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This paper begins with an explanation of the implications of the requirement that a two-

body relativistic equation should approach a one-body equation when one of the masses be-

comes very large. It is found that the Bethe-Salpeter equation does not satisfy this require-

ment. An infinite family of three-dimensional equations depending on a parameter
—1 & v & 1 is constructed, all of which do satisfy this limit. When

~

v
~

=1 one of the par-

ticles is on its mass shell; when v =0 both particles are equally off mass shell. The fourth

order irreducible kernel for this family is studied in the expanded static. limit for all v. It is

found, both for scalar theories and for a realistic chiral theory of spin —nucleons interact-

ing with isovector pions, that the leading order terms in the static limit cancel for any v,
and that the nonleading terms are independent of energy only for the

~

v
~

=1 equation.

Other criteria for the selection of a relativistic two-body equation and implications for the

form of the two-pion exchange potential are briefly discussed.

NUCLEAR STRUCTURE Family of two body equations. One body

limit. Energy independence of fourth order kernel. Chiral symmetry

and nuclear forces.

I. SUMMARY AND CONCLUSIONS

There exists a variety of two-body relativistic
wave equations. Perhaps the best known, and the
first to be introduced, is the Bethe-Salpeter (BS)
equation' in which all four components of the rela-
tive four-momentum of the two off-mass-shell par-
ticles are variables in the Green's function. More
recently a number of simpler, so called "three di-
mensional" equations have been introduced. In
these, the time component of the relative momen-
tum is fixed in some covariant way, so that it no
longer appears as a separate variable in the Green's

function. There have been attempts to compare
some of these equations with each other in order to
determine which is most suitable for nuclear phys-
ics. ' It has also been realized that an infinite
number of such equations exist.

The principal goals of this paper are (1) to
develop criteria by which relativistic two body
equations can be judged and (2) to apply these to a
family of such equations in a realistic case with spin

nucleons interacting in a chirally invariant way

with isovector pions.
One criterion which is often used (sometimes im-

plicitly) is that any equation should reproduce the
results obtained from the BS equation (in ladder ap-
proximation). This approach assumes that the BS
equation is the "best" equation for nuclear physics.

A different viewpoint will be taken in this paper.
The criteria by which equations are to be compared
will be developed from physica I considerations.

Any relativistic two body equation (including the

BS equation) can then be evaluated. Proceeding in

this way, there are compelling reasons for conclud-

ing that the BS equation is not the best equation for
nuclear physics. The situation is paradoxial; the ex-

tra work involved in keeping the relative energy as a
variable seems to reward one with a poorer answer,

rather than the improved result expected.
All of the results in this paper are summarized in

this section. The criteria by which it is proposed to
evaluate equations is discussed in Sec. IA. The
most important one, that the equation should have

a one body limit, is developed in Sec. II.
The equations included in this study are the BS

equation and a family of three-dimensional equa-
tions characterized by a continuous parameter
—1&v&1. When

~

v
~

=1, the relative energy is
fixed by restricting one of the two particles to its
mass shell (v=+1 corresponds to particle 1 on

shell, while v =—1 puts particle 2 on shell). When

~

v
~
@1, neither particle is on shell, but for v &0

particle 1 is "closer" to being physical than is parti-
cle 2, and conversely for v&0. The case v=0 is

particularly interesting; it corresponds to the case
when the particles are equally off shell and the rela-

tive energy is zero in the center of mass (c.m. ) sys-
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tern (for equal mass particles). The choices
~

v
~

= 1

correspond to the equation proposed in Ref. 3,
while v=O is identical to that proposed by To-
dorov. The Green's function for this continuous
family is developed in detail in Sec. II A.

These relativistic equations are evaluated using
two illustrative theories and the results of this
evaluation are summarized in Sec. I B. The first is
a completely spinless theory, in which two heavy
particles of mass M exchange a lighter particle of
mass p. The results for this are worked out in de-
tail in Sec. III, and are a generalization of results
previously presented in Ref. 3. The second illustra-

tive theory is a realistic one including spin and isos-

pin consistent with chiral symmetry; the interac-
tions include a purely y ~NN coupling and the re-

quired cr-like NN2n contact term. The results for
this case are presented in detail in Sec. IV. Finally,
the results of the entire paper are discussed in Sec.
IC.

grams must be added to the ladders in order to give
a minimal set of Feynman diagrams which will gen-
erate the correct limit. This result has been known
for a number of years, and has its analog in the
derivation of the eikonal limit in high energy
scattering. ' It appears that the sum of all ladder
and crossed ladder diagrams is the smallest set of
Feynman diagrams which gives reasonable results
in both the low and high energy limits.

The principal role of any relativistic two body
equation is to evaluate this sum for finite masses
where the one body equation is not sufficient. To
accomplish this the equation defines an infinite
series of irreducible kernels, of increasingly higher
order n. The definition of irreducibility appropriate
for an equation depends specifically on the struc-
ture of the Green's function which defines that
equation. The sum of these kernels up to order N
can be denoted by M(N)

A. Criteria for evaluating
relativistic equations

Probably everyone would agree that the most im-

portant requirement for a two body equation is that
its solutions give the correct answer. While the
correct answer is not known in the general case,
there is one limiting case where it is known. Sup-
pose the two body system includes two particles,
one of mass m and spin s, the other of mass M »m
with no internal degrees of freedom (spin zero).
The particles interact by exchanging a meson of
mass p, . In the limiting case when the mass of the
heavy particle becomes very large, so that it neither
gives up nor absorbs energy, it should be possible to
describe the behavior of the remaining particle by a
one-body relativistic equation (appropriate to the
spin s of the particle} with an instantaneous poten-
tial. The fact that the potential is instantaneous fol-
lows from the fact that it cannot transfer energy to
or from the particle.

The requirement that a two body equation reduce
to a one body equation when one of the particles be-
comes very massive will be referred to as the "one
body limit, " and makes good physical sense. If it
were not so, then it would not be possible to isolate
a physical system from the rest of the world.

The implications of this requirement are studied
in Sec. II. There it is shown that the sum of rela-
tivistic ladder diagrams does not generate ihe
desired one-body equation in the one body limit. It
is shown that the sum of all crossed ladder dia-

and the solution of the equation with kernel W(N)
can be denoted M(N). We assume that all equa-
tions will give the same answer for M( 0o ), and that
this answer, if expanded, would be equivalent to the
sum of all ladder and crossed ladder diagrams.
However, since the evaluation of the exact kernel
A (Oo ) involves computing an infinite sum of ker-
nels K'"' which increase enormously in complexity
with order n, the exact kernel is never used and the
issues of practical importance concern how well the
series M(N) for some small finite N approximates
the full result M(ap). Once again, since M(ao) is
not known, it is only possible to make an educated
guess about how rapidly M(N) ~M( ao ).

The criteria by which it is proposed to evaluate
two body equations will now be stated.

(1) For each order N, the equation must reduce to
a one body equation in the one body limit.

(2) The series for 4 (N) should converge rapidly
as N —+op.

(3) M(N) should be independent of energy.
(4) 4 (N) should be well defined and contain no

spurious singularities.
No attempt will be made to satisfy these criteria

in their most general form. Rather, it must be
recognized that practical calculations in nuclear
physics will rarely go beyond %=4. Taking this
into account, the second criterion is restated in a
more modest form;

(2'} The fourth order kernel, X'"', should be as
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small as possible, and in particular, should vanish in
the one body limit.

B. Summary of results
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FIG. 1. The six diagrams which contribute to the
fourth order kernels discussed in this paper. (a) and (b)

subtracted box, (c) crossed box, (d) and (e) triangles, and

(f} bubble. The heavy dot in the last three is the o-like
NN2m. contact term and these are present only for the
realistic theory with spin. The cross denotes a particle
on mass shell.

The principal result of Sec. II is that the smallest

set of Feynman diagrams which will give a one
body limit is the sum of all ladder and crossed
ladder diagrams. A corollary to this result is that
the Bethe-Salpeter equation in ladder approxima-
tion (N =2) does not have a one body limit and
hence does not satisfy requirement (1} above. The
family of three dimensional equations discussed
above and in Sec. IIIA all have a one body limit.

In Secs. III and IV the fourth order kernel is
evaluated for the BS equation, and the family of re-
lativistic three dimensional equations discussed
above. Section III examines the fourth order kernel
for a spinless theory, in which case the kernel is
limited to the first three diagrams shown in Fig. 1.
In this figure, the line with a cross means that the
particle is on shell, so that Fig. 1 shows the kernel
specifically for the v =1 equation, although the ker-
nel for equations with v+1 will still have terms
similar to those shown. Figure 1(a) is the box, Fig.
1(b) the iteration of the one pion exchange (OPE) to
fourth order, so that the difference between 1(a) and

1(b), called the subtracted box, is that part of the
full box not included by the iteration of the second
order kernel. Addition of the crossed box, Fig. 1(c},
ensures that all contributions from ladders and
crossed ladders have been included to fourth order.

For the BS equation, (a} and (b) cancel exactly, leav-

ing only (c).
Section IV examines the fourth order kernel in a

realistic theory with spin, isospin, and approximate
chiral symmetry. The fourth order kernel now in-

cludes all six diagrams shown in Fig. 1. The m.NN
vertex is assumed to have a pure gy ~' structure,
and the rr-like XN2m contact term (represented by a
heavy dot in the figure} has the structure

as required by chiral symmetry. The bubble dia-

gram, (f), must be multiplied by —, as required by
the Feynman rules.

For both the spinless and realistic theory the ker-
nel is evaluated in the expanded static limit, where
it is assumed that p/M«1 and terms of order
(p/M) are neglected, but those of order unity and

p/M are retained. For the spinless theory this limit
exists without regularization at the vertices, while
for the realistic theory with spin the vertices must
be regularized, and it is assumed that it is also true
that the regularization mass A «M. Again terms

up to order A/M are retained. The following al-
most identical results are obtained for both theories:

(a} For the entire family of three dimensional
equations, the leading order terms in the fourth or-
der kernel cancel, leaving the kernel of order p/M
in the static limit. Specific expressions for this ker-
nel are given in Eqs. (3.34) and (3.37) for the spin-
less case and Eqs. (4.37) and (4.39) for the case with
spin. In particular, this ensures that condition (2 )

is satisfied. For the BS equation, the leading order
term does not cancel, and condition (2') is not satis-
fied.

(b} Only the equations with
~

v
~

=1, in which
one particle is restricted to its mass shell, have a
kernel with no energy dependence in the static limit.
(The static BS kernel is also energy independent for
the case with spin, but not for the spinless case.}

(c) The equations with v+0 all have spurious
singularities arising from the crossed box diagram.
These are cancelled in higher order, occurring at
very high internal momenta, p&MW/v+W~/4,
where 8' is the total energy, and are not present in
the static limit. The location, origin, and cancella-
tion of these singularities are discussed in Appendix
B.

The following conclusions can be drawn from
these results.

(a} The BS equation is by no means the optimal
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equation for nuclear physics. It does not have a one
body limit and its fourth order kernel has a nonzero
term of leading order, suggesting that it does not
give a rapidly converging series of irreducible ker-
nels. The extra work involved in retaining the rela-
tive energy as a fourth variable is not justified by
the quality of the results.

(b) The
~

v
~

=1 equation has attractive advan-

tages. It enjoys the features of all the three dimen-

sional equations in that it is simple, with a one body
limit, and with a fourth order kernel which is local,
energy independent, and free of spurious singulari-
ties in the static limit. The presence of spurious
singularities in the exact crossed box is a serious
disadvantage, however, in that it makes it practical-
ly difficult to treat the fourth order kernel exactly. "

(c) The v =0 equation is very attractive also. It
has no singularities, and enjoys the advantages com-
mon to all the three-dimensional equations. Unfor-
tunately, its fourth order kernel has a significant en-

ergy dependence in leading, nonvanishing order.
This is an indication of the fact that the equation
has not succeeded in confining the energy depen-
dence to the iteration of the second order kernel,
where it most naturally belongs, and where it can be
taken into account without the need to worry about
nonorthogonal wave functions and the other corn-
plexities which accompany energy dependent poten-
tials.

C. Discussion

The most extensive comparison of three-
dimensional relativistic wave equations was carried
out by Woloshyn and Jackson, who studied six dif-
ferent equations for spinless particles. Their case A

is identical to our
~

v
~

= 1, but our v =0 case is not
included in their discussion. Nevertheless, some
comparisons are possible. They calculated the
second Born approximation at threshold, and ob-
served that other equations gave a better approxi-
mation to the fourth order ladder sum (box plus
crossed box) than case A (

~

v
~

=1). This conclusion
can also be drawn from our results, Eqs. (3.37) and
(4.37). If these general expressions are evaluated at
threshold (t = p = p

' =e =0) it is readily seen that
the v =0 case gives the smallest fourth order irredu-
cible kernel, and hence the second Born approxima-
tion for this equation must be closest to the exact
fourth order diagrams. Our results also show, how-
ever, that as the size of the fourth order kernel at
threshold decreases as v approaches 0, the accom-
panying energy dependence (and nonlocality) grows

by a compensating amount, so that the v=0 equa-
tion also has the fourth order kernel with the largest
energy dependence. Since this energy dependence
introduces many technical complications, it is not
clear that the threshold value of the fourth order
kernel is the best indicator of the efficiency of the
equation.

This paper focuses primarily on the effect of
treating two equal mass particles in an unsymrnetri-
cal way. The amount of asymmetry introduced is
characterized by the parameter v, and could be
varied from v =0 where the particles were equally
off mass shell to

~

v
~

=1, where one particle was on
shell and the other off shell, giving maximum
asymmetry. While both symmetry and asymmetry
offer advantages and disadvantages as discussed in
Sec. IB above, it would be difficult to argue, from
the Uiewpoint of the turo body p-roblem in isolation,
that either offers decisive advantages over the other.
This conclusion is also supported by Woloshyn and
Jackson, whose six equations included three which
were symmetric and three which were unsyrnrnetric
(one particle on shell). They calculated numerical S
wave phase shifts obtained using second and fourth
order kernels with each equation. They found that
all the equations gave similar results when calculat-
ed with fourth order kernels, and that while a sym-
metric equation gave the smallest difference be-
tween second and fourth order results, some of the
other asymmetric equations (but not the

~

v
~

=1
case) also gave small results. In rment work with
separable potentials, a similar conclusion was
found. It may be that additional convergence fac-
tors of energy in the propagator are more important
than the asymmetry, and these may be less impor-
tant, in turn, when regularized propagators are
used.

The advantages of the unsymmetric approach be-
come more apparent when consideration is given to
the ease with which two body wave functions and
amplitudes with one particle on shdl can be used in
interactions with external probes' and in the three
body system.

'

The treatment in Sec. IV of the realistic case of
two spin —, nucleons interacting with an isovector
pion is sufficiently detailed to shed some light on
cancellations in the nuclear force. When y cou-
pling is used, a realistic theory requires a o. interac-
tion of some kind, and we used a XX2m contact
term, such as one obtains naturally from the lowest
order expansion of a nonlinear chirally invariant
Lagrangian, or from a theory with a massive 0.
meson which satisfies the relation
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gf g'
(1.2)

pyg
~ M

where g~ and f~ are the oNN and oirir coupling
constants and m~ is the cr mass W. e found that, in
the static limit, the leading contribution of the box
and crossed box combine to give a large scalar con-
tribution, which is in turn canceled by the leading
contributions from the triangle diagrams, Figs. 1(d)
and (e}, and the o bubble, Fig. 1(f). The cancella-
tion of the box and crossed box has been known for
many years, ' and the cancellation of the "two pair"
terms by the 0 was emphasized by Lomon. ' As
long as a three-dimensional equation is used, this
cancellation is largely independent of the kind of
equation (i.e., the parameter v), except for the terms
of order (b, /M) which are energy independent if

(
v [

=1. Furthermore, for
~

v
~

=1 the pair terms
included in the iteration of the OPE are just the
right size to cancel the final remaining term left
from the fourth order kernel (Sec. IV E). If the oth-
er important contributions to the two pion exchange
(TPE) force (such as that obtained from 5 diagrams
not included here) also tend to cancel that part of
the fourth order kernel coming from Fig. 1, then it
may be useful to retain the pair terms coming from
the iteration af OPE, and the use of y with the

~

v
~

=1 equation would give a good description of
the NN interaction in the OBE approximation. If
these other 6 contributions do not cancel the dia-
grams in Fig. 1, then the y coupling is inefficient,
and it may be better to use y y" coupling where
these terms are absent from the start.

In a recent series of impressive papers, Zuilhof
and Tjon"' have studied the NN interaction using
the BS, the Blankenbecler and Sugar, and the

~
v

~

=1 equation. All three are studied in the one
boson exchange (OBE) approximation, and TBE
contributions to the two three dimensional equa-
tions are also studied. They find large differences
between the different equations, and point out that
the three dimensional equations do not do a good
job approximating the BS equation (in ladder ap-
proximation}. We also would expect this, but be-
lieve that this difference should be seen more as a
difficulty with the BS equation. It is the sum of all

ladders and crossed ladders which should be calcu-
lated, and while the BS equation can calculate the
ladders exactly, it is expected to do a poorer job
with the ladders and crossed ladders, order by or-
der, than any of the three dimensional equations.

Zuilhof and Tjon also find that adding the fourth
order subtracted box [Figs. 1(a) and (b) only] to the
OBE kernel will not always improve the conver-

gence of the three dimensional equations to the BS
equation in ladder approximation. From the
viewpoint of this paper, this seems to be a test of
doubtful value since the leading term of the sub-
tracted box is in no sense "small, " reflecting the
fact that the three dimensional equations are not
designed to converge to the ladder sum.

The significance of the cancellations described in
this paper can be easily questioned, when it is re-
called that they hold only in the expanded static
limit, and for a theory with spin this requires form
factor masses much less than the nucleon mass, M,
of about 1 GeV. Form factor masses typically used
in fits to NN phase shifts are larger than M, so the
static limit may be irrelevant. To this there are two
responses. First, the existence of the one body limit
may be a guide to the choice of wave equation, so
that even if the cancellations are only imperfect in
real cases, the very existence of the correct limit
may be telling us that the three dimensional equa-
tions are a more correct starting point for a realistic
calculation than is the BS equation. Second, the re-
cent realization that the high momentum structure
of the nuclear force is probably determined by new
mechanisms depending on quarks, gluons, and
quantum chromodynamics (QCD), suggests that
perhaps only the low momentum (large distance)
behavior of ~N boxes is of physical significance. If
the correct quark confinement radius is about 0.8
fin, then we can expect QCD effects for momenta
larger than 250 MeV, suggesting a cutoff at about
this momentum, which is considerably smaller than
a nucleon mass. The accuracy of the static limit is
examined in Sec. III E.

The final test of any theory is its ability to calcu-
late results, of course, and until we have numerical
results these speculations are of limited value.
Work in progress on a OBE madel of NN scattering
using the v =1 equation suggests that a good fit to
the NN phase shifts is possible with only the four
mesons essential to any theory; m, p, cr, and co.'

This will be published elsewhere. The detailed cal-
culations which serve as a foundation for the results
and conclusions discussed above are presented in
the following sections.

II. THE ONE BODY LIMIT

As discussed in Sec. I above, any reasonable ap-
proach to the relativistic two body problem should
have a satisfactory one body limit. The one body
limit occurs whenever the second particle becomes
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so massive that its kinetic energy becomes a negligi-
ble part of the total energy and its internal degrees
of freedom become unimportant. In this case the
problem reduces to the motion of the light particle
in a static potential field created by the massive par-
ticle, and we should require that in this limit the
two body equation reduce to the correct relativistic
one particle equation for the light particle. In this
section, the implications of this requirement will be
examined.
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A. Ladder sums

FIG. 2. All terms up to sixth order in the ladder
sum. The double line is the heavy particle of mass M.

Consider the ladder sum of one particle ex-

changes, as shown in Fig. 2. In this figure, the
upper line represents a light particle of mass m and

spin s. The lower particle is a heavy particle of
mass M and in order that its internal degrees of
freedom be unimportant, spin zero. .Then, the first
three terms in this ladder sum can be written

d ki V(pike)b(k, )v(k, p', )

(2n. ) [M (P k)——ie—]

(2.l)
d4k, d4k, v(p/k[)h(k]) v(k]k2)h(k2) v(k2p] )

(2m )s [M —(p —k&) iE][M— (P k—2) —ie]—
where V(p&p&) is the relativistic kernel describing the exchange of the particle of mass p which generates the
interaction and h(k& ) is the propagator of the particle of mass m and spin s. In the case where all particles
have spin zero, then

2—gV(piK)=,
p (p1 pl )

b,(k, ) = [m —k, —ie ]

It is clear that the ladder sum is just the iteration of the following equation

d k) V(p)k))h(k))ML (k)pI, P)',P =V( ' )+iL pipi = pipi +

(2.2)

(23)

This equation is the Bethe-Salpeter equation in the ladder approximation and is often regarded as a good
starting point for a relativistic two body theory.

We now wish to test this popular ladder sum to see whether the equation it generates, Eq. (2.3), satisfies the
requirement that the one body limit exist. To do this, we first let M~ao, and write, in the center of mass of
the two particles,

[M' —(P —k&)' —i&] '=(2&k, ) 'I[&k, —Po+kio —iel '+[&k, +Po —kio —i&l

~(2M )
'

I [M Po+k )o ie]—'+ [M+P—o k)o ie]— — (2.4)

where we rely on the fact that V and 6 provide suf-
ficient convergence in k~ so that (k~ ) &&M and

Ek ——(M +k) )' M .

In the same approximation, I'o ——M+e, where
e=p&0 ——p&0 is the energy of the light particle of
mass m and is also much less than M. Then, it is

clear that the second term in Eq. (2.4) will give con-
tributions which are much smaller than the first
(since it is large only when kto-2M, in which case
V and b, are small), and we obtain

[M —(P—k) ) ie]—
—+(2M) [k)o —e —ie] . (25)
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Note that this denominator depends only on the en-

ergy k,o
—e of the incoming meson. This is as far

as we can carry the M~ 00 limit.
If we now substitute (2.5) into Eq. (2.1), we see

that the required one body limit does nat exist.
What we expect is an equation of the form

~L, (pipi P)=V(pipi}

d ki—I 3 V(piki)
(2m )

X Z(k i )ML (k ip i,P),
(2.6)

where in every amplitude the energy of the light
particle is e, refiecting the fact that the heavy parti-
cle is fixed and cannot absorb or give up energy.

The potential V should be instantaneous, that is, it
can no longer depend on the energy difference

kio —pio, which is zero. However, Eq. (2.6) cannot
be obtained from Eq. (2.1} with (2.5). The kio in-

tegration in the second Born term, for example, in-

cludes not only the desired pole at k&0 ——e+ie
which comes from (2.5), but also other poles in the

upper half plane which come from the terms in V
I

and from the negative energy poles in b, (which are
not negligible if m is small).

We conclude that the Bethe-Salpeter equation in
the ladder approximation does not reduce to the
correct one body limit, and that the ladder sum is
too small a class of Feynman diagrams for this pur-
pose.

B. Ladders and crossed ladders

If the ladder sum is enlarged to include all
crossed ladders (with all possible crossings), the
correct one body limit is obtained. In effect, the
crossed ladders cancel all of the singularities except
the pole at k&0 ——e, so that the resulting sum would
generate Eq. (2.6) when iterated to all orders.

The additional crossed ladder diagrams up to
sixth order are shown in Fig. 3. Note that it is pos-
sible to label the momenta in each diagram so that
all propagators have the same labeling as in the cor-
responding ladder diagrams except for the propaga-
tors of the heavy particle. Then, it is easy to com-
bine ladders and crossed ladders. In fourth order,
for example, we have

4~"'=iI,I(k, )
(2n ) M (P k, )—ie—M— (P+k, —p—i —p i ) ie—

d4k 1«i)
4

1 1+
kio —e ie e —kio——ie

d k I(ki)
(2n } 2M

5(kio —e} . (2.7)

We see immediately that only the term with k&0 ——e survives; all other singularities are canceled by the crossed
box. If a factor of (2M) is absorbed into both M and V, precisely the correct fourth order term is obtained to
be consistent with (2.6).

The same cancellation can be shown to work to all orders. To carry out the argument efficiently, write a
typical (2n)th order diagram as

[(coi+ie)(~i+N2+le) ' (coi+c02+ ' ' +ei„ i+le)] (2.8)

where g'"' includes the integral over all internal four momenta and all factors of V and h. Only the positive

energy denominators for the massive particle are written explicitly in the brackets, and we have used the fact
that in the M~ oo limit the positive energy denominators of the M particle depend only on the energies of the
exchanged meson which are now represented by the new notation co;, as shown in Fig. 4(a).

There are n+1 different (2n +2)th order diagrams generated from each typical (2n)th order diagram.
These correspond to the extra insertion of an additional meson energy co„ in all possible places inside the dia-
gram, as shown schematically in Figs. 4(b) —(d). Hence we can write

Mi "+ '=g'"+ "I[(co„+ie)(coi+co„+ie).. . (coi+co2+ . . +co„+ie)]

+ [(co i +ie )(n) i +co„+ye ) (co i +co p+ +e)„+ie)]

+ [(Ni+ie )(co, +rd2+ie) ( —cog+ie)] (2.9)
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where the three terms shown correspond to (b) —(d) in Fig. 4. A.dding the first two terms together gives

M' "+ '=g'"+"[[(CO]+iE)(CO„+iE) . . (CO]+N2+. . . +CO„+iE)]

+ +[(N]+iE)(COj+N2+iE) ' ' ' ( —N„+lE)] (2.10)

In a similar way, the sum of the first two terms may be added to the third term, giving

[[(N]+iE)(Ng+iE)(CO]+N2+Ng+iE) . . ] '+[(CO]+iE)(N]+N2+iE)(CO]+CO2+Ng+iE) ' ' ] '}

=[(CO]+iE)(CO]+CO;+iE)(N„+ iE)] ' . (2.11)

In this way, the terms involving co„ in the sum are accumulated and canceled leaving finally only two terms:

[(CO] +lE)(CO]'+N2+lE) ' ' '
(CO] +N2 + ' +COq ]+lE)] [(CO~ +lE) +(—CO~+EE) }

2m—ig "+' 5(N„)[(N]+iE)(N]+Ni+]E) (N]+Ni +N„]+]E)] (2.12)

The energy of the new meson must be zero. Since
the remaining (2n)th order diagram is only one typ-
ical (2n)th order diagram, we can now consider the
other (2n)th order diagrams, and repeat the argu-
ment, showing eventually by the same combinations
that the energies of each meson must be zero. This
gives a Born series of instantaneous potentials, the
iteration of Eq. (2.6). We conclude that both
ladders and crossed ladders are needed to give the
correct one body limit.

I

der irreducible kernel for all members of this family
will be calculated. The singularities of this kernel
are studied, and the accuracy of the static limit is
discussed.

A. The two body propagator

The key to the construction of' any two body
wave equation is the two body propagator. The
propagator to be discussed here is written (for spin-

III. SCALAR THEORY

A family of relativistic two body equations, all of
which give the correct one body limit, will be de-
fined and discussed in this section. The fourth or-

"I+"2+ -"n-I

CUI+CL12+"- Cd&

C' al

CLII+ CtI2+" QP~

QJ + Ql2+"-QJ&

~n-I

PI kI

-PI X P

P+k -p -p'
I I I

PI
T

I

P+k -p -p P+k-p -pI /
2 I I I I I

Cdl+ CU2
2

(a)

lal + f4~+".td

CIJI + td2+ ~ .CLIP

Cdi ~ 402+ CU+

(b)

~n

td + td +" CLI
I 2 A

4]J2

~I+n
+

~n

r'i

P+ kI- k2-pI P+k2 P-k
I

P+k2-kI-pI
CU+CU +CU

+ ~ ~ ~ +

& /

P+k -k -p P+k -p -p
I 2 I I I I

P+k-p -p P+k-k -p
2 I I 2 I I

FIG. 3. Additional terms which must be added to the
terms shown in Fig. 2 to obtain all ladder and crossed
ladder diagrams up to sixth order. All lines not labeled
have the same momenta as the corresponding diagram
in Fig. 2.

CL]2

CLI g

QJI

tlP I+ CsI2

CO
I

(c)
FIG. 4. (a) The interactions with the heavy particle in

a typical (2n)th order diagram. (b) —(d) Representation
of the series of n + 1 terms arising from adding an extra
meson to (a) in all possible ways.
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less particles)

(2n)5. + [b (v )]
G(k, P;v)=

(A++A )
(3.1)

~(PIPI P)=I (PIP1}

d4k,—J V(P Ik I )G(k,P;v )
(2m )

where A+ ' are the relativistic propagators of the
two particles, XM(kIP'I, P), (3.9)

b, (v) =A+ —,(1+v)—A —,(1—v) (3.2)

and v is a continuous parameter which will vary
from

where the notation is the same as in Sec. II. Note
that for any v, the propagator fixes kp at kp(v) [Eq.
(3.6)], which approaches

—1&%&1 . (3.3) kp(v) ~ (E W /—4)
M . 8'

If the two particles have equal mass M, then in the
center of mass (k —a )~0.

W
(3.10)

A+ ——M +k —( W/2+k p) ic—
=E W /4 ——kp + Wkp ie, — (3.4)

Thus all of the equations give the correct one body
limit.

where ki and k2 are the four momenta of the two
particles, and

P=ki +k2 ——( W, O),
1k= —,(k, —k2),

E=(M'+k')' '.
(3.5)

If v= 1, particle 1 is on the positive energy mass

shell; if v= —1, particle 2 is on the positive energy
mass shell; and if v =0, the particles are equally off
shell and ko ——0 in the c.m. More generally, the 5+
function fixes ko in the c.m. system at

(v } [ W+ ( W2+ v2(4E2 W2) )I/2]1

2v

(3.6)

where (3.6) is to be expanded near v=O to give
kp ——0 as v=O. Both of the choices

~

v
~

=1 and
v=0 have been previously investigated. ' The
propagator (3.1) can also be written explicitly

2m v5(kp —kp(v) )
G(v)=

( ) W( W2(1 2)+4 2E2)1/2

(3.7)

21r5(kp+(E —w/2) }
G(+1 =

2EW[2E W]—
2n.5(kp)

G(0)=
2 W[E W2/4]—

(3.8}

The two-body equation which follows from any
of these propagators is (for spinless particles)

which gives for the special cases of particular in-
terest

B. The fourth order kernel

&g4 d4k'

(21r)4 DID2A+A (+)
(3.11)

where, allowing the meson masses to be unequal

(useful for the eventual introduction of form factors
later}

and

DI =PI —(k' —b, ) —ie,

D2 P2 (k——'+ 6)—ie, —

A+ ——M —( —, W+Q+k') —ie,

A (+)=M ( , W Q—+—k') —ie, —

(3.12}

P=-, (PI —P2» ~=-, (P —P'»

P'= (P'I —P2» Q= , (—P+P')—
k'=k —Q,

(3.13)

where k, pi, and p2 were defined in Eq. (3.5) and

Figs. 2 and 3.
Examine the box first. Note that the fully off

shell two nucleon propagator can be written

As discussed in Sec. I, the approach to the one
body limit will now be studied. The method will be
to look at the fourth order kernel derivable from the
subtracted box and crossed box graphs shown in
Figs. 1(a)—(c). This potential will be a function of
v, and we expect that it will be smaller for certain
values of v than for others.

The full box ( + ) and crossed box ( —) diagrams
are
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While this form makes its appear that Go depends
on v, the transformation

dada 1 —vP' (3.15)

(3.14)
I

shows that the apparent v dependence is indeed ab-

sent. Nevertheless, the form (3.14) is convenient, as
will be seen shortly. Next, using the identity

(A BC) '= I dy I 3x dx[Ax+ —,B(l+y)+ —,C(1—y)]

and performing the d k' integration gives

4 (i —v)

(3.16)

(3.17)

where

rl+ ——M x a + —,[1+x(1+va)][pi (1+y)+p2 (1—y)] —, t(1 —y —)

r

+ M — [x (1+va ) —x a ]+—,x W (1+y)+ (1—y)
2 W 2 2 2 2 po(v)

(3.18)
v v

where t=(p p') =46, —and po(v) and po(v) are given by Eq. (3.6) with k replaced by p and p '. Note that
much of the v dependence of (3.17) can be removed by the transformation

a=a'[1 —va'] '; x=x'(1 —va') .

The amplitude M&+ only depends on v through the relation (3.6).
As expected, M4+ has a singularity whenever

8' )4M

(3.19)

(3.20)

which comes from the elastic cut. This can be readily seen from (3.18) by noting that po(v)lv and
po(v)iv&0, and hence every term in (3.18) is positive definite if W &4M and t&0. If W2&4M, the
fourth term is negative, and for small a and large x this term will produce a zero in rt, giving rise to the
singularity.

Now M4+ is not the correct contribution to the fourth order kernel, since the iteration of the second order
kernel must first be subtracted to avoid double counting. In Appendix A it is shown that the iteration of the
second order kernel can be obtained from (3.17) merely by extending the range of the a integration in the
correct way. Specifically,

g, I dy I"xdx I" day,

If v &0, the integral over a runs from —oo to —(1+x)lvx. The subtracted box is then simply (v & 0)

V4, =M&+ —M4, ——
z I dy I xdx. I, +I, .dart+ (3.21)

VX

As Charap and Fubini' first pointed out a long time ago, this subtraction has eliminated the elastic cut and
rendered the kernel (or potential) far less energy dependent than would otherwise be the case. In Eq. (3.21) the
v dependence can now no longer be transformed away.

A similar parametrization of the crossed box is possible. We make no subtraction of the crossed box, and
the result is

4

Vq
—=M4 ——

2 I dy I xdxJ day

where

(3.22)
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=M x + —,(1+x)[pl (I+y)+pz (1—y)] ——,t[l —yt —x (1—a )]

—(M~ ——,W }x (1—a )+—,xW(po(v)+pc(v))[v ' —a+xv '(1 —a )]

——,x W(po(v) —po(v))y[1 —av '] . (3.23)

C. Singularities of the fourth order kernel

Before we discuss the static limit of the fourth
order kernel, we discuss the singularity structure of
the subtracted box and crossed box diagrams.

It is shown in Appendix B that V4, has a singu-

larity whenever

W & (M+@) +vM2
1+v

+ ((M+ju) +vM )

1/2 '

2

4
(2@M+@ )

For the two special cases of interest,

v=0 W &(2M+2@,}

v=1 W &(2M+@)

(3.24)

(3.25)

This singularity is due to the presence of inelastic
cuts in the subtracted box.

The crossed box has singularities" whenever

u=(p+p') &4M (3.26}

If both particles in either the initial or final state are
restricted to their mass shell, this condition cannot
be realized. However, if both initial and final states
are unphysical, there is a singularity in p (or p

'
}

for all W. The precise location of the singularity

depends on p and p'. To obtain the minimum
value of p, or p', at which the V4 kernel is

I

singular, choose p '+ p =0 (to minimize u) and ob-

tain

p =p' & +4VV
V

(3.27)

Note that only the case v =0 is free of this singular-

ity; for other values of v the singularity occurs at
very large (but finite} three momenta. For v=1,
with 8'=2M, the singular region starts at

I p I
=~3M=1700 MeV/c . (3.28)

It is shown in Appendix B that this singularity is
canceled in higher order, and is an artifact of the
prescription (3.6). It arises from the overlapping of
positive and negative energy nucleon poles which

seems to be characteristic of crossed ladders, and

would be absent if all negative energy nucleon poles
were ignored. Since the singularity is eventually

canceled in higher order, no errors would result
from taking only the principal value contribution.
Nevertheless, the presence of this explicit singulari-

ty is a nuisance; it would considerably complicate
any attempt to calculate V4 exactly by numerical
methods. " This difficulty presents us with a strong
reason to favor the v =0 equation.

On the other hand, this singularity is very dis-

tant, and in a region of very high momentum where

many physical phenomena other than two meson
exchange are important. It seems unwise to let the
choice of equation be dictated exclusively by such
behavior.

In the next section we will consider the fourth or-
der kernels in the static limit. In this case, the
singularities of V4, and V4 can be ignored.

D. The fourth order kernel in the static limit

To obtain the static limit, we scale (3.21) by introducing the variable

y=Max, z=Mx.

This gives

1 —v

(3.29)
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where

(+2——y2+-, 1+ y [p&'(1+y)+p2'(1 —y)] ——,'t(1 —y')

8' 1 zW po( ) po(v)
+ 1 — [(z+vX)' —X']+——

4M 2 M v
(1+y)+ (1—y)

V

For V4 we introduce

y =Mz

into (3.22), giving

V4 ——
2 2 I dy J ydy I dag

(3.30)

(3.31)

where

+ —, 1+ [p, (1+y)+p2 (1—y)] ——,t(1 —y

y (1—~r )+— (Po(v)+Po(v)) ——n+ (1—t2 )
1ym 1 3 2

4M' v vM

1 y8' u
(po(v) —po(v))y 1 ——

2 M V
(3.32)

To obtain the static limit, assume that
~ p ~

and

~ p
'

~

are of order of the meson masses p, &
(or p2),

and let M~—oo. Also 8' =2M +e, where
e=p /M, so that

1 4
V4. ———Vp+ 2+

M p~p~

8' &o p
2

4M' M' M

'2
X (p'+p' —2~o')

and these terms can be ignored if terms of order
(p/M) are to be neglected (they cancel for all v

anyway). From (3.10) we have

—[po(v)+go (v)]
1

(3.34)

where we assumed the potential was symmetric in

p~ and p2 (which would be guaranteed by the regu-
larization; see Sec. IV), and

[p '+ p
'—2ao'] . (3.33)

J

Then expand the denominators, keeping terms of
order M ' only. The individual terms can be cast
into a convenient spectral form using the techniques
reviewed in Appendix C. The result is

1 2 2(1+v )
V44 = Vo — (1—v')+

M pip~

X (p'+p '—2ao') V, ,

16nM~v~. +v2~' g —t

X4 —1/2(g 2 2)

(3.35)

where

b(a, b, c)=a +b +c 2ab 2ac 2bc —. ——

The total fourth order kernel is

(3.36)

g" Pi+P2Vit=
2128nM (Pi+P2) t—
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V4 ——V4, + V4

1+v'+ (1—v')
PiP2

box. The approximation in which the last three
terms are ignored in (3.32} is sometimes referred to
as the adiabatic approximation. '" It gives

X (p '+ p
' —2ao') Vi(t) . (3.37) ~- ='+' '+M

This is the principal result of this section. For an
unregularized theory with a single meson

(p, i
——p, z

——p), the special cases are

V4(v =0)= 1+ ( p '+ p
'z —2aoz) Vi(t),M p2

V4(v =1)= Vi(t) .2
M (3.38)

E. Accuracy of the expanded static limit

This section is devoted to a brief discussion of the
accuracy of the expanded static limit, where terms

up to 8'(p, /M) are retained.
We will begin the discussion with the crossed

Note that only the case v= 1 gives an energy in-
dependent, local potential in the static limit. The
otherwise attractive v =0 case has a potential with a
strong energy dependence which goes like e/p, .
Since p —p

' -p, the v =0 potential is also prob-
ably just as large as the v =1 potential. We would
have drawn somewhat different conclusions if we

had ignored the po and po terms, instead of treating
them consistently. We are lead to the conclusion
that the greater tendency for the v= 1 potential to
be energy independent is a strong argument in favor
of this equation.

X[pi (1+y}+pp (1—y)] ——,t(1 —y )

(3.39)

and can be directly justified if we are near threshold
and neglect off mass shell effects (po ——po ——0), or if
we are using the v=1 equation. Charap and Fu-
bini' then argue that while the adiabatic limit may
be good, it is bad to proceed further to the static
limit, which is equivalent to letting M~ co in (3.39)
and dropping the y/M term. Their point is that
since the y integration runs to 00, y/M cannot be
regarded as small. However, y/M is small except
when y is very large, and in this case the y term in
(3.39} guarantees that the integrand will be small.
In short, since the integrand is uniformly conver-

gent, the limit M~ ao can be taken either before or
after the integration has been performed. (With

spin, this requires that the theory first be regular-
ized in order that the integral exist. )

In this paper we have used what we call the ex-
panded static limit, in which the y/M term in

(3.39), and others like it, are taken into account by

expanding the denominator in a power series and re-
taining the first two terms. As we shall see shortly,
while the y/M term is quite important at the 10%
level, it can be well approximated by this expansion.

To gain insight into the error introduced by ex-
panding the y/M term as opposed to keeping it in
the denominator (3.39), we examine both the sub-
tracted box and crossed box at t =0.

The adiabatic limit for v = 1 is

V~,(t =0)=
z

tan
32m Mp,

4

V, (t =0)= + " tan-'
32m M p 1 —i) (1—rl ) v'1 —i)

(3.40)

where i) =p/2M =0 074 (for th. e pion-nucleon
r

Vg, (t =0)= 1+8
32~2M2@2 M2

4 2

V4 (t =0)= 1 ——v]+ d'
32~2M2p2 2 M2

case). If (3.40) is expanded, then

(3.41)
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l.2 static limit itself gives a reasonable estimate of the
result, and that a fairly precise approximation can
be obtained from the expanded static limit.

I.Q

0
e
I

0.8

bJ
pC)

0.6

04
0 Q. I 0.2 0.5

FIG. 5. Comparison of the adiabatic limit (solid line)

Eq. (3.40) with the expanded static limit (dashed line) Eq.
(3.41) as a function of g. The vertical solid line marks

g =0.074.

These quantities are shown as a function of the
small parameter q in Fig. 5. It is clear that the
terms of order q can be safely neglected, and the
expanded static limit is accurate to better than 2%
for ri &0.1. The strict static limit is less accurate;
for the value of ri expected in XX scattering the
mg/2 term contributes about a 10—20% correction
to V4 . It can be concluded that, for small q, the

IV. N-N INTERACTIONS
%'ITH CHIRAI. SYMMETRY

In this section, the two pion exchange (TPE) ker-
nel is examined for the family of relativistic equa-
tions introduced in the previous section. To ensure
that the interaction is realistic, discussion is restrict-
ed to a class of nXi.-nteractions derivable from
chiral symmetry', the n.-N scattering amplitudes
which serve as input to the TPE have the correct
behavior at threshold (at least). To keep the discus-
sion as simple as possible, and directed toward the
study of relativistic wave equations, which is the
primary focus of this paper, all baryon and meson
resonances are neglected; the world is composed of

1

spin —, nucleons and pseudoscalar pions only.
Furthermore, all kernels will be evaluated in the ex-
panded static limit.

A. Chiral m.-N interactions

A class of m-N interactions consistent with chiral
symmetry may be derived from a I.agrangian's's
with a nonlinear realization of this symmetry. Two
examples come to mind. These are'

Lq g —8—M ——— yy.-a C
2

2'
2M 1+g ~

4M

. y"r ($XB„P) g+L
4M' 1+g ~

4M

(4.1)

L =1( —8—M+
2

2

C+L
g 2/2 2M

4M

(42)

In both examples, B=y 8 —y 8, and the purely
pion part 1s

In both cases the infinitesimal chiral transformation
of the pion is

2 2

2 I+'&
4M

2 2

4M

'+M~'~) 2M'&' "4'
g M

while the nucleon field transforms according to

1+i r.(QX~) 1(,2M(4.3)
(4.5)
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in (4.1) and

g'= ( I —i v" ey )f (4 6)

in (4.2).
Note that L& involves a y y" mNN coupling,

with a p-type NN2m contact term, while L in-
volves a y coupling with a o.-type NN2m contact
term. The S wave mN scattering lengths corre-
sponding to these two Lagrangians, while construct-
ed from different mechanisms, are equivalent to or-
der g . For the o.-type Lagrangian, the nucleon pole
terms at threshold give a large contribution,

px;, ,—[rj.,r; ]— (4.7)

2
(a) g~nN ~ijM

(4.8)

For the p-type Lagrangian, the nucleon pole terms
are much smaller

where i and j are the isospin of the initial and final
pion, respectively. The o. contact term cancels near-

ly all of the Sij term

pa ( —) (
p(a () /2) a (3/2)

)3

2 2P 1+9
2M 2

' —1

1—
4M

=0.139 (theoretical)

=0.086+0.003 (experimental) . (4.12}

B. The fourth order kernel

It is possible to transform L~ into L, so that one
could consider an arbitrary linear combination of y
and y~y" coupling, with a corresponding mixture of
cr- and p-type contact terms. This generalized 0-p
Lagrangian would give the same scattering lengths,
and would be invariant under chiral symmetry. We
will not pursue this further here.

In the remainder of this section, we will work

with the O.-type Lagrangian. We have not investi-

gated the consequences of using the p type, or a o-p
mixture, but it seems likely that the general con-
clusions arrived at in this section would apply to
these cases as well.

2 2
~(Prole) g

1
4M2

p p
4M 8M

(4.9)

(p) g P2

—,[rj,r;],
2M

(4.10)

and there is no delicate cancellation. In both cases
the sum of the pole term plus the contact term is
identical, and the scattering lengths are in qualita-
tive agreement with the data

(ua '+ ' = —,)M(a
" '+ 2a ' ')

In this case, the p contact term supplies most of the
interaction

ig4 d O'N(+}
(2~)4 D,D,A+A (+) ' (4.13)

where the quantities are identical to those given in

Eq. (3.12), and the numerator functions are

The full fourth order kernel for a chirally invari-

ant theory with y interaction and a o-type contact
term is constructed from the diagrams shown in

Fig. 1. In the figure particle 1 has been placed on

shell, corresponding to the v=1 equation, but we

will consider the case of arbitrary v in this section

just as we did iri Sec. III above. Diagram (a) is the
full box and (b) is the subtraction, so that (a}—(b)

gives the subtracted box V4, as discussed in Sec. III.
The crossed box is shown in (c), and the three

remaining terms arise from the cr contact interac-
tion.

The full box and crossed box diagrams are

4-4M '+M
—1 ' ' —1

1—
4M

N(+) = (3p2r) rg)[M ——,P —Q —it' ](

X [M ——,P+@+i('], , (4.14)

= —0.010 (theoretical)

= —0.002+0.004 (experimental), (4.11)

where ~; is the isospin operator for particle i, and
(())=g.y, etc. Integrating over k', using the same

Feynman parameters introduced in Sec. III, and
subtracting the box just as done in Sec. III, gives
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Vq, ——(3—2&i.rq) f, dy f x dx f +f
-(i+.i-' &1(+)&2(—)

~+'
71 X2

2'~ [1+x(l+va)]

g4 —&)(+)&j(—)
V4 ——(3+2r~ r2) 2 f dy f xdx f da 4 +

where rt+ were given in Eqs. (3.18) and (3.23), and

g+ y$ —ax —,P'
8(+)= M ——P+ 1+x(1+va )

r

—ax@+y$+ —,E
8t'(+)= M+P- 1+x

The two triangle diagrams, Figs. 1(d) and (e), are
1

3ig —
( d k [M YP+~]~»

(2n. )4 Di(p, , )D2(}u2 )A+

31 72

2g (1+x)
(4.15)

(4.16)

(4.17)

where a factor of 3 for isospin has been included, the projection operator is on line 1 for M~+ and line 2 for
M~, and

Di(ei') =t |'—(p —k)',

D2(v2') =v2' —(p' —k)'.
A+ =M ( , P+k)——

Using the ident ty
1 1

(D,D2A) '=2 f dy f (1 y)dy([Di —,—(1+y)+D2(1—y)](1—y)+Ay) '

and integrating over k gives:

(4.18)

(4.19)

Mg+= g, f dy f (1—y)dy M — y (p'+p(l+y)pp'(I —y))
3g4 1 1 (1—y)

where

rig (+)™y+ —,(1—y)[p) (1+y)+82 (1—y)] —, t(1 —y )(1——y)
r

+ —, IV(po(v)(1+y)+pa(v)(1 —y)) 1+—y(1 —y) .1 1

n~ '(+»
1,2

(4.20)

(4.21)

We will discuss the bubble diagram, Fig. 1(f), in the next section.

C. Regularization and the bubble diagram

We now wish to examine the expanded static limit. However, none of the diagrams examined so far has a
static limit, because the terms involving g do not converge when we take the M~ oo limit. In order for a
static limit to exist in this theory with spin, the pion exchange must be further regularized to make it more
convergent at large momenta. One convenient way to do this, which also takes into account the composite na-
ture of nucleons, is to insert form factors at the m.NN vertices. If a simple monopole form for the form factor
is used, this is equivalent to replacing the pion propagator by

1 1 (A —p)
p —t p, —t (A —t)

(4.22)
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where the normalization has been chosen to give the same residue at t =p I. f we now assume A is not too
much larger than p, and that it remains fixed as M is increased, the static limit will exist.

The regularized potential (4.22) can be readily calculated if we use the following decomposition

(p' t)(—A' t)'— p' —«' t — dA' A' t-
If the unregularized potential V(p&,p2 } is known, then

(4.23)

VR,s
——V(p, p )—V(p, A ) —V(A,p )+V(A, A )+(A —p2)

X[V(p,x)+ V(x,p ) —V(A,x) —V(X,A )]
~

2+(A —p ) V(,y}
~

2=~V(p), p22) .
y=A2 (4.24)

In what follows, we will think of (4.24} as an operation which can be pe/0~ed on any unregularized poten
tial V(p &,p, z }.

The unregularized potentials we will examine all have the form
1

V(p)', p2')= I dy N[B'+C(p) (1 +y) +p2'(I —y))] (4.25)

The operation (4.24} when applied (4.25) leaves an integrand which is symmetric in y, so that any terms in N
which are odd in y (and do not depend on p&,pz) can be neglected. Furthermore, the regularization increases
the rate at which the potential decreases as B increases. If the unregularized potential goes like B ", as
shown above, then the regularized version will go like B ' "+ '.

The bubble diagram, which is finite only if regularized, can now be calculated. Using the form (4.22}, the

diagram can be written

dA) dA2

A ~=A2
2

=
where including a factor of 3 for isospin, and the factor of —, required for such bubbles

M' 3ig" d k 1

2M (2n ) D)(p )D)(A) )D2(p, )D2(A2 )

Introducing Feynman parameters and integrating over k gives

1

32m M (A& —p )(A2 —p ) v' v' 0 [m&y+mz(1 y} ty(1 —y)]— —

(4.26)

(4.27)

(4.28)

Performing the operation of Eq. (4.26), and using the techniques developed in Appendix C, M~ may be cast
into a convenient spectral form:

M =V = —DUO(p~, p2 ),
where

d~b, (~p, p, , )4 1/2 2 2

UO(pl p2 )
{™j4~M (p, ]+@,2)2

(4.29)

(4.30)

As will be seen shortly, (4.29) has the same form as some of the static potentials to be obtained below, but for
the bubble diagram it is an exact result.

D. Static limits of the fourth order regularized kernel

Once the potentials in Sec. IVB have been regu-
larized, the static limit can be taken just as was
done in Sec. III. Now we must assume that the reg-
ularization mass A &&M, as discussed above. The
results to order A/M will be retained, as was done

I

in Sec. III.
The presence of spin introduces one extra compli-

cation into the process of estimating the size of the
leading terms. It is necessary to take account of
off-diagonal matrices which couple positive and
negative energy subspaces, or couple large and small
components within the positive energy subspace.
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To estimate the size of potentials which couple
positive and negative energy subspaces, recall the
nonrelativistic limit of the coupled equations for the
v =1 case, which can be written

p2 I V+ —I2
q+ V+++ ~ ~ y+

M 2M

(4.31)

If V+ =V++, which is the case here, and we as-

sume that V++ A /M, then

V+ —
[ 2 A=V++ ~ (V+-=V++)

2M

(4.32)

A
1 i ——Pi ——2M+8'

M
L

(4.36)

Vg, ——(3—2ri ri)

U1
X ( —2+yi yz)Uo+(1 —v )

M

+ (p + p
' —2ao )(1—vi) ~,

M

V4 ——(3+2ri Tp) ( —2+yi yi)Uo+ Ui

Using these simplifications, the static limit of the
fourth order kernel is

and can be neglected. The V+ potentials need

only be considered in cases when V+ && V++.
For future reference, note that if

V+ =(M// ) V++, -

12
V4g

——12Up — U1,M

V~ = —6Up,

(4.37)

then

V++ V+- M V++
2M A

(4.33)

where Uo was already defined in Eq. (4.30),
V4~

——M~+ +M~, and

Ui —— ir/4
64m M

[M Ey + p'y]—&i(p')=0,

tT, (p)[M Epy +p y]i=—0,
(4.34)

and similar relations for particle 2, it is easy to
show that

and, in this case, the coupling between positive and
negative energy channels should be taken into ac-
count.

Since the negative energy channels can be ig-
nored, the positive energy projection operators can
be used to eliminate all reference to most remaining
off-diagonal matrix elements. For example, from
the relations

(4.38)

64ir M ie~+vii' ~re (to t)—
The regularization operation is understood to apply
to all potentials.

The results (4.37) again display a remarkable can-
cellation of the leading term Uo. Furthermore, the
nonlocal energy dependent term involving U2 can-
cels when v ='+ 1. The full potential for the v =+ 1

case is

~1(P)—=[M —( —,++I)]1

=yi[Ep, ~ po(v)]—
V4= 6[1 y—i yi]—Uo

2—(3—2ri. rp) Ui .
M

(4.39)
r

P —&o A—+(1—v)
2M

+6
M

While the y&.yi term has been carried along so far,
it should be noted that

and also

=yi[Ep, ~+so(v)]
~2 2
P —&o A~(1+v) +6

2M M2
(4.35)

A
71 V2 —1+

M

(on positive energy subspace) and
r

A

M
(4.40)
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(on negative energy subspace if
~

v
~

=1), so that ac-
tually the Uo term can be completely neglected.
The remaining term can be viewed as composed of
an (attractive) o-like term and a (repulsive) p-like
term, of equal effective mass but coupling in the ra-
tio of 3 to 2.

E. Cancellation of the negative energy terms

It is instructive to estimate the size of the qua-
dratic term generated by OPE. To the same order
of accuracy as (4.39), this is obtained from the lead-

ing contribution to V+, which is (for v= 1 ):

—g'(ri r~)ai q A' —p,
'

p+
2M(p +q ) A +q

(4.41)

The quadratic term is therefore

g4 d3k o'i'(p ' —k)o'i'(k —p)Vg-=(ri r2)
8M 2w p] + p

' —k p2 + p —k
(4.42)

Introducing Feynman parameters into this expres-
sion, and shifting the momentum k gives a form
identical to that for U, described in Appendix C.
The final result is

Vg
——(3—2ri r2) Ui .

M
(4.43)

This work was supported in part by the National
Science Foundation.

Note that this repulsive contribution is canceled by
the attractive contribution from (4.39), removing all
terms, to order (A/M), except the original V++
from OPE. This simple model therefore suggests
that the TPE contributions known to be of major
importance in the nuclear force must come predom-
inately from diagrams containing an intermediate 6
or other higher states.

m dx 2mi5[m~ —kii]
dy

o 2 v(m+ +m )D

where we wrote

(A2)

b(v)=[(m +ko)(m~ kii) ie]—v . —(A3)

In order to convert (A2) into a form identical to
(Al) except for different limits on the a integration,
we need an identity like

I

tegrating over d k' would give (3.17), our result for
the full box.

To obtain the subtraction term, we recall that the
propagator (3.1) does not involve b,(v ) in the
denominator. Using the more elementary identity
from which (3.16) was derived, gives

I = f dy f 2ni5+[&(v)]D

APPENDIX A

In this appendix we show that the subtraction
term for the box diagram takes on the form (3.20).
Begin by substituting the identity (3.14) into (3.16).
This gives

2mi5[m+ —ko] +z

3
=3x f da[b(v)ax+D]

v(m++m )D

(A4)

Mq+(m —m+ )(1+x))0, (A5)

This is one special case of a general class of iden-
tities. If v&O, x yO, and

where

D = —,(A++A )x

&( [b,(v)ax+D] , (Al)—
and N(ko) is a polynomial of order m (2n —2,
then

dko N(ko)
—~ [b(v)ax+D(k )]'

+ ,D i(1+y)+ —,D2(1——y),
and A+, b,(v), and Di z were all defined in Sec. III.
Multiplying (Al) by suitable constants, and in-

2miN(m+ )

(n —1)vx (m++m )[D(ko=m+ )]3

(A6)
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where b,(v) is defined in (A3) and we will write

D(kp)=Mi +M2kp —kp (1+x)—ie(1+x) .

(A7)

If v (0, a similar identity exists, but the a integra-
tion runs from —ce to —(1+x)/vx.

Equation (A6) is sufficiently general to include

both the scalar and spinor cases (once the spinor
case has been regularized). The condition (A5)
holds in these cases.

To prove the identity, note that the coefficient of
the ie is 1+x+vo;x, which is always positive as

long as a & —(1+x)/vx. Hence, giving this limit a

small positive part, 5, we may interchange orders of
integration, giving

J= lim J dkp J da X(kp)[b(v)ax+D(kp)]
5-+0 —oo 1+x+

m N(kp)= lim dko &(v)
s p+

—~ (n —1)xb,(v)
+5x +D(k, )

1+x
—

(,n —1)

Now examine the singularities in the denominator.
Apart from the simple poles at m+ from 6 there
are (n —1) order poles from the term in square
brackets. For very small 5, these are located at

d(x) = M a x +[1+x(1+va)]p

+(M ——,W )[x (I+va) —x a ]

Eo —0
V

0

mim2(1+x) M, +i—E
M2+(m —m+ )(1+x)

1

5vx
[M2+(m —m )(1+x) ie]—+

where

E =—(M v + —,8' (1—v ))'~—
V 2v

Note that (A5) ensures that these (n —1)th order
poles remain in the upper, or lower„half plane for
all values of the parameters. Closing the contour in

the lower half plane proves the theorem, since the

only pole which gives a finite result is at ko ——m+,'

the other singularity coming from the (n —1)th or-

der pole in D gives a vanishingly small contribution

when 5~0. It is also possible to prove (A6) by in-

tegrating over ko first, but this is more difficult.

APPENDIX 8

In this appendix, the singularities of the subtract-

ed box and crossed box are discussed, and it is

shown how the spurious singularity in the crossed
box is cancelled in higher order.

The singularities of the subtracted box are deter-

mined by the zeros of (3.18), which will be exam-

ined for v &0 only. The discussion will be limited

to cases where 8') 0, p )0, and p
' )0, in which

case the minimum values of po, po, and —t all oc-
cur when p = p

' =0, and if p&
——p2 ——p the nearest

singularity occurs when

is the value of po when p =0. If this expression is
viewed as a quadratic in x, then the coefficient of
the x term, C(a), can be shown to be positive de-

finite in the region of a integration given in (3.21).
Hence, since d(0) =p, the value of x at which d is
a minimum, x;„, must be positive before d can
have a zero, and this gives the two requirements

d;, (& )=p —[p'(1+vu )+ WEplv ]

X(4C(~)) '=0, (Bla)

Hence the singularity will first appear at the end

points of the integration

d . 1
mm 1+ =0,

1
min

—[p (1+va)+ 8'Ep/v] &0. (8lb)

The equation (8 la) is again a quadratic equation
in a, which, for energies which satisfy (8 lb), can be
shown to have its minimum in the region of

—1/(1+v) (a (1/(1 —v) .
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+(M ——,u)x (1—a ) ——,t(1 —y )

+ i x W(po(v)+po(v))( 1/v —a )

—
z xW(po(v) —po(v))y(1 —a/v) . (B2)

It can be shown that the last three terms are never
negative, so that the singularity can happen only if
the third time is negative. And, in the region where
x is large and ax~0, the leading behavior of (B2}
becomes

(M ——,u )x

As it turns out, the first condition is the most criti-
cal, and the energy W at which it is satisfied was
given in Eq. (3.24).

To study the singularities of the crossed box, it is
convenient to use the crossed variable u defined in
(3.26). In terms of this variable, the expression for
the crossed box is the same is given in (3.22), except
with ri of Eq. (3.23) replaced by

=M a x + —,(1+x}[pi(I+y)+lu2 (1—y)l

2 P+P

—P-pI

2 P+P

Qi

Qs

—P-pI

-P+kI

2

Qy
r

Qz

2P+k-p —p'

2 P+p'

—P-pI

2

FIG. 6. The sixth order diagram which illustrates the
origin and cancellation of the spurious singularities in
the crossed box.

so (82) is guaranteed to have a singularity whenever
u &4M . The location of this singularity is dis-
cussed in Sec. III.

To understand the origin of this singularity, and
how it is canceled, examine the diagram in Fig. 6,
where the momenta are labeled, and we limit dis-
cussion to v=1. Consider the integration in the
complex po plane, and look at the contributions
from the first three propagators numbered in the di-
agram. We have

1I= g f dpo[[E& —( —,
'

W+po) ie][Ek —
z z' (—2 W— +—ko po po) —ie]—[—E& ( —,W— po) —ie]I—

(B3)

For small p, the positive energy poles from propa-
gators 1 (first term in brackets} and 3 (third term in
brackets) are on opposite sides of the po axis and the
dominant term comes from the positive energy pole
in propagator 1, which lies in the lower half plane.
This is expected; the fact that this pole dominates
Fig. 6 (at least at low three momentum) is one of
the reasons why three dimensional equations have a
one body limit. However, when p is very large,
the poles move in such a way that this is no longer
true. For large p, the negative energy pole from
propagator 2 (second term in brackets), which also
lies in the lower half plane, can overlap the positive
energy pole from 1. They lie on top of each other
when

1 1

Ep ——W =Ek + —,8'+ ko —po

Substituting the value of po corresponding to parti-
cle 1 on the mass shell, and taking p+p '=0 (to
push the singularity to as small a p as possible)
gives

1

2(Ep W)=Ek ——, W+k—o .

%'hen the ko integral is performed, the smallest
value of ko comes from the positive energy pole of

I

propagator 4, which gives

2(Ep —W) =2Ek —W .

The smallest value of~ at which this condition is
satisfied occurs when k =0, giving finally

E = —,8'+M,P 2

which gives the result (3.27) for v =1.
Therefore, because the positive energy pole of

propagator 1 and the negatiue energy pole of propa-
gator 2 overlap, neither pole by itself is free of
spurious singularities, even though their sum is per-
fectly regular. Unfortunately, the positive energy
pole of propagator 1 gives rise to the fourth order
crossed box kernel, while the negative energy pole
of propagator 2 contributes to the irreducible sixth
order kernel. When both of these contributions are
taken into account, one has the full result of Fig. 6
(for example), where there are no spurious singulari-
ties, showing that the spurious singularities in the
fourth order kernel are canceled exactly by compen-
sating singularities in high order kernels.

Since the singularities cancel, it is fully correct to
take the principal value of each kernel. This would
give a Hermitian kernel at every stage. Unfor-
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tunately, this procedure is difficult to implement
numerically. It would be more desirable to find
some other subtraction procedure so that no spuri-
ous singularities of any type occur in any order. A
procedure for this has not been worked out.

The above analysis also shows that such singular-
ities would not occur if negative energy poles were
neglected. While such terms must be retained to
maintain covariance, at least we know from this
that these singularities should not influence results
at small momentum, and are absent in the extended
static limit.

TABLE I. The spectral functions which complete the

identities of Eq. (C1).

I„(a))

neo

+1/2(~ p 2 p 2)

(m /8)~ ' 5(co,p),p2 )

4m
P l+P2 ~[~—(Vi+V2) l

2

p&p2

2g —1/2(~
JM

2 p 2)

( /2)
(3m/16)co

—3/2Z( p~2 p22)

APPENDIX C

In this appendix, the spectral forms for various
static kernels will be presented.

The identities are of two possible forms

f z~dz ~ I„(co)

p 2m( ) ~+++ ~2

(Cl)

Jn, ~(~)
dco

(p&+y2)' (co t)—
where

'gp (z)=z'+ —,[p, '( I+y)+@2'( I —y)] —, t (1—y') . —

The spectral functions I and J for the cases encoun-
tered in this paper are given in Table I. They can
be obtained by factoring (1—y )/4 out of the gp
term in the denominator, eliminating z in favor of

~=[4z +2(p] (I+y)+pp (1—y))](1—y )

lm. /2)co 'i'[~(pi'+p&') —(pi' —p2')']

2
—(vi+@2+[~—(t i+@»']

interchanging co and y integrations, and doing the y
integration in the complex y plane.

In addition to the integrals (Cl), we encounter in-

tegrals from the box of the form

f dy f"dzz" f '"+f"
1 —v

These can always be reduced to the form (Cl) by in-

tegrating over z by parts and scaling the new in-
tegral over z by

z I z I—+z or ~z
1+v 1 —v
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