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The formalism for photoproduction of pions from nuclei has been developed in the
distorted-wave impulse approximation, taking into account the effect of the change in pion
momentum in nuclear medium. Detailed calculations have been done for the reaction
160(y,w+)1°N for photon energies from 170 to 380 MeV, with a view to investigate the ef-
fect due to the gradient operator V , for momentum of the pion and test the sensitivity of
the photopion cross sections to the details of the pion-nucleus optical potential. The results
clearly establish that the gradient operator increases the cross sections throughout the ener-
gy region considered, the increase being small at lower energies. Also with V’,,, the cross
sections are rendered less sensitive to the optical potential. The calculated differential cross
sections agree very well with the recent experimental data of Shoda et al. for y-ray energy
of 200 MeV. However, the cross sections obtained at medium energies are higher when

compared to the available experimental data.

NUCLEAR REACTIONS 7+ photoproduction from '°O; distorted
wave impulse approximation; pion-nucleus optical potentials; gradient
operator for the pion momentum.

I. INTRODUCTION

The first measurement of the differential cross
sections for charged pion photoproduction from '°B
and '°0 (Ref. 1) in the (3,3) resonance region
demands a rigorous and complete study of the reac-
tion. The angular distributions for photon energies
up to 200 MeV have been determined by Shoda
et al.? for several nuclei. The photopion cross sec-
tions involve three essential ingredients: (i) the ele-
mentary amplitude, (ii) the nuclear structure, and
(iii) the final state interaction of the pion with the
residual nucleus. Among these, the third factor
plays a crucial role in such reactions, since the ef-
fects due to (a) the interaction of the propagating
particle with other nucleons in nuclear medium, (b)
the Pauli blocking, and (c) the binding energy which
are ignored in the impulse approximation theory,
are taken care of by the pion-nucleus optical poten-
tial used for the distorted pion. Another important
aspect in the study of these reactions lies in the ex-
tension of the elementary amplitude to the nuclear
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problem. Recently, Singham and Tabakin® have
studied the photopion reactions in light nuclei
6 <A4 <14 for pion energies from threshold to 150
MeV, using the amplitude of Blomqvist and Laget*
(BL) which is derived in a general frame. They
have introduced the A-isobar term in the amplitude
and modified the amplitude for coordinate space -
studies by replacing the momenta of the pion, the
initial and final nucleons by their gradient opera-
tors. The photoproduction from such light nuclei
has also been considered in the framework of dis-
torted wave impulse approximation (DWIA) by
Nagl and Uberall® and Decarlo and Freed.® The
isobar-doorway approach has been utilized in
momentum space for the study of 7° photoproduc-
tion from nuclei by Saharia and Woloshyn.” The
calculations for the reaction

1%0(y, 7 t)IN(J"=2—, 0, 3—, 17)

have been done by us in a previous paper® using the
asymptotic momentum of the pion in the photopion
production amplitude. Earlier, the cross sections
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for this reaction had been obtained by Nagl and
Uberall’ (NU). Recently, this reaction of =+ pho-
toproduction from '®O has been studied by Decarlo
and Freed.!® The total cross sections obtained by
the three different groups for the four final states of
6N lie below the experimental data of Meyer
et al.'’ at medium energies.

The purpose of this paper is to make a systematic
and rigorous study of the reaction in DWIA and en-
able a clear understanding of the process. The for-
malism is presented in Sec. II in a way suitable for
calculations with any of the elementary amplitudes.
The calculations have been carried out for the reac-
tion '%O(y,r+)!*N using the amplitudes of Berends
et al.'> (BDW) and Chew et al.'* (CGLN). For the
final state interaction discussed in Sec. III, the
pion-nucleus optical potential of Stricker et al.'*
(SMC) with the Ericson-Ericson correction factor
&=1 is made use of. The best-fit parameters with
£=0 obtained by Krell and Barmo'® (KB) also yield
a good fit to the scattering data for pion energies
80—280 MeV. This potential has also been used in
our calculations in order to test the sensitivity of
the photoproduction cross sections to the short
range behavior of the pion wave functions. The nu-
clear wave functions that we have utilized in our
study are briefly discussed in Sec. IV. The configu-
ration mixing coefficients of Gillet and Vinh Mau!®
and Rho!” are used in our calculations. These
models have been found to reduce the cross sections
considerably and the Migdal model with Rho’s
wave functions yields the correct muon capture
rates. In the last section, the results obtained are
compared with the available experimental data and
the existing theoretical calculations.

II. THE TRANSITION OPERATOR
FOR THE REACTION

The photopion amplitude for nuclear transition
from a given initial state to a specified final state is
written in the impulse approximation as

T=3t;=3 ¢"(&T)t(Dexpiv-1;), (1)
j j

where the summation index j runs over the 4 nu-
cleons. ¢(iZ,T) is the distorted pion wave function
with asymptotic momentum i that takes care of
the interaction of the pion with the residual nucleus.
The incident photon of momentum ¥ is represented
by a plane wave. [ and V represent the momenta

in the laboratory system.
The elementary photopion production amplitude,
denoted by ¢, in Eq. (1), has the general structure

ty=c{ci (T V)€ +cy( T ENiT¥)
+¢3(5 @) +ey(FENE-E)
tes(E X, 2)

where € is the polarization vector of the photon.
Only the quantities ¢, ¢y, ¢,, c3, ¢4, and ¢5 are de-
fined differently in the case of BDW and CGLN
amplitudes. i and ¥ are unit vectors in the case of
BDW amplitude and

21
c=—"—-, ¢,=F+F;5,
(o) 2 1 =r+ 13
C2=—-F2, C3=F1 ) 3)

cy=F,4, and ¢cs=F, .

The amplitudes F; can be decomposed into electric
and magnetic multipoles. Retaining those mul-
tipoles which possibly contribute for photon ener-
gies up to 380 MeV, we obtain

Fl =E0+ +P'2(E1+ +M1+ +E3__ +4M3_)

+Py(Eyy +2My )+ E,_ +3M,_
+PY(Es, +3M5,),

F2=2M1+ +M1__ +P'2(3M2+ +2M2_)
+Py(4My, +3M; ), @)

Fy=Py(E\y —M, +E;_+M;_)
+P3(Ey, ~M,  )+PJ(E;, —M;.),

Fy=P)(Myy —M,_—E;, —E,_)
+Py(My, —M;_—Ey, —E;_).

The individual multipoles including isospin are tab-
ulated by Berends et al.'> P, P;, and P, are the
Legendre polynomials of the first kind and their
first and second derivatives. In the case of the
CGLN amplitude, the corresponding quantities for
positive pion photoproduction are given by
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. 2V 2wef
€= 172 ’
(,lLoV())
cl=kh—"~a+ 2 21 ’
1+_.U_o k*+1
M
c=—A" " 4a, c3= ! —apg’,
1l
M
2
Cp=— s
Ho 2
14+— [(k°+1
+M (k“+1)
and
C5=}\,h—+ ) (5)
with
8p +8n
a=——.
2Mpo

k represents the momentum transfer to the target
nucleon and p( and v, are the energies of the outgo-
ing pion and photon, respectively. All the other
quantities are defined in Ref. 13. We have made
sure that the single nucleon cross sections are repro-
duced with either of the amplitudes, which is a
necessary although not a sufficient test for applica-
tion to nuclear problems. The kinematical variables

I, ¥, o, vo, and k occurring in the expression for #,

are in the center of mass system of the pion-
nucleon. We take into account the differences in
the definitions of the S matrix and also we
Lorentz-transform these amplitudes to the laborato-
ry system following Kisslinger.!®

|

VoY, (PO, )= 3, CUL L m M)~
L

with
d I
D_(l,)= P g’u(“r)
and
d 1,+1
Dy ()= |- +==— |&,(ur)

M
Y, M(7)

We now expand the photon and pion wave func-
tions into partial waves.

expli v-F) =4 3 ()", (vr)
IV

X3 Y P)Y ). (©)

m,

Wz, F)=dm 3 (0)g,, (ur)
l

"

X 3V AR @
my

g,”(p,r) is the radial part of the pion wave function,

obtained in the usual way by solving the Klein-
Gordon equation. In the limit when the distortion
goes to zero, g,u(,ur) goes over into jlu(,ur) and we

can write the transition amplitude in the simplified
form

tj=t,(jlexp(ik-T;) 8)

with
K=v—[ .

The closed expression that we obtain in this case
can be used to check the correctness of the DWIA
program written for the purpose. This also helps to
decide the number of partial waves that are to be in-
cluded for convergence.

Replacing the pion momentum by the gradient
operator V. and making use of the familiar rela-
tion

(VID_(1,)g,(ur)dy,;, 11

—VL+1D  (1,)g (ur)8r,p, 1} ©

we arrive at the following expression for the transition operator using Egs. (1), (2), (6), (7), and (9):
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H=@r? S YL S ——C(£1,L7,000)

L, LLy,¥ (L]

X (=" [[vgxe), XY (@), XY D]
M, K,L,L, # v

X Y, (F)X0n (i)
% [ 8,184, WULAL,L,Ly)
X (8g [ —W(K1L,l,,L,L)[L,\]J[L7][L,][L]

X fe1+(—1) 2} Ry, L,rp)]

+8K,0[5L2,1
X { 8L,I"8.Y,L ics[L][Lr][L ]81; (urj)ji (vry)

+8. ,ics[LTIRy(I,,L, L,r;)} ]

+6n,08K,18.Y,L8L2,18L1,L8}~,LT‘/5'65 XR 1(l,,,L,rj) (10)
with oy=1, 01=0, vo=1, and v;=¥.

The summation indices over n and K can take only two values O and 1. R; and R, are the radial integrals
which involve the derivatives of the pion wave functions, given by

Ry(l,,L,rj)={VL(D_(l, )81”(#"1'))*5L,1M+1— VL +1(D (I, )glu(#"j))*SL,lu—l}flv(Wj)
and

Ry(ly, L, &L,r)= (VL 811, [V Z{D_(L+1)D_(L,)g1, (ur))}*8r,1 41
—V $+l{D_,_(l,L-f—1)D_(l“)glu(urj)}*ﬁj,L_l]

—VL + 18L’1”_1[‘/?{D_(1# - I)D_*_(l” )gzﬂ(urj)}*Sz’L +1

—VZ+1D (1, — DD (1)gy (wrp}*8.¢,0 11} (7). (11)
I

Throughout, the symbol [/ ] denotes (2! +1)!/2. For states. The matrix element
angular momentum coefficients and reduced matrix
elements, we follow the notations and conventions Q= <Jf M| T| JiM;) (12)
of Rose.”” The transition matrix element, involving is to be squared thereafter, summed over the final
a number of summations, need not cause any spin states, and averaged over the initial spin states.
distress, since for purposes of numerical The present study does not include the effect of
calculations, seven to eight partial waves are enough isobar-nucleus dynamics in the photopion produc-
to produce convergence for the energy region under tion operator. The isobar-doorway model provides
consideration. This transition operator is now to be the framework for doing so. This approach will be

evaluated between the initial and final nuclear involved for charged pion photoproduction if one
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has to do it exactly, preserving the physical nonlo-
cality that arises for the 7,N and isobar propaga-
tion. The problem becomes simpler for coherent 7°
production, since in this case, the doorway states
are the same as those for elastic scattering; it has
been studied by Saharia and Woloshyn’ recently. In
the recent DWIA calculation by Singham and Taba-
kin,® the y-7 operator is subjected to distinct medi-
um alteration, whereby the magnetic coupling terms
are modified by the A-isobar term, introduced by
hand in the BL amplitude. It has been stated that
the contribution of the isobar to the total cross sec-
tions is minimal, caused by the decreasing form fac-
tor and pion absorption, and the contribution is less
than 25% even at high energies. Hence we feel that
it is worthwhile making the DWIA calculation in
our present formalism, although it does not include
the effects due to isobar dynamics. Further, the
amplitudes given by Eq. (2) are written down using
the momentum conservation relation in the center
of mass frame

—

Bi+V=Ps+L .

Singham and Tabakin,® in their use of the BL
operator, replace the initial and final nucleon mo-
menta B; and Py also by their gradients and use the
momentum conservation relation to avoid the mo-
menta occurring in the propagators. With such a
treatment, they report that the transition densities
that involve the derivatives of the nuclear wave
functions are small when compared to those that do
not involve the gradients.” This is in conformity
with our calculations, where we find that the effect
of the (&) (- €) term in the amplitude is not as
significant as the other terms. This also clearly re-
veals that the gradient operator for the nucleon does
not produce significant changes in the cross section.
In the expression for T, there is a clear separation
of the factors involving nuclear structure from
those that arise due to the production amplitude.
This proves to be convenient to study the relative
importance of each of the factors in the amplitude,
such as the gradient operator V, for the pion
momentum. This is in contrast to the expression
used by other authors (Refs. 3 and 9), wherein the
various terms are linked together in the transition
operator. The angular momentum operator

[YL(F)X o, (]

causes the nuclear transition. The only other factor,
dependent upon M, is

A A _MA
S=[{(’VK>(€)L2X YI;;("L)}LIX YIV(V)]A,

(%]
=C(L{I A, —M;0—M,)———
( 1ty A )») (417_)1/2

X EC(LzluLlyml"—MA_mlr'—M}.)

my

X Y,;MA—ml (fI)C(KlLZ,Omlml)erT'
(13)

In the above reduction, the direction of the incident
photon is the Z axis. The summations occurring
over my and M) make the operator ¢; independent
of the magnetic quantum numbers. It is to be noted
that the transition operator is evaluated numerically
for a particular m; and M, and then squared bear-
ing in mind the fact that
r %
m 1
e'e =(—1""s
1My
where the primed factor occurs on squaring. The
differential cross sections for the process of pho-
toproduction of pions from nuclei is given by
do
— =0 -2 2 ,
70 ) o] Q| (14)
where p is the energy of the pion in the laboratory
system.

III. THE FINAL STATE INTERACTION

The pion optical wave functions g; (ur) used in
the last section must be obtained b”y solving the
wave equation with a suitable pion-nucleus optical
potential that can reproduce well the elastic scatter-
ing data. This is again a necessary, although not a
sufficient condition, since there may exist phase-
shift equivalent potentials which may reproduce the
scattering data but provide different wave functions
in the nuclear interior. It has been shown?® for '2C
that these phase-shift equivalent potentials have just
a little effect on the photopion cross sections. Hax-
ton®! has shown that the apparent sensitivity of the
cross sections to the optical potential disappears
when one uses realistic potentials.

We solve the modified Klein-Gordon equation

(V+u (D) =20V (rY(T) , (15)

where i’ and @ are the momentum and total energy
of the pion in the center of mass of the pion-nucleus
system. The pion-nucleus interaction is contained
in the scalar part of the potential that takes into ac-
count the Coulomb effects.
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20V(r)=q(r)—V alr)V +20V,(r), (16)

in which the forms for the local and nonlocal parts
of the interaction are taken from Stricker et al.!*
(SMO).

q(r)=—4m Pl{Eop(r)—bl(Pn(")—Pp("))]

(p1—1)
+p230p2(r)+—p—‘-2-.—v2c(r>

CO(pZ—l) 22
+ ————Vp(r)
2p, P
and
C
alr)=—4r ctr) +=p%r |,

4r (A—1) " p
14 3 4 c(r)

(17
in which a(r) is made less attractive by the

Ericson-Ericson factor that arises due to the polari-
|

d> ll+1) 1 |atr) | a"r)

[ar(r)]Z

zation of the p-wave pion field. The extent to
which the attraction is weakened is determined by
the parameter £. The pion-nucleus optical potential
defined by Eq. (16) takes into account the multiple
scattering effects. The terms VZcp(r) and V2Cop*(r)
that also stem from the 7-N p-wave scattering, arise
out of the angle transformation of the (& iZ’) fac-
tor and increase the cross sections at the backward
angles for low energy pions. It has been shown that
these terms have a negligible effect on the cross sec-
tions at medium energies.?

As one approaches the resonance region, a fairly
good fit to the scattering data can be obtained by
varying the dominant p-wave parameter cy(r) that
is contained in ¢(r) and assuming reasonable values
for other parameters. Setting £€=0 and V,=0,
Krell and Barmo (KB) have obtained a fit to the
scattering data for 80—280 MeV pions. We also
make use of their parameters redefining q(r) and
a(r) accordingly, to facilitate a comparative study.

We require the solution of the radial equation

dr* 2 l4an) | r 2

where
B(r)=pu>—q(r) .

The transformed wave functions #Z;(r) are related to
the g;’s that are required for the distorted wave
theory in the following way:

171(1‘)
(1+a(r)'/?
When V(r)—0, we have

u(r)= =prg(ur) . (19)

u(r)— iy (r)—purj(ur) . (20)

The partial waves of the pions, which are denoted
by ! in this section, were denoted by /,, in Sec. IL.
Stricker et al. have obtained good fits to the
scattering data for 7+ 190 for low energies of the
pion. The elastic scattering cross sections obtained
with the two sets of parameters SMC and KB for
pion energies of 116 and 170 MeV- are shown in

Figs. 1 and 2. The SMC parameters, providing a

more refined potential, show a better fit to the data
of Albanese et al.> There is also a change in the
position of the first minima, resulting from the dif-
ferent strengths of the s and p wave amplitudes.
The real and imaginary parts of the wave functions
obtained with the two potentials are shown in Figs.
3 and 4 for the same pion energies. The wave func-
tions depict an increase in absorption in the nuclear

T 4(1+alr)

—B(r)+20V(r) { |#;(r)=0, ‘ (18)

[

10 T T T T T

Eﬂ' =16 MeV

—— sMC 1
N --—- KB

(mb/sr)

do
do

-4
10 1 1 1 | 1
d 60° 120° 180°

Biab
FIG. 1. Elastic scattering of positive pions on '°O for
laboratory energy of the pion E,=116 MeV, compared
with the experimental data of Albanese et al. (Ref. 23).
The continuous and dashed curves are obtained by using
the SMC and KB potentials, respectively.
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10 T T T T T
Ex=170 MeVv
- ——— SMC 7
k --—-- KB

107

( mb/sr)

do

1621

164 I | L 1 I
0° 60° 120° 180°

B1ab

FIG. 2. Elastic scattering of 7+ by '°0. Experimen-
tal data (Ref. 23) are for 163 MeV.

region, as one approaches resonance. The SMC po-
tential has a tendency to decrease the amount of ab-
sorption, as illustrated by the real parts of the wave
functions [and |u;(r)| which are not shown]. This
is reflected in turn in the photopion cross sections
that show an increase. The wave functions, used
for the distorted pions, are those of 7+ N which
show a similar behavior.

IV. NUCLEAR WAVE FUNCTIONS

The bound state wave functions generated with
the Woods-Saxon potential have been used in the in-
dependent particle model in our previous calcula-
tions® for '°0 and have been shown to yield large
cross sections. The necessity for utilizing the con-
figuration mixing model has also been stressed by
Devanathan et al.?* It has been shown that the
photopion cross sections are not affected to any

|

J
VrMp) =3 X4 Clipindpsmp —mpMp)(—1)
p.h

mp,mh

jh_mh t |0>
’

1.0

Eqp=116 MeV

——SMC
osf- KB

Im uy(r)

~0.4

-06

FIG. 3. Distorted pion wave functions for the vari-
ous pion partial waves for laboratory pion energy of 116
MeV. (a) Real parts of the wave functions and (b) imag-
inary parts of the wave functions.

great extent by the short range correlations.?’ In
this paper, we have used the admixture of the wave
functions using the coefficients of Gillet and Vinh
Mau (GV). This again overestimates the cross sec-
tions. Rho’s wave functions, obtained from
Migdal’s theory for the low excited states by fitting
the static moments and transition moments, are
found to yield the experimentally evaluated muon
capture rates, and hence we use these wave func-
tions in our present study.

@jp.m,%jy,my, (21)
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0.8
Ey =170 MeV

— SMC
KB

Re UL (r)

Ey =170 MeV

SMC
0.6~ ---- KB

0.4

o
~

Im U (r)
o

'
o
~

-04

-0.6

-0.8

FIG. 4. The pion optical wave functions for laborato-

ry pion energy of 170 MeV. (a) The real parts and (b)
the imaginary parts.

J . .. _
where X, pf;, are the configuration mixing coefficients
satisfying the usual normalization and |0) is the
Hartree-Fock ground state.

V. RESULTS AND DISCUSSION

Detailed numerical calculations have been done
for the reaction '*O(y,=*)'*N(2~,0~,3,17) using
(i) the gradient operator ﬁ,, for the pion momentum
and (ii) the asymptotic momentum of the pion for
laboratory photon energies (E,) from 170 to 380
MeV. This is with a view to study the effect of V,
on the photopion cross sections. The sensitivity of
the cross sections to the pion-nucleus optical poten-
tial is studied by using the SMC (with £=1) and
KB (with £=0) potentials. In both cases, the

do
da {ub/sr)

L —— WITH 9,
—-——WITHOUT v,

10 \ ] . ) L
0° 60° 120° 180°

Biab
FIG. 5. Angular distribution for the reaction

1%0(y, )N for laboratory photon energy of 170 MeV.
Sum denotes the sum of the cross sections obtained for
the four final states of N (2=, 0~, 3—, and 1~). The
cross sections for the 0~ transition are small and hence
not shown.

parameters have been interpolated as and when
necessary. Numerical calculations have been car-
ried out with (i) the BDW amplitude which does
not involve the pion momentum in an inconvenient
way and (ii) the CGLN amplitude using the dom-
inant 8;; phase shift. As a first step, the codes writ-
ten in DWIA with and without V:, have been

E, = 200 MeV
——WITH Y

107 L L | L | L
0° 60° 120° 180°

Btab
FIG. 6. Angular distribution for y-ray energy 200
MeV compared with the data of Shoda et al.? See cap-
tion of Fig. 5 for other details.




2160 V. GIRIJA AND V. DEVANATHAN 26

. L SNSRI Ey=230 MeV
i’,
[
c
2
~
o
2
b|c
olo
10 |
-3
10 i I i I L
o° 60° 120° 180°
O1ab
4 SMC
+ KB Ey =230 MeV
L ——WITH VY
---=-WITHOUT %r
"W/ b
T
0
<
Fel
<
bjc
oo /
I
-1 4
10 f-
r
L
100 I 1 L | L :
o° 60° 120° 180

B1ab
FIG. 7. Differential cross sections for =+ photopro-

duction from '%0. (a) The results obtained with V, to
discrete final states of 'N. Sum denotes the sum of the
cross sections obtained for the four final states of '°N.
(b) Sum of the cross sections obtained for the states 27,
0~, 37, and 1~ of '*N.

checked up thoroughly in the limit of the distortion
going to zero. Rho’s wave functions are used in all
the calculations, unless otherwise stated.

The angular distributions obtained for the in-
cident y ray of energies 170 and 200 MeV with the
BDW amplitude are shown in Figs. 5 and 6. The
effect of V, is to increase the cross sections at the
forward angles, and to decrease them at the back-
ward angles, thereby yielding a better agreement
with the recent experiment of Shoda et al.? at 200
MeV. The effect of V, is, however, small due to
the dominance of the (&-€) term in the amplitude

Ey =290 Mev

WITH ¥,
— ==~ WITHOUT Vy

=1
10

TTT==s

o/
L/
-
_/
- /
T p
<t
o
2
~ -2
bla 10}
olo
-3
10 |-
N
- \
N
>~
16‘;_ | L | L 2
;
o* 60° 120° 180°
elab
z SMC
e -Y/ Ey =290 MeV
1= >\
; LN\ —— WITH \yp
T \\ - - - WITHOUT v
L~ -~ K8
L //,/ i \\ N 7
/) . N
r o/ \\/\\\
—~ 1/ \
[ /r \\
s 0y \ AN "
3 r \ A\
~ L AY
- \ \
bic L \ X
olo [ \\ \ <
\\ N . /
. \\ \\‘\~—_
0 .
|- \\
163 ! | I 1 I
0° 60° 120° 180°
Blab

FIG. 8. Differential cross sections for E, =290 MeV.
(a) Cross sections to discrete final states of '*N and the
sum of the cross sections for the four final states of !N,
obtained with the SMC potential. (b) Sum of the cross
sections for the four final states of 1N.

at these energies.

Figures 7—9 depict the angular distributions for
photon energies 230, 290, and 350 MeV arrived at
by using the BDW amplitude. Comparing the re-
sults plotted in Figs. 7(b)—9, it is found that the ef-
fect of V_f,, is to increase the cross sections consider-
ably at the forward angles, with an overall increase
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2
1 Ey =350 MeV
WITH v
- ==~ WITHOUT v
1 \
10 L— \
F
- L
2 [
g | KB
bjc
UIU ﬁ)zt—
L N
\ \\
\
T
.Jb—— \\\ \\“_‘\
OF AN
E NN
16‘ L I I | L
0° 60° 120° 180°

eIc:b
FIG. 9. Cross sections summed over the four final

‘states of 'N.

in the integrated cross sections, when the SMC po-
tential is used in the calculations. With the KB po-
tential, the V),,, increases the cross sections at all an-
gles. This is revealed by Figs. 7(b), 8(b), and 9. The
sensitivity of the cross sections to the pion-nucleus
optical potential is shown in Figs. 7(a), 7(b), 8(b),
and 9. With V,,, the KB potential increases the
cross sections at the forward angles, decreases them
at the mid angles, and again provides an increase at
the backward angles at 230 and 290 MeV. The
cross sections with the SMC potential parameters
are higher throughout for all angles for photon en-
ergy 350 MeV. These changes are about 40% at
230 MeV, decreasing as one goes to higher energies.
A similar result has been obtained by Singham and
Tabakin® for the case of 7+ and 7~ photoproduc-
tion from “N. Figures 7(b), 8(b), and 9 reveal that
employing the asymptotic momentum, the SMC po-
tential increases the cross sections for all angles.
These three figures also support the fact that
without 6’,,, the cross sections become much more
sensitive to the pion-nucleus optical potential. The
same information can be had by looking at Figs. 10
and 11, again obtained with the BDW amplitude,
wherein our results are compared with the experi-
mental data of the MIT group.!

= 90°
qub 90

——WITH v,
----WITHOUT W

162 L | 1 1 4
170 230 290 350

Evy (MeV)

FIG. 10. The differential cross sections at 90° as a
function of gamma energy. The contributions from all
the four low lying final states of '*N are included and
compared with the data of Bosted et al.!

Figure 12 depicts the total cross sections obtained
in the plane wave impulse approximation (PWIA)
and DWIA. The curve g is obtained with the
CGLN amplitude and all other curves are derived
with the BDW amplitude. For photon energies 170
and 200 MeV, the final state interaction contributes
very little and the (o'-€) term in the amplitude is
dominant. Hence, the nuclear structure plays a ma-
jor role in the determination of the cross sections at
these energies. At medium energies, with the reli-
able pion-nucleus optical potential (SMC) and the
Migdal wave functions, the cross sections obtained
with V. are higher, and without V,,, are lower
when1 1compared to the experimental data of Meyer
et al.
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FIG. 11. Differential cross sections at 45°. See cap-
tion of Fig. 10 for other details.
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FIG. 12. The total cross sections summed over the
four final states of ''N. 4 and B are obtained in PWIA.
The curves, a, b, ¢, and g are obtained with V, and d, e,
and f without V_fﬂ. The SMC potential is used for
curves a, d, and g and b, c, e, and f are obtained with
the KB potential. Curves 4, ¢, and f correspond to GV
wave functions and the others to Rho’s wave functions.
The curve g is obtained with the CGLN amplitude and
the rest with the BDW amplitude. Experimental data
are from Ref. 11. The experimental point @ corre-
sponds to the results of Shoda et al.?

The total cross sections for the four discrete
states of !®N obtained with and without V using
the SMC and KB potentials are displayed in Table
I. The following observations can be made, by
looking at the sum of the cross sections for the four
final states of '°N:

(i) The V. - increases the total cross sections by
about 50—-60 % with the SMC potential at medium
energies. The increase in the results with V_ is
much more (i.e., by a factor of 2—3) when one em-
ploys the KB potential.

(ii) The SMC potential when compared to the po-
tential of Krell and Barmo decreases the cross sec-
tions for photon energies 230 and 260 MeV and in-
creases the cross sections for energies 290—350
MeV. This is observed when one uses a refined am-
plitude (with V) and these changes are about 15%
at 230 MeV but only 3 to 5 % from 260—350 MeV.
Using the asymptotic momentum of the pion, the
SMC potential uniformly increases the cross sec-
tions at all energies from 230—350 MeV, the in-
crease being 50% at 230 MeV, falling to about 20 to
30 % between 260—350 MeV. In short, employing

V,,, the sensitivity of the cross sections to the po-
tential decreases and it may be much less, if one
uses realistic phase-shift equivalent potentials, in
conformity with the results of Haxton.?! However,
the differential cross sections change appreciably
with the two potentials, even with V ., as stated ear-
lier.

(iii) Comparing the cross sections obtained with
the BDW and the CGLN amplitudes, it is found
that the total cross sections obtained with the
CGLN amplitude are lower up to 320 MeV and
slightly higher for 350 and 380 MeV. The differ-
ences are about 10 to 20 % and they are attributed
to the neglect of the other p-wave phase shifts in the
CGLN amplitude since we find that the changes are
minimal near the 3-3 resonance.

(iv) The cross sections obtained with the BDW
amplitude, the gradient operator V., the SMC po-
tential, and the Migdal wave functions exactly
reproduce the shape of the data of Meyer et al.!!
and are in good agreement when we scale by a fac-
tor of = ~ (Fig. 13).

To compare our results with the other two avail-
able calculations, we bear in mind that the work of
DeCarlo and Freed!® (DF) employs the asymptotic
momentum for the pion and the nuclear wave func-
tions of Donnelly and his co-workers, and that of
Nagl and Uberall® (NU) uses the gradient operator
V and the Helm model wave functions. Our re-
sults with the asymptotic momentum of the pion
compare favorably well with the DF calculations
and both these provide quite a good fit to the data
of the MIT group' for the pion emission angle of
90°. The two calculations are in excellent agreement
with the recent angular distribution data of the
Tohoku group? for E, =200 MeV but lie below the
total cross section data of Meyer et al.'' With V_,
we obtain cross sections which are 1.5 times higher
than the results of Meyer et al. It is surprising that
the calculations of NU agree with the cross sections
of Meyer et al. for E, =200 MeV, and are thereby
lower by a factor of 1.5 when compared to the ex-
periment of Shoda et al.? and the other two calcula-
tions. The agreement between our calculations and
those of DF are in support of the fact that both of
us have used wave functions which explain the
transverse electron scattering form factor,!’ 8 de-
cay, and muon capture. Further, a calculation of
the transition densities with the Helm model and
Migdal wave functions reveals that the former pro-
vides lower transition densities. There is a signifi-
cant crossing of the total cross section curve of NU
with our two curves (obtained with the asymptotic
momentum for the pion) at about 250 MeV of the
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TABLE 1. Cross sections for the reaction '®O(y,7*)!*N obtained with the Midgal wave
functions. The sum denotes the sum of cross sections to all the four states 0~, 17,27, and 3~

Cross section in ub
y-ray BDW,SMC BDW,KB BDW,SMC BDW,KB CGLN,SMC
energy (without V,) (without V,) (with V)
(MeV) N state (with V,) (with V)

170 0~ 0.041 0.006 0.072
1~ 0.939 1.031 0.902

2- 5.833 4.828 5.290

3~ 2.157 2.432 1.944

Sum 8.970 8.297 8.208

200 0~ 0.326 0.025 0.451
1~ 1.564 1.645 1.435

2- 5.602 5.126 4.482

3~ 5.307 5.686 4.826

Sum 12.799 12.482 11.194

230 0~ 1.291 2.826 0.102 0.125 2.006
1~ 1.983 2.009 1.670 1.134 1.683

2- 3.385 3.759 2.738 1.646 2.034

3- 6.696 6.743 5.339 3.573 5.294

Sum 13.355 15.337 9.849 6.478 11.017

260 0~ 0.800 1.110 0.114 0.078 1.612
1- 1.533 1.590 1.016 0.640 1.171

2- 2.155 2.586 1.077 0.609 1.501

3- 6.220 5.829 3.480 2.171 4.088

Sum 10.708 11.115 5.687 3.498 8.372

290 0~ 0.395 0.465 0.127 0.069 0.816
1~ 1.347 1.209 0.736 0.398 1111

2~ 1.476 1.733 0.583 0.307 1.236

3~ 5.623 (’ 4.947 2.591 1.490 3.932

Sum 8.841 8.354 4.037 2.264 7.095

320 0~ 0.187 0.200 0.114 0.075 0.298
1~ 0.942 0.762 0.482 0.275 0.922

2- 0.998 1.030 0.428 0.255 1.039

3- 3.900 3.283 1.648 1.012 3.087

Sum 6.027 5.275 2.672 1.617 5.346

350 0~ 0.122 0.122 0.097 0.077 0.165
1~ 0.635 0.497 0.352 0.241 0.727

2- 0.721 0.669 0.405 0.277 0.939

3~ 2.481 2.046 1.091 0.753 2.224

Sum 3.959 3.334 1.945 1.348 4.055

380 0~ 0.083 0.079 0.121
1~ 0.456 0.309 0.601

2- 0.540 0.409 0.867

3- 1.517 0.804 1.604

Sum 2.596 1.601 3.193
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FIG. 13. Sum of the total cross sections for the four
final states of ''N obtained with the BDW amplitude,
the operator V, the SMC potential, and the Migdal

. 2
wave functions, scaled by a factor of 3 are compared
with the data of Meyer et al. (Ref. 11).

photon energy. This may be due to the Helm model
parametrization with the (&'-€) term developing un-
certainties because of the increasingly strong depen-
dence of the cross sections on the pion momentum-
dependent terms. Furthermore, there is no unique
way of fitting the Helm model parameters to the
electron scattering form factor since the four states
are being summed over.

VI. CONCLUSION

The present study of the reaction '°O(y,7+)!*N
clearly indicates that the effect of the gradient

operator for the pion momentum is to increase the
cross sections considerably at medium energies.
Also, it is found that the sensitivity of the photo-
pion cross sections to the pion-nucleus optical po-
tential decreases by employing a refined DWIA ap-
proach and it may decrease still further if one uses
realistic phase-shift equivalent potentials.

Among the calculations reported, we feel that the
cross sections obtained by using the gradient opera-
tor V,, the SMC potential, and the Migdal wave
functions are the most reliable. The results ob-
tained with these are in excellent agreement with
the recent angular distribution data of the Tohoku
group? for photon energy of 200 MeV. Our calcula-
tions with the asymptotic momentum of the pion
agree better with the differential cross section mea-
surements of the MIT group for medium energies
of the photon. It is surprising that with refine-
ments, the agreement has become poorer and the
present calculations are somewhat larger than the
MIT data. Also it is noticed that the calculated to-
tal cross sections reported here are 1.5 times larger
than the old data of Meyer et al. Since there has
been increasing experimental activity for this reac-
tion,?® we can look forward to more reliable data in
the near future to enable us to come to a definite
conclusion.
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