uniquely defining the Green's func-
tion. We then separate out all of these dominant
terms to be summed as a succession of two body in-
teractions and incorporate the remaining terms into
the three body force. This force now includes a
huge number of parts, some of which would be
present in the original formalism sketched in Sec.
A, and others which are pieces of Feynrnan dia-
grarns left over from our separation. In Sec. III we
will discuss this point in considerably more detail.

The systematic placing of spectators on the mass

shell will force us to use a larger set of amplitudes
in order to maintain the completeness of our set of
coupled equations and to have everywhere two-body
driving terms of the type developed in I, i.e., with
one initial and one final particle on shell. We deal
with amplitudes obtained from u by putting two
of their final particles on shell. For,i' the specta-
tor and one of the final interacting particles are on
shell; we denote these amplitudes by ~z, where
i =1,2, 3 is the spectator and j=1,2,3+i is the in-

teracting particle which is kept off shell. There are
a total of six of these. For the W amplitude there
would appear to be no spectator, yet we will find in
Sec. III that our method of separating out the three
body force sometimes generates terms in which a
particular particle is favored as the spectator. We
find it necessary to introduce six amplitudes a&(i),
where jQi is the off shell particle and i is again the
spectator. Amplitudes in which no particular
choice of j or i is preferred will contribute equally
to all a J(i), while others will contribute more to
one than another. (Since the choice of spectator i is
clear from the structure of the equation, it will nor-

mally be suppressed. ) In the equation for the am-

plitude az, there are two possible choices of j' in
the a~' terms, and both terms are included (multi-
plied by —,). Similarly, in the equations for a~j
there are two choices of j' in the a J terms, and we

again take one half the sum of both. These sym-
metric choices, together with the full set of six M~,
actually simplifies the mathematical notation in
Sec. II, and, to the extent that the amplitudes differ
from one another, is required by unitarity.

The final set of three-body equations, illustrated
in Fig. 9, is a coupled set of 12 equations for the 12
amplitudes ~~ (jQu) driven by 45 terms P JJ',
where j' denotes the off shell particle in the initial
state (and the dependence of u on i and i ' has been
suppressed). The F

~~
can be expressed in terms of

the set of off shell two body amplitudes Mzz intro-
duced in I. The three body driving terms WJJ- are
obtained by unitarizing the three body irreducible
kernel, which is composed of diagrams of the type
shown in Figs. 7(c)—(f). Of these, only diagrams
(d) and (f) would have been present in a Bethe-
Salpeter formalism; the other two, (c) and (e), are
pieces which we pick up from the decomposition
discussed above.

Although the final set of 12 equations illustrated
diagrammatically in Fig. 9 looks more complicated
than the set given in subsection A, it may actually
be simpler because the integration over the inter-
mediate Green's functions is now six dimensional.
Furthermore, for three identical particles, there are
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relations between the amplitudes which reduce the
system back to only four independent coupled equa-
tions.

Perhaps the most appealing feature of this for-
malism is that it is very intimately connected to the
fundamental dynamics suggested by the sum of
ladder and crossed ladder diagrams. The two body
driving terms are known and the three body driving
terms can be calculated in precisely the same ap-
proximation one finds satisfactory for two-body
problems.

Any independent pair of momenta can be used in
(2.3). Note that (2.2} and (2.3) are manifestly co-
variant.

The 5+ functions in (2.2) fix the fourth com-
ponents ofp; and pk

p =E =(M +p )'

pko=Ek=(Mk +pk }2 ~ 2 1/2
(2.4)

leaving only six momentum variables in the Green's
function.

II. MATHEMATICAL PROPERTIES
OF THE EQUATIONS B. Two body driving terms and the cluster property

In this section, the diagrams of the previous sec-
tion will be converted into algebraic equations. The
two body amplitudes which drive the equations will
be discussed, and it will be shown that they are pre-
cisely those obtained in I, hence the cluster property
is satisfied. Three body unitarity will be proved.

When working with the two body amplitudes M'
(introduced in Sec. I), it is convenient to introduce
new variables in place of the momenta pj and pk.
These will be the total momentum and the relative
momentum of the interacting pair, defined accord-
ing to

A. The three body Green's function (2.5)

The three particles have masses M&, M2, and M3,
and four-momenta pi, p2, ps (denoted collectively
as {pI) which are constrained by energy momentum
conservation

P =Pi+P2+P3 (2.1)

=(2')5+(M; pg )GJ' '({pI—), (2.2)

where G' ' is the two body Green's function used in
I,j will always denote the particle which is off shell,
and i and k (i Qk and both not equal to j) denote
the on shell particles. Equation (2.2) is really the
kernel of an integral operator, where we will use the
notation

As independent variables we will often choose one
of the p; (the spectator) and the relative momentum
of the other two, as discussed below.

Three different three body Green's functions are
needed. For spinless particles they are

5+(M~ —p; )5+(Mk —pk )
G, ( {p]) =(2ir)'

[M. —p —te]J J

Note that the relative momentum depends on which
of the two interacting particles is on shell, and that
in our notation

QJ= —Qa . (2.6)

The two body driving terms in the three body
space can be written

~JJ'(p; Q;J Q,'J' ) = (2m ) 2E;5 (p; —p }

XMJJ (P(Q(J.Qtj'),

where the covariant form of the three dimensional 5
function has been used.

We will now show that the two body amplitudes
M' satisfy the two body equation discussed in I. To
this end, recall that, in the context of three body
theory, the disconnected two body driving terms
(2.7) arise from the iteration of the elementary ir-
reducible two body kernels, as shown in Fig. 10 in
the one pion exchange (OPE) approximation. These
elern. entary kernels will be written

~,';(p;Q;, Q,')= (2ir)'2E;5'(p; —p )

dpkdp;
(2ir )

d4pt

(2~)4
(2.3)

X VJ'J (P;Qtj.Qtj'),

where for exchange of a particle of mass p,

Vjg (P;Qg&Q/'I ) =[I4 tt(j,j')]—
and the square of the momentum transfer is

(2.8)

(2.9)
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FIG. 10. Illustration of the origin of the symmetric two body equations with one particle on shell.

«IJ —
Q~J )'=(Ek —&k )'—(Q; —Q', )' J'=J,

~i J~J
(QiJ+QJ'k)'=«k+&j P )' (Q;, +—Qr.k)'—i '=k . (2.10)

The equation satisfied by &&~' is

JJ PIQJJQIJ JJ P/QIJQlJ

X JJ P'Q'JQJ GJ IP ~ J J P' Q J Q'J (2.11)

where the symmetric sum over the choice of off shell particles, j, has been written explicitly. Performing the

integrations over p;, and dropping common factors on both sides of (2.11) gives an equation for MJJ'

(2.12)

This equation is manifestly covariant, and is a sym-

metrized version of the form given in I. [Since the
three body equations require both j s, unitarity re-

quires the symmetrized version of (2.12) also; the
equation is also unitary if only one of j appears
everywhere. ] The only way in which (2.12) is af-

fected by the presence of the spectator is through
the total four-momentum of the two body system.

Hence the two body amplitudes used in the three

body problem are identical with those used in the
two body problem, and the cluster property is estab-
lished. It should be noted, however, that the in-

tegration over p; will force p; to negative values, re-

quiring that the two body equations be solved for
both timelike and spacelike regions.
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C. The three body equations

This section describes in detail how the variables
are introduced into the equations, and a compact
mathematical expression obtained.

The partial amplitudes WJ. will always carry the
choice p;, Q,j for their arguments

~g=~g(p Qj Ip'j» (2.13)

where tp'j denotes the arguments of the initial
state. There are six of these amplitudes (i'). The
six three body terms a J (i) will be written:

~j=~j(p Qj Ip'. j) . (2.14)

To satisfy unitarity, it is necessary to use all possi-
ble choices of (2.14) in a symmetric way just as for
the two body amplitudes discussed above. Every

one of the S amplitudes will occur exactly twice
in the first six equations, and each of the ampli-
tudes (2.13) occurs exactly once in each of the last
six equations.

There are a total of 6X6=36 different choices
possible for the TUF driving term

P Q

JJ Jj (pl QlJ &pl Ql j (2.15)

All 36 of these enter into the last six equations in
Fig. 9 precisely once, and 12 of them are also need-
ed in the first six equations.

The 12 equations of Fig. 9 can now be written in"

a compact form. We will enlarge the set by allow-
ing the initial state to be off shell also, although no
particular choice of the initial momenta Ip' j will be
specified. Thus finally

~~jj' (p'Q'J'tp j)= & '~jJ'(p QlJ Ip j)'

where

i ~ii p Qi »'Q''i'')G'i tp j ~i i' (p'Q'i
a)j)

(2.16a)

d pl'd Ql'J

I a+0,
1 a=O.. 2

(2.17)

Any indices involved in (2.17) will always be written
explicitly on the summation sign, which by itself
will denote the two four-dimensional integrals only.
Note that, for fixed a', j', and Ip'j, (2.16a) gives
the expected 12 equations. If a+0, then a must
equal i (the spectator) and for each i there are two
choices of j, giving six equations. When a=0,
there are six possible choices ofjQi The 8 term .in
the sum ensures that precisely the correct terms are
present. It gives use the requirement that aiba,
required by the definitions. When both ai and a
are not zero, this gives precisely one term, and
i'=+1. When either a~ or cz is zero, we have two
terms, multiplied by —, as required by the symme-

try. For the case a+0, ai ——0, the driving term

fixes i'=i When a =0. , ai@0, the a term fixes
i'=a~. In no case must ihe sum over i' be con-
sidered, and we can drop all reference to it, along
with the arguments, which are uniquely specified by
the rules and notation we have introduced. This
gives

a R

a&a'

aaiji JJi~Ji JiJ
a)j)

(2.16b)

jj. —aa, jj
aa&

aia Ji JJi Ji~Jij (2.18)

D. Unitarity of the driving terms

The driving terms all satisfy the equation

~jj &X~JJ,Gj,—~i,j'
j]

(2.19)

where the sum over j1 includes all possible choices

Similarly, by iterating the driving terms from the
left, we have
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of spectator and

1 a+0
Qa

0, =0
3

labeling the momenta, otherwise go ———,. The ker-
nels M' were defined in (2.8) and M is the sum of
all irreducible three body kernels, and is defined just
as in (2.15). Similarly, for all u

(2.20)

assures that there is no overcounting by dividing by
the number of terms in the symmetric sum. In
(2.19) the two different choices of spectator possible
when cx =0 have been collected into one term by re-

We will now prove that these driving terms are
unitary. Taking the complex conjugation of (2.20)
and multiplying from the right by GP" and in-

tegrating and summing gives

'I~ +~iJ j ~i~j'= )~+~ii~Gj~~i~J' &~ X jj j j j j j j' ~

J) J& J&Jp

(2.21)

where we asPsumedi" was real (below the production thresholds). Multiplying (2.19) from the left by F'~G*
and integrating gives a similar equation

n g ~ G ~ '=n X~- G ~j j —& X ~ii Gj ~j j Gj ~i j
J|Jz

(2.22)

Use the equations (2.19) and (2.20) to reduce the first term on the right-hand side of each equation, and note
that the second term on the right-hand side is identical in both equations. Subtracting the two equations
gives:

~(i'= &X~ii, [G—j', GJ, ]~~,J—' ~

J)

The discontinuity of the three body Green's function (2.2) is

Gj~ —Gj ———(2n ) i5+[M~ —
p& ]5+[M& —pz ]5+[M3 —p3 ]

—:5p, (2.24)

which is the integrand of the three body phase space integral and which is clearly independent of ji. Hence
the j~ sum is trivial, and cancels the g factor giving

Y"—V '= —& F p5pFp.JJ JJ ~ J J (2.25)

where the subscript 0 on & reminds us that the state has all three particles on shell, and hence does not de-

pend on ji. Explicitly:

d4 d4
~05+[M| -pi ]5+[M~ r» ]5 [M3 p,—]~0-11 P2 2 -2 2 2 2 —2

JJ (2 )6 1 + J

d'p, d'p, 5(W E, —E, —E,)—
(2m. ) SEiEgE3

(2.26)

For the two body driving terms, we can use (2.7) to reduce this result further

d Q5(P E Ek)—.—
(2m ) 4EjEk

(2.27)
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which is a familiar result for two body unitarity.

E. Unitarity of the full three body amplitude

The unitarity of the driving terms will now be used to establish three body elastic unitarity of the full three
body amplitude (1.1). The proof repeats the argument used in the last section, but is slightly more complicat-
ed because the driving terms are now complex. If we repeat the same steps used before, but apply them to
Eqs. (2.16b) and (2.18), we obtain for the analog to (2.23)

I
aa& a2a

a&J& 1J1 2J2
a2

Iaa&

hajji Gji~~l~"ji ~~ij2 ~il j2 ~~"~2j26j2~ j2j'

I
aa& a&a+ g

ha�jji

Gji~a'aiji~j&j' g hajji Gji~aiaji~jij
a&A

(2.28)

where the symmetry of 8 in its first two indices was
used. The unitary relation (2.25) is now used to re-

place the discontinuity of & with P P in the first
term on the right-hand side, and in the last two
terms P and P can be changed to M and F'.
Then Eqs. (2.16b) and (2.18) are used repeatedly to
reduce and cancel terms. The. result is

~ii' ~ii' X~io

a2a'

aiJia2

(2.29)

The last term no longer depends on ji except

through 8. We see that if ai and a2 are both not

equal to zero, there is only one term in the j~ sum.

If either ai or a2 is zero, there are two terms,
1

which cancels the —, from the factor of 8. Hence,

the last term reduces to

X50 +~0j
a2

(2.30)

aa
&

a2a~'0 |20~0j'
a&

a2+a&

When the diagonal terms from the first term on the

right-hand side are included, we obtain the three

body unitary relation

aa&gr, 0'
JJ JJ

ai

where the terms in parentheses are just the full three
body amplitude (1.1) for the case when the inter-
mediate states are physical, where only the a label
distinguishes the partial amplitudes from each oth-
er.

III. THREE BODY FORCES

In this section the three body forces which appear
in a simple theory involving scalar particle ex-

change will be described and estimated.

A. Contributions to the sixth order irreducible kernel

The first contributions to the three body force in

this simple theory come from sixth order exchange,

as described already in Sec. I. The diagrams were

shown in Fig. 7(c)—(f) and will be referred to as di-

agrams of type A, B, C, or D, respectively.
If the heavy particles (nucleons) are not identical,

but the light mesons are, then there are 20 distinct
diagrams which include six of type A, 8, and C, but

only two of type D, all shown in Fig. 11. To see
how they distribute themselves among the various
three body driving terms, we consider the iteration
of the system of equations illustrated in Fig. 9. To
lowest order, TUF may be replaced by 4", and
there are 36 different A 's. Certain of the three

body terms shown in Fig. 11 must always be associ-
ated with cases in which a particular particle in the
initial and final state is on shell. These are the
terms of type A and C, and the favored particles,
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FIG. 11. The 20 three body driving terms which contribute to the sixth order three body kernel.

which must be on shell, are marked in the figure.
The origin of these restrictions can be understood

by considering such a diagram in conjunction with
all possible OPE interactions, both before and after.
As a simple example of how this works, Fig. 12
shows the origin of the final state restriction for the
amplitude A ~, which arises from contributions
neglected when particle 1 was put on shell as shown
in the diagram. (The contributions neglected when

particle 3 is put on shell give rise to other three
body, or higher, forces not shown in the figure. )

The figure shows that no matter which pair is in-
volved in the interaction subsequent to A ~, particle
3 will always be the final state spectator and must
therefore be on shell whenever 3& is used. The
same analysis explains the origin of both the final
state and initial state restrictions on all the dia-
grams of type A and C.

While it may appear that particle 3 is also a spec-
tator for the first diagram of type 8 shown in Fig.
11, examination of the singularities of the diagram
(recall Fig. 6) shows that the internal nucleon poles
are always distant from the external nucleon poles,
so that there is no pinch between particle 3 and any
of the internal particles and therefore no reason to
prefer particle 3 as a spectator. All of the diagrams
of type 8 and D show this property.

The composition of each of the 36 elementary
kernels can now be constructed with the help of
Fig. 11. We denote the kernels by MJJ. (i,i'), where

j and j' are the off shell particles and i, i' are the
spectator particles. Care must be taken to give the

correct weight to each of the diagrams. Of course,
no diagram which requires the jth final state parti-
cle, or the j'th initial state particle, to be on shell
can contribute to MJJ'(i, i') Furth. ermore, it must
be remembered that the equations are defined so
that when iterated the kernels appear in sym-
metrized combinations like

JJ MJ J (i,i ')P"~ J
J)+lJ2+l

(3.1)

rw

I I
I

I I

FIG. 12. Diagrams illustrating how it comes about
that diagram A

&
of Fig. 11 must always have particle 3

on shell.

where the Green's functions have been omitted
from (3.1). These usually appear naturally by tak-
ing one-half of the two possible choices of the off
shell particle in both the initial and final states. In
this case, the diagram contributes to all four terms
in the sum (3.1). However, for diagrams of type A

and C an unsymmetric choice is sometimes required
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by spectator rules, in which case if only one j is per-
mitted in either the initial or the final state, the dia-
gram must be multiplied by 2 to reflect the fact that
it can contribute to only two terms in the sum (3.1).
When only one j is permitted in both the initial and
final state, the full diagram contributes to only one
term and must be multiplied by 4 in order that its
full weight be counted.

The structure of six kernels M will now be
given. In each case, all diagrams of type B and D
contribute. The additional ones of type A and C in-
cluded in each case are the following:

PC22(1, 1): 4A )+4A2+A3+A4+2Cg+2C5,

W2p(3, 1): 2A &+2A2+2A3+2A4+C2+4C5,

M)p(3, 1): 2A )+2Ap+Cp+2C3+4C6,

M, 2(2, 1): 4A (+4A2+2Cg+C3+2C6,0 (3.2)

Pi"32(2, 1): 2A3+2A4+C3+4C5+2Cs,

M32( 1, 1): A3 +A4+2C3+2Cg+4C6 ~

The 36 kernels are made up of six of each of the
types given above. We will show in the next section
that, at threshold, all of the diagrams of a particu-
lar type are equal. Hence the results of (3.2} at
threshold are (including B and D terms)

4"22(1,1)=10A +6B+4C+2D,

Mp2(3, 1)=Pi")2(2, 1)

p =p'=q =q'=0, P =3M, and M»p. Then all of
the A diagrams are identical, and equal to

A = [ (cok —kp EE—)
ig dk

8M p (277}

&C(kp ie—) ( kp—+i@)]

A= g6

256m'p M
(3.6)

The same analysis shows that B=—A. A more
careful estimate would give

r

8+A~ v 2
M

(3.7)

but unfortunately the cancellations are not good
enough to eliminate the leading order so this more
detailed estimate is unnecessary.

A similar analysis of diagrams C and D gives

(2M)' (2~)4

X(kp ie) ( kp—+i@—)]

(3.5)

where the ie prescription in the last factor has been
changed to indicate that the spectator pole is not to
be included. Straightforward integration gives

=SA +6B+5C+2D,

A u(3, 1}=M3q(2,1}

=4A+6B+7C+2D,

A»(1, 1)=2A+6B+8C+2D .

(3.3)
=A(4) .3

(3.8)

4" =3A . (3 9)

Using these estimates in Eq. (3.4}, the average of
the three body driving terms obtained above (at
threshold} is approximately

E~=6A+6B+6C+2D, (3.4)

which shows that the average effect of the three
body forces in all channels is precisely what would
be anticipated from Fig. 11.

Averaging all of these terms gives us the expected
result

This is a considerable cancellation, but is spoiled by
the fact that the number of diagrams of type D is
smaller than the number of diagrams of type C.
Nevertheless, this result is somewhat smaller than
that which would be obtained for the Bethe-Salpeter
equation, where only diagrams B and D occur, giv-
ing

B. Size and cancellations in the three body force

—P 15~as ————,A . (3.10)

The size of the three body terms can easily be es-
timated at threshold. Using the labeling for mo-
menta given in Fig. 5, we consider the case when

As we shall see in the next section, the cancella-
tion (3.9) is improved slightly once the spurious
singularities have been removed from the OPE ker-
nel.
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IV. IDENTICAL PARTICLES —P+Q —P+QI /
2 2

In this section we show how the equations simpli-

fy and spurious singularities can be removed when

the particles are identical. We also present a revised
estimate of the three body forces which result after
the singularities have been removed, and discuss the
significance of the result.

2P-Q 2 P-Q

A. The spurious singularities
FIG. 14. Exact definition of the symmetrized OPE po-

tentials.

The singularities which must be removed were re-
ferred to briefly in Sec. I. Examine Eq. (2.10) when

J4J:
P t (2,—3)=co (E3—+E2 —Pip)

(~—+E3+E2 10)

X(to E3 EP—+P)—P),

(4.1)

Q &4(IM+W) —M (4 4)

which at threshold (W=2M) is about 360 MeV,
and is at still smaller Q when W~2M, which is
possible in the three body system.

This arises from diagrams of type C shown in
Fig. 11. One finds that the positive energy specta-
tor pole can overlap the rniddle meson pole. For
external particles on the mass shell, using the
momentum labeling given in Fig. 5(b), this occurs
when

tp+'= p'+(Q+Q')', (4.2)

E3 & —+P&o —E2 (4.3)

and we suppress the index i and fix Q=Q; in all ex-
pressions. The first factor has a singularity when

Pfo Q 6) +E3+E2 which is due to physical pro-
duction of mesons and is expected. (See Fig. 13.)
The second factor is singular whenever

1 2
Ek —,o —ko —mo —ko+, Po —E2 —E3,

where

~0'=V'+(q'+ p' —p —I )'.
This first occurs when k =q', giving

(4.5)

(4.6)

and this is associated with an unphysical instability
singularity which arises whenever the off shell nu-

cleon has a mass M* smaller than M —p so that
(unphysical) decay of a nucleon into M'+p is pos-
sible. Unfortunately, even though this singularity is
moved to infinity in the static limit, for actual
values of the masses it occurs at too low a momen-
tum to be ignored. In the center of mass (c.m. ) sys-
tem of the interacting pair, the singularity occurs
when

E3 ——co& &+P~ —E2 (4.7)

B. The OPE kernel for identical particles

in agreement with (4.3). We see that the separation
of such diagrams into two parts, shown in Figs. 7(b)
and (e), has introduced spurious singularities into
both parts.

One way to treat this singularity is to redefine the
OPE kernel. While the method we will propose
might work for nonidentical particles as well, it
seems most natural for identical particles.

k k

I

j I

I
I
I

I/ I

I

I /4
I

(a)

M
/4

(b)

When working with identical particles, the kernel
must always be symmetrized or antisymmetrized.

FIG. 13. The singularities of the unsymmetric two
body driving term. (a) Normal production singularity.
(b) Spurious instability singularity.

FIG. 15. Prescription for removing the singularity of
symmetrized OPE potentials.
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+ + + + +

For the OPE, this symmetrization is shown in Fig.
14, and gives:

I'22(Q) =
pi —(Ei Ei )—

I'2i(Q) =

g
2

+
2 2

pi+ —(Ei+E i —Pp)

g
2

cg (E2+E'i——Pp)
2

2 (E Ei )2

(4.8)

where pi+ is given in (4.2) and

Ei 2 ——[I +(—,P+Q)2]'~2 .

Note that

I 22(Q) =+I 2i(-Q)

(4.9)

(4.10)

The spurious singularity now occurs in both po-
tentials (4.8), but the symmetry suggests removing
the singularity, with the following prescription:

}( K
(b)

FIG. 16. Symmetrization of the TUF. {a) Exact sym-
metrization. {b) Generalization of the prescription given
in Fig. 15. The &( is the spectator; the line marked with

a vertical dash is also on shell but not the spectator.

can be incorporated into higher order terms. Since
we are talking about a two body exchange force, the
effect of the prescription (4.11) shows up first in the
three body force.

C. Simplification of the equations
for identical particles

Pi"22(1, 1)=6[6A+6B+6C+2D], (4.12)

which displays the fact that on mass shell, when the
arguments are all equal, the exact symmetrized
TUF will not depend on which of the two particles
is on shell.

If we generalize the prescription (4.11} to the
TUF in the manner shown in Fig. 16(b), in which
the definition depends only on the designation of
the initial state, then these TUF, A, will trivially

With the prescription (4.11}the two body driving
terms are the same regardless of which of the two
particles in the final state are off shell. A glance at
Fig. 9 shows that this means that the first six equa-
tions collapse immediately down to only three.

The TUF must also be symmetrized for identical
particles. The exact symmetrization scheme is
shown in Fig. 16(a), where care has been taken to
distinguish between the spectator (marked with an
X ) and the other mass shell particle (marked with a
vertical dashed line}. The figure shows that this
will involve terms other than the original M22(1, 1).
In fact, ignoring the arguments of the M 's, we see
from Eq. (3.2), where all of the cases which occur in
Fig. 16(a) were worked out, that

~22 (Q ) I 21 ( Q )

pi (Ei —Ei )—
+

co+ —(E2 —EI )
(4.11) L /

This prescription is shown diagrammatically in Fig.
15. It has made the two potentials identical, and
also preserves the symmetry (4.10), which now is
also a symmetry of each potential separately.

One of the advantages of the prescription (4.11) is
that it is identical to the exact result (4.8) whenever
the final state is physical so that Pp Ei+E2 This—— .
means that the replacement gives exactly the same
result along the elastic cuts, and the small differ-
ences arising from the different off shell behavior

FIG. 17. Diagrammatic representation of the reduced
set of four coupled equations to be used with identical
particles.
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be independent of which particle is off shell and
which is the spectator in the final state, even off
mass shell. In this case the last six equations reduce
immediately to one, in which the three driving
terms are now of the symmetrized form

Jo(i')= —,
' gS~j,'(i,i') .

j'Qi'
(4.13)

We are finally left with the compact set of only
four equations drawn in Fig. 17. At first glance,
the equations in this figure appear incomplete until
one recalls that the ~ j no longer depends on j.

D. Additional contributions to 4

We now consider how the singularity free
prescription for the two body force given in Eq.
(4.11) and illustrated in Fig. 15 modifies the three
body force. The difference between the exact result
and the prescription can be taken into account by
including it in a reevaluation of diagrams of type C,
which is the only place where the off diagonal po-
tentials which give rise to the problem are to be
found.

The corrected contribution C, to be called C', is
the difference between the full diagram and a modi-
fied diagram in which only the spectator pole is re-
tained and the second meson exchange pole is re-
placed by a form required by the prescription (4.11)
instead of the form given by the diagram [cf. Fig.
5(b)]. Specifically,

where we have relabeled the momenta in Fig. 5(b)

by replacing q'=p' with —p', q with —p, and p
with 2p. Our configuration corresponds to zero re-
lative momentum for the incoming and outgoing
pair. Also,

~ p ~

=
~

p'
~

=a and

E=(M +a )'

E =(M2+4~ 2) 1/2 (4.16)

8'=2E+E2 .

D2 is the exact denominator of the pion pole which
gives rise to the trouble and D, is the application of
the prescription to this case. After integrating over
kp, the two denominators D2 and D3 can be com-
bined and the first factor in D& canceled, thus com-
pletely removing from (4.14) the singularities asso-
ciated with the elastic cut. This cancellation works
because D2 and D3 are identical on the elastic cut.

The remainder of the integrand can now be ap-
proximated by taking the M~ oo limit. If, in addi-
tion, we assume a and q =(p' —p) are small
compared to JM2, we obtain

1O 3~2C'=C 1— (4.17)

The correction term vanishes at threshold, but
grows rapidly away from threshold. While (4.17) is
sufficient for the estimates wanted here, a more de-
tailed treatment is clearly necessary for applica-
tions.

If this new result is substituted into the estimate
for the average three body force near threshold,
(3.4), we obtain

(2M)' (2ir )' E„,W k l e——-—' 3 2 — 2
~p g 3 15

3a —q

p
(4.18)

1 1 1
X —--

D] D2 D3

(4.14)

Di ——[Ek+ip 2E+—,W+ko]— .

1

XEk+2p' —~E+
3 W+ko]

X [cok+~ ko ][cok+p ko ]-, —

D2 =COk+2(~ ~&') —(
&

W —4E + kp)
4 2 (4.15)

3 =~k+2(p+p )
—«k+2p —E2»2 2

where antinucleon denominators have been replaced
by 2M, and only the spectator pole explicitly shown
is to be retained, the other contributions being in-
cluded in C calculated before. The denominations
are

The correction term has the right sign to reduce the
effect of the three body forces considerably, indicat-
ing that the prescription for removing the singulari-
ties has improved the convergence.

E. Discussion

Our estimates of the size of three body forces
derivable from the sum of all ladder and crossed
ladder diagrams are very crude, but suggest that the
specific size of such effects will be dependent on the
details of how the three body problem is handled.
All of the contributions discussed in this paper can
be considered to be of purely relativistic origin in
the sense that no intrinsic three body forces have
been considered, and no nucleon isobars or pion res-
onances have been used to generate the effects. The
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forces arise solely from the reduction of pure two
body interactions, which might not naively be ex-
pected to generate any three body forces at all.

The result (4.18) suggests that the expected can-
cellation of leading contributions might indeed hap-
pen in some average sense. It could also mean that
the three body force is a rapidly varying function of
momentum transfer and, perhaps, energy.
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