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A novel method of separating strong and electromagnetic contributions to the charge
particle scattering on nuclei is presented. Data from nonforward angles are extrapolated to
the forward angle to obtain the residue of the Coulomb pole which is proportional to the
forward nuclear amplitude f~(0). Except for the treatment of the Coulombic effects, the
method is model independent. Optical polynomial expansion is used to improve the good-
ness of the fits. Reliable values of the total elastic, total inelastic, and total nuclear scatter-
ing cross sections can be obtained. The method is applied to study the elastic scattering of
charged pions from He nuclei. The differential cross-sectiori results of Binon et al. at five
energies ranging from 110 to 260 MeV and of Crowe et al. at four energies ranging from
51 to 75 MeV are separately analyzed. The extracted results agree, not only with those of
Binon et al. , but also with the values of real parts of the forward scattering amplitude ob-
tained by Wilkin et al. and Batty et al. using forward dispersion relations.

NUCLEAR REACTIONS "He(~—+,~—+ ),
He(m, n. ), T""=110—260 MeV; calculated forward nuclear ampli-

tudes, elastic, inelastic, total o, pole extrapolation method.

I. INTRODUCTION

Several attempts have been made in the past for
isolating the complex nuclear amplitude at forward
angles from the differential cross-section data for
elastic scattering of charged pions from nuclei. The
imaginary part is usually obtained from the total
cross section using the optical theorem. The real

part is obtained by one of the following methods:
(a) for neutral pions, from a forward differential

cross section,

0 (0')=Ref+(0) +1m'(0)

(b) through the use of forward dispersion rela-

tions
(c) by a phase-shift analysis4;
(d) by phenomenological fits to experimental data

in the Coulomb-nuclear interference region.
The first method, applicable in restricted cases,

does not even provide the exact sign of Ref~(0).
Forward dispersion relations have been used by
Ericson and Locher' to calculate the real parts of
the "symmetric amplitude. " In the more recent cal-
culations by Wilkin et al. and Batty et al. , signi-
ficant variations in the values obtained for the real
parts have been reported, because accurate values of

the total cross sections in the entire energy range of
interest for the dispersion integrals are not avail-
able. There are also uncertainties in the values used
for subtraction constants in the dispersion relations.

Falomkin et al. have made a phase-shift analysis
to obtain the forward pion- He amplitude. In spite
of the improvements suggested by Dumbrais et al. ,
the methods based on phase-shift analysis still in-

volve too many parameters and are ridden with am-

biguities.
More recently, real parts of the forward nuclear

amplitude have been obtained by Binon et al. ' and
Scott et al. They have performed a fit to the dif-
ferential cross-section data in the Coulomb-
interference region with a semiphenoinenological
expression

dQ
(8)=

I fcori(8)e "4+fir(8)
I

'

where fc,„~(8) and fz(8) are the Coulomb and nu-

clear amplitudes, respectively. The relative Bethe
phase 2$ has been taken as

2P = —2/in sin —,8
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the coupling parameter g being related to the fine
structure constant a as

ZiZ2a[s —(m +M2)]

[s —(m +M) ]' [s —(m —M) ]
(4)

k is the center of mass (c.m. ) momentum; s and t
are the usual Mandelstam variables; Z~, Zz are the
charges; and m and M are the masses of the projec-
tile and target, respectively. For evaluating the in-

tegral in Eq. (3), an exponential form for the nu-

clear amplitude has been used. This assumes dif-
fraction scattering ignoring, for instance, the ex-

istence of a forward dip. Binon also uses a
phenomenological expression for fz(8) in Eq. (2)
which is diffractive and is not of the correct form
for all values of cos8 from —1 to + 1.

Thus, the above methods use assumed nuclear
models to fit the experimental data. We also feel
that they use too many parameters. The objective
of the present paper is, therefore, twofold. The first
is to suggest a novel method to obtain the nuclear

amplitudes in the forward direction, where no

specific nuclear model will be used. One will then

obtain unbiased estimates of the nuclear parameters.
The second is to use conformal mapping to achieve

accelerated convergence of the series representations

so that the goodness of the fits increases optimally
arid the number of parameters in the fits is reduced

considerably. The conformal mapping technique

has been largely used in nuclear physics for extrapo-
lation to unphysical regions. Kisslinger' and

Dubnicka et a/. ' have used it to obtain coupling
constants and phase shifts. Kisslinger and Ni-

chols" were the first to use the optimal expansion

technique for nuclear scattering in the cos8 plane

allowing for the effects of Coulomb distortion on

spectroscopic factors.
Since for charged particle scattering there is a

Coulomb pole at t =0, its contribution to the
scattering amplitude has to be first subtracted out
to obtain reliable information about the forward nu-

clear amplitude. The data from nonforward angles

have to be suitably and stably extrapolated to the
inaccessible forward point t =0. An elegant
method of such a pole extrapolation has been sug-

gested by Cutkosky and Deo' which can be easily

adopted for the present problem. After subtraction
of the Coulomb part, the remaining nuclear part is
conveniently parametrized in conformally mapped
variables dictated by the analyticity of the strong
interaction amplitude.

Recent experimental results of negative pion
scattering from He nuclei in the Coulomb interfer-

ence region provide an excellent set of data to carry
out this intended analysis and to assess the merits
and workability of the method. The data extend
over a wide range of angles from near forward to
the very backward region between 110 to 260 MeV.
The real parts, both in sign and magnitude, are ob-
tained quite neatly as residues by extrapolation to
the forward pole. In fact, the present method pro-
vides a direct experimental proof of the existence of
a first order Coulombic pole in the forward direc-
tion in the interference term. The total cross sec-
tion is also found from the imaginary part obtained
by a method of successive iteration.

The paper is divided into six sections. In Sec. II,
the equations for analyzing pion-nucleus scattering
are presented. Section III deals with the main ex-
trapolation procedure. The methods for obtaining
various nuclear data from the measured differential
cross sections are also given here. In Sec. IV, ana-
lytic structure of the nuclear amplitude and elliptic
mapping are briefly discussed. In Sec. V, we

present the extrapolation procedure for a lower en-

ergy and wider angle to treat the experimental data
of Ref. 13. Section VI contains a discussion of our
results.

II. PION-NUCLEUS SCATTERING

Formally, the scattering amplitude is given by

f (8)= g (e ' —1)Pt(cos8) .
2I+1

I =o 2ik

For a Coulomb plus a short range nuclear force, '

the phase shift 5t is the sum of the Coulomb phase
shift ot, the nuclear phase shift vt, and a suitable
matching phase angle A,I, given as

—OI, I )g kb

—gin(2kb)=A, , I «kb,

Ii being of the order of the range of nuclear interac-
tion. The Coulomb phase shift is

1 I (I + I+if)
2i I (l +1 if)—

The full amplitude is written as

f(8)=fp(8)+e"'[f.(8)+tv(8) l

where
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f, (8)= g (e ' —1)Pi(cos8),
2l+ 1 xi' i

)=0 2

fthm(8) = g . e '(e ' —1)Pi(cos8),»&I

2ik
(10)

f»(8)= g . [(e ' —1)+e '(e ' e —i'~)]Pi( cos 8) .
) =0 2ik

The Coulomb amplitude is taken to be
2i [0'0—g ln sin(1/2) 8]

(12)

where

(13)

For scattering of strongly interacting particles at angles 8» 1/kb =10 radians, f» is certainly negligi-
ble. '" One can also show that the contribution of fz is of the order of a and is inaccessible to this analysis.
Effectively, then,

(8)=
i
f(8)

i

= ~f, (8)+fit(8) ['. (14)

Equation (14) is to be compared with the expression (2) used by Binon. Theoretically, they should lead to
equal values of the residues at fixed energy to the order a, if the nuclear model used has been correct.

If we consider the finite sizes of the incident and target particles, the above Coulomb amplitude gets modi-
fied' and equals

[ f, (8) f, [1—F(8—)] },
F(8) being the electromagnetic form factor. As is evident from Eq. (10), the amplitude fg(8) is not purely
nuclear, but is distorted by the Coulomb phase factor. Hence, the scattering cross section for m+-scattered
from He nuclei is

(8)=
~ f (8)—f [1—F(8)]

I

'+
I
f~(8) I

'+2I «f.(8)—f. [1—F(8)] }R'fbi(8)

+2 Imf, (8) lmfiv(8), (15)

F (t) =exp( r~
~

t
~
/6), —

F4 (t)=exp( —r4H, ~t ~/6),

(16)

(17)

r and r4 being the charge radii of pion and heli-

um nucleus, respectively. The effects of these terms
are found to be negligible. The terms are, however,
included with acceptable values of the radii:
r~=0.8 fm and r4H ——1.67 fm.

where f~(8) refers to the residual nuclear amplitude

for ir+-.

We use the product F~(t)F4H (t) for the em form

factor F(8), in which

III. EXTRAPOLATION PROCEDURE

The scattering cross section, as represented by
Eq. (15), contains both first and second order elec-
tromagnetic poles at t =0. There is also the cut
from t =0 to Do. The contribution from the pure
Coulomb term containing the second order pole is
known. The Coulomb-nuclear interference terms
contain the first order t =0 pole and are of signifi-
cance here. The strength of this singularity at t =0
is proportional to the real and/or imaginary parts
of the forward nuclear amplitude. The pole is on
the forward edge of the physical region and the con-
tribution of the interference terms in the forward
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angles is comparable with the nuclear contribution
itself. So the pole extrapolation here is a powerful
method for determining the nuclear parameters to a
high degree of accuracy.

Another significant factor is that no exact nu-
clear model is needed for such analysis. The in-
terference terms having been determined and sub-
tracted out, the differential cross section for the
strong interaction can be obtained for all scattering
angles. However, a word of caution is necessary.
Sometimes the extrapolation may not be very stable
due to non-negligible contributions from the elec-
tromagnetic cut, especially at low energies.

Details of the extrapolation procedure are out-
lined below:

With the Coulomb singularities and cuts from
r =0, the differential scattering cross section is not
analytic, and hence, no classical polynomial expan-
sion will converge. We assume that the pole and
the cut, to order a, are given accurately by the gen-
eralization of the nonrelativistic theory as given by
Eq. (12). Only when the singular terms are accu-
rately subtracted from the data, can the remainder
be expanded in a convergenet series of orthogonal
polynomials. The region of convergence will then
be the ellipse contained by the nearest singularity in
the cos8 plane. To explain further, let us write the
singularity-subtracted differential cross section
W(s, 8) as

exp

—( I f, (8)—f, [1—E(8)] I +2I Ref, (8)—f, [1—E(8)] ] RefN(0)

+2 Imf, (8) Imf„'-(0) } .

a (s,8)= g a„(s)p„(cos8), (19)

where the polynomials p„are weighted by the ex-

perimental errors in the differential cross sections
and are constructed by Schmidt's orthogonalization
procedure. From a fit to the data, with a series of L
terms, the Xl. value obtained is

The first term inside the bold parentheses is the
pure Coulomb contribution and it contains the
second order pole at I; =0. The second term, can-
taining the simple pole at t =0, is due to Coulomb-
nuclear interference. So these terms are very impor-
tant for us. The last term is dominated by the weak
electromagnetic cut.

The quantity W(s, 8) can be expanded in a series
such as

the correct subtraction point, 7 will show a pro-
nounced dip as the strength of the singularity is
varied. The more accurate the data, the sharper the
dip. The expansion must also be optimal, embrac-
ing the entire domain of analyticity as the region of
convergence for the least X .

Once the Coulomb pole terms have been correctly
subtracted, W(s, 8) is mostly the nuclear differential
scattering cross section. However, there are two un-
known residues RefN(0) and 1m'(0). They have
to be found simultaneously. Because of the lack of
a distinct pole in the imaginary part of the
Coulomb amplitude, a substantial variation in the
nuclear imaginary part does not appear to affect the
extrapolation. So it is possible to use the extrapola-
tion in an iterative manner, taking advantage of the
relation

L

P;—g a„p„(cos8;)
B =1

68'; (20)

doN
IfN(0)I = (0')

=
I Ref~(0) I + 1™fN(o)

I

'
5W; being the error in the differential cross section
at cos8;. In case Coulomb singularities are not ex-

actly substracted, P (s,8) will contain Coulomb pole
terms and the polynomial expansion (19) will not
converge. As a result of nonconvergence, 7 wi11 be
large for any given order of truncation of the ex-

pansion. With correct subtraction of the poles, the
value will be reduced to a minimum. Thus, at

For a certain value of Ref&(0), the iteration is
started by taking some plausible value of the ima-
ginary part in the residue term of Eq. (18). ~ (s,8)
is now extrapolated through the polynomials to give
do&/dQ at 8=0'. A fresh value for 1m'(0) is
obtained from relation (21). This new value of
Imf~(0) is now fed back in the residue term and
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is extrapolated to 8=0'. lt is also integrated graph-
ically to obtain the total elastic cross section. The
total cross section is calculated from the relation

4m'
o„,= Imf~(0) .

k
(23}

The total inelastic cross section is obtained as the
difference of the previous two cross sections.

IV. ANALYTIC STRUCTURE
OF NUCLEAR SCATTERING AMPLITUDE

AND ELLIPTIC MAPPING

the extrapolation procedure is repeated. This is
continued until stable values of doN/dQ(0') and

Imf~(0) are obtained. Table I shows a typical cycle
of iteration of 110 MeV for one value of Ref~(0).
The fits are, of course, carried out for different
values of Ref~(0) to obtain the minimum of the g
curve. It is found that quite accurate values of
Imf~(0) are obtained by this method of iteration
with constraint (21).

Correctly subtracted for the value of the residue
when g 's are minima, the remainder

Wp(s, 8)= g a„p„(cos8)

[B2 + —1PleH ]2 2 2

2k s
(25)

The full assumed analytic structure of e (s, 8) is

shown in Fig. 1.
The polynomial series (22) converges within the

I.ehmann ellipse' touching the right-hand cut at

x+. To optimize the rate of convergence of the po-

lynomial expansion, the cos0 plane is mapped into
the interior of an ellipse, ' the cuts lying on the
boundary of the ellipse in a mapped (z) plane. The

mapping is performed in two steps. First, the cuts

( —ao, —x ) and (x+, ao ) are symmetrized to
( —oo, —8') and (W, ao), respectively, by a transfor-
mation

x —xp
N =

1 —xxp

to infinity. The u-channel singularity is the left-
hand cut extending from —x, the threshold for
production of He ( H) and p(n) in the u channel,
to —00.

2
[rn3H (gH) +ply(q)]

x =1+
2k

The rate of convergence of the polynomial expan-
sion of P(s,8} is determined by the singularity
structure of the scattering amplitude due to strong
interactions. The nuclear part of the ~+-- He
scattering amplitude is free from poles in both
direct and cross channels. The t-channel singularity
begins with the two pion exchange. The right-hand
cut, in the cos8 plane (x plane), extends from

x —x+
x+x +X+X —1

(2&)

and X+ ——(x+ —I)'~ . Next, the symmetrized cuts
are roapped onto an ellipse by

z =sin[ —,F(sin ~w, k)/K(k)], (29)

TABLE I. A typical cycle of iteration at 110 MeV for
Ref~(0)=1.2 fm and I. =7, starting with Imf~(0)=1.5

fm.
LCase plane

No. of

iteration

" "(0)
dQ
(mb/sr)

1mf~(0)

(fm)
He exehe~n e

+
(n 'H)

He threshold

e' —
1 +l,x+

0
~p TI exchange

45.34
45.59
45.60
45.60

(stable)

1.759
1.766
1.766
1.766

(stable)

56.93
56.76
56.76
56.76

FIG. 1. Analytic structure of m—+- He scattering am-

plitudes in cose plane. The dashed line ellipse is the el-

lipse of convergence {see text) with x+ as the semimajor
axis.
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where k =1/$V, and E(k) and E(II),k) are the com-
plete and incomplete elliptic integrals of the first
kind.

Table II shows the size of the new ellipse, which
is quite large compared to the normal Lehmann el-

lipse. Orthogonal polynomials P„(z) are construct-
ed in the new z variable and the quantity W(s, 8) is
fitted in a series g„b„P„(z)to obtain the X values.

X curves for the real part of the forward ampli-
tude at five different energies between 110 and 260
MeV are displayed in Fig. 2. The minima of these
curves correspond to the extracted values of
Ref~ (0).

(a) I lo MeV

32.0-
(b) 220 MeV

62-
r-

3I.5-

CV

Q 60- L-y Ol

+3I.O-

58- 30.5-

Re f„(fm) Re f„(fm)

(c) 2

sz-

50-

I

I I

u I56 I I I 30.0— I I I I t

I.O I. I I.Z I. 3 I.4 -I.6 -O. e O O.S I.6

V. EXTRAPOLATION PROCEDURE
FOR DATA AWAY FROM
THE FORWARD REGION

46'
—I.3

II
u
II
II
u

I II I

—I. I -0.9 —0.7

Re f„(fm)

The method discussed in Sec. III is slightly modi-
fied for analyzing the data of Crowe et al. at low
energies. The experiments have been performed far
away from the forward region, i.e., at 8=30'—150'.
Most of the fits required about four to five order
polynomials in the expansion and preliminary fits
gave very high X values. So we concluded that ex-
trapolation from 8=30' to 8=0' has become unreli-
able. Quite fortunately, there are differential cross-
section data for both ir+ and n at the same angles.
It is possible to fit the sum and the difference of the
differential cross sections separately. This results in
a much better and more accurate analysis. The sum

L= 8

23. 5-

22.5
0

I

08 I. 2

Re f„(fm&

Z6.O- (&) I50 M4V
I

I

7zss- '.
/'

i
zs.o- y I !

/
r
I

24.5-

10- (&) Ieo MeV

68
/

/

/
66- /

/

r
64-

I

I

I

62- I

11
I

I I

I

56' I e i

I, 6 -0.2 0 0.2 0,4 0.6

Re f„(fm)

TABLE II. T""=pion kinetic energy in the laborato-

ry, x+ ——semimajor axis of the Lehmann ellipse, and
a =semimajor axis of the Cutkosky-Deo ellipse.

FIG. 2. plot pf g against different values of Ref&(0).
Solid ( ) curves for the x plane, ' dotted-dashed

( ——- —.) curves for the z plane; and I. =order of the
polynomial where the series is truncated.

z lab

(MeV)

51
60
68
75

110
150
180
220
260

x+

3.389
2.985
2.718
2.532
1.966
1.655
1.517
1.396
1.316

12.385
10.812
9.768
9.034
6.748
5.430
4.821
4.259
3.867

dn (8)+ dn
(8)=

dn (8)+ dn (8)
exp

—2
i f, (8)—f, [1—F(8)]

i

~2[Ref, (8)—f, [1—F(8)]

)& [Ref~ (0) Ref~+(0)—]

—2 Imf, (8)[imf~ (0)

+Imf~+(0) ] (30)
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and the difference 5.0

1.0-

exp

+2[Ref, (&)—f, (I —f(&))j

y, [Ref~ (0)+Ref~ (0)j

3.0-

C

2.0

0
I.O

Slope A = -0.27 I 6

—2 Imf, (8)[Imf~ (0)—Imf~+(0) j -I.O

(31)

both contain the pole at t =0.
If the po1es are correctly subtracted, the sum and

the difference can be separately fitted to the set of
constructed orthogonal polynomials. Now, if we

write W+(s, 8) for the sum or the difference, it can

—2.0
0

FIG. 3. Logarithm of the absolute value of the coeffi-

cients of the polynomial expansion of Eq. (32} versus the

order of the polynomial at 68 MeV in the z plane. The
average slope is obtained for n -5 to 14.

20-

l8—

I6-

IO—

22—

l8—

(c) 68 VIV

I

I

I

I /L=4

I ~

I I
I I II I

(a) 5 I MeV
I

~ L=4I
/

/

/

l6-

I4

l2

IO

Q 8,

56-

(~) 7S Mev

/L=4
T 7

I

I

I

I

I

I

I

I~ I

I

I I I I

(b) 60 Mev

/
/L=s

/
l

I

28

IO— 24
I

I

I

I

I

6 I

—I.O -0.6 -0.2 0.2 O. 6

Re(f„-fN) (fm)
I.O

20-I.O -0.6 -O.2 0.2 0.6

Re(f„-f+„) (frII)
I.O

FIG. 4. Plot of g'2 against different values of Re[f~(0)—f~+(0)]. Solid curves for the x plane; dotted dashe-d curves

for the z plane. g' is obtained from the fit after subtraction of the ideal series (see text}.
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20

l8-

!6

I4

l2
CV

(c) 68 geV

)
/

/
/

.~L-2
/

25-

23

2I

I9-

CV~ l7

5 MeV

T /
I

g'L=2
T'

I I

i I I I I

(b) so Mev

22

20

I L= 2
l

I
I

30-

2e-

22-

'L=2
I

/

/
/

IB-

l4
I.O l.2 l.3

Re(fN + f„+) (frn)
l.4 l.5

l4
l. 2 l.3

l

l.4 I.5 I.6
Re (fN + f~+) (fm)

FIG. S. Plot of X against different values of Re[f~(0)+f~(0)]. Solid curves for the x plane; dotted-dashed curves
for the z plane.

have the polynomial expansion

dON d0'~
W+(s, 8)= (8)+ (8)

= gb„p„(z),

or

d 0'~ d CT~
(s,8)= (8)— (8)

= gb„p„(z) . (33)

A variation in the residues of the last terms of
Eqs. (30) and (31) changes the X value insignifi-
cantly. This is to be expected since they contain a
in second order. For this reason we conveniently
take some approximate values for [Imf~ (0)
+ImF&(0)] and [Imf~(0) —Imf~(0)] and carry

out the extrapolation with different values for
[RefN (0) —Ref~ (0)] and [Ref& (0) +RefN+ (0)]

values show sharper minima in the latter case.
The values of the sum of the real parts at forward
angles are thus quite accurately obtained. The sum
and the difference given by Eqs. (32) and (33), when
extrapolated to all angles through the polynomials,
yield do~/dQ(0') and op+. For elliptic mapping,
we have ignored the small difference between the
left-hand cuts for positive and negative pions.

7;„~OF for the fits are given in Tables IV and
V. It can be noticed that 7;„~OFobtained for the
fits of the difference of scattering cross sections are
quite acceptable, whereas for the fits of the sum of
the cross sections, we get large values of X;„~DF.
This is due to inability of the pole terms to be visi-
ble against the background as the higher order poly-
nomials contribute significantly to the X2 of the fit.
This difficulty has been circumvented by construct-
ing an ideal series from the ansatz that the b~+'s de-
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TABLE III. Results of pole extrapolation for the m - He scattering cross-section data of Binon et al. ; values within
the parentheses are calculated from phase shifts obtained by Binon et al. ; NDF =number of degrees of freedom.

ylab

(MeV)

Ref~ (0)

(fm)

(0')
dQ
(mb/sr)

Imf~(0)

(fm)

+tot

(mb)

&inc]

(mb) J, g2/NDF

150

180

220

1.197
+0.063

0.565
+0.350

0.165
+0.115

0.140
+0.560

—0.960
+0.085

45.65
+1.05

94.50
+3.50

116.90
+2.20

121.80
+3.70

113.05
+1.30

1.769
+0.013

3.021
+0.007

3.415
+0.026

3.487
+0.032

3.222
+0.045

x plane

225.99
+1.69

317.69
+0.79

319.14
+2.43

285.28
+2.62

235.39
+3.29

75.55
+0.70

111.55
+2.45

111.10
+1.05

104.00
+2.30

84.90
+0.55

150.44
+1.86

206.14
+2.57

208.04
+2.65

181.28
+3.48

150.49
+3 33

7, 0.98

8, 0.99

9, 1.14

9, 1.51

10, 0.92

110

150

180

220

1.20
+0.06
(1.097)

0.51
+0.37
(0.532)

0.135
+0.125

(—0.017)

—0.45
+0.70
(0.014)

—0.970
+0.105

(—0.899)

45.65
+0.85
(46.86)

95.50
+3.80
(93.11)

117.55
+2.55

(117.38)

128.70
+6.20

(118.58)

112.90
+2.00

(103.34)

1.767
+0.016
(1.866)

3.048
+0.0004
(3.004)

3.426
+0.032
(3.426)

3.557
+0.175
(3.443)

3.217
+0.062
(3.086)

z plane

22S.84
+2.04

320.52
+0.04

320.16
+3.02

291.06
+14.32

235.03
+4.53

75.65
+0.70

111.60
+2.55

111.08
+1.13

106.90
+3.10

84.98
+O.SS

150.19
+2.16

208.92
+2.55

209.08
+3 22

184.16
+14.6S

150,05
+4.57

5, 0.96

6, 0.99

7, 1.20

7, 1.39

8, 0.88

crease exponentially for large n values. ' This is ex-

plained below.
The ideal series g„,C„P„(z),N being the num-

ber of data points, is constructed with the weighted
polynomials P„(z) such that the coefficients C„are
close to b~+'s of Eq. (32) in higher order with n

around three to five, but fall off exponentially with
increasing n. This is done by plotting a graph of
log,

~

b„+
~

against n and taking an average slope 3
for suitably chosen n values. The corresponding in-
tercept B on the log,

~

b„+
~

axis enables us to con-
struct coefficients of an ideal series,

~
C„( =exp(An+8) . (34)

In the ideal series, C„'s are required to carry the
same signs as those of b„+'s. Subtracting this ideal
theoretical series, i.e., g„ ie""+ P„(z), from the
experimental cross sections, a fit to the polynomial
expansion is made. The 7' values are much lower,
as is to be expected.

To illustrate the above process, consider the
analysis of the data at 68 MeV for which a normal
polynomial fit has yielded a P /NDF (number of
degrees of freedom) of 1.85 in the z plane for L =4.
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TABLE IV. Results of pole extrapolation from the sum of the differential scattenng cross-section data of Crowe et al
for m+ and n. . g' is obtained from the fit after subtraction of the ideal series (see text).

y lab

(MeV)

Re[f„(0)—f~+(0)]

(fm)

dcTg do g+
dQ dQ g 0

(mb/sr)

+
Oel +Oct

(mb) L, y2/NDF L, g'/NDF

51
60
68
75

—0.03+0.17
0.0 +0.30

—0.06+0.26
0.02+0.22

x plane

9.65+0.70
15.80+ 1.90
17.55+ 1.00
25.60+ 1.80

57.2+ 1.8
71.0+3.2
77.0+2.2
91.2+3.6

4, 2.04
5, 6.35
5, 2.32
5, 4.36

4, 0.64
5, 2.04
4, 1.43
5, 0.88

51
60
68
75

—0.05+0.21
0.01+0.27
0.22+0.34
0.11+0.33

z plane

10.80+1.10
15.60+ 1.60
19.35+ 1.65
26.90+1.30

58.0+2.6
70.9+2.9
77.4+3.4
91.1+2.7

4, 2.09
5, 5.34
4, 1.85

4, 3.18

4, 0.64
5, 2.75
4, 0.80
4, 1.31

The plot of log,
~

b„+
~

against n is shown in Fig. 3.
The average slope 3 of this for n-5 to 14 is
—0.2716. Its intercept B is 2.447. The ideal series
now 1s

g exp( 0 2716n—+2. .447)P„(z)
n=1

and the signs of C„'s are the same as those of b+'s
for the same n value. This series is subtracted from

Eq. (30). Then a fit to the polynomial expansion

g„b„P„(z)is carried out. The subtraction method

yields X ' /NDF =0.80.
The 7 ' curves so obtained for all lower energies

are shown in Fig. 4. Figure 5 displays the 7 curves
for the normal polynomial fit of the difference of
differential cross sections of m+ and m.

VI. RESULTS AND DISCUSSION

The results of our analysis are given in Tables
III—VII. The errors correspond to a variation of

from g~;„ to g~;„+1. The elliptic mapping

TABLE V. Results of pole extrapolation from the difference of the differential scattering cross-section data of Crowe
et a/. fora+ and m

y lab

(MeV)

«[tv (o)+f~ (o)1

(fm)

d O'N d cTN

dQ dQ g 0.

(mb/sr)

O,i
—0.+i

(mb) L, y'/NDF

51
60
68
75

1.175+0.055
1.415+0.035
1.200+0. 100
1.410+0.085

x plane

—1.47 +0.09
—1.435+0.06
—0.93 +0.11
—1.03 +0.09

—7.67 +0.29
—7.10 +0.14
—5.80 +0.35
—5.14 +0.26

2, 1.15
2, 1.08
2, 0.95
2, 1.49

51
60
68
75

1.220+0.060
1.465+0.040
1.230+0.100
1.485+0. 105

z plane

—1.66 +0.12
—1.625+0.06
—1.04 +0.14
—1.235+0.12

—8.36 +0.36
—7.90 +0.16
—6.225+0.40
—5.82 +0.34

2, 1.16
2, 1.26
2, 0.98
2 1.37
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TABLE VI. Results of pole extrapolation from differential cross-section data of Crowe et al. ; values within the
parentheses are calculated from phase shifts obtained by Binon et al.

y lab

{MeV)

RefN (0)

{fm)

Ref~+(0)

(fm)

'"(0)
dQ
(mb/sr)

":"(0)
dQ
(mb/sr)

Imf„(O)

(fm)

Imf~+(0)

{fm)

51

60

0.572
+0.089

0.707
+0.150

0.570
+0.139

0.715
+0.118

0.602
+0.089

0.707
+0.150

0.630
+0.139

0.695
+0.118

x plane

4.09
+0.35

7.18
+0.95

8.31
+0.50

12.29
+0.90

5.56
+0.35

8.62
+0.95

9.24
+0.50

13.32
+0.90

0.286
+0.117

0.467
+0.125

0.711
+0.076

0.847
+0.046

0.439
+0,082

0.601
+0.097

0.726
+0.086

0.921
+0.040

51

60

O.S85
+0.109
(0.639)

0.737
+0.136
(0.744)

0.725
+0.186
(0.733)

0.797
+0.173
{0.812)

0.635
+0.109
(0.637)

0.727
+0.136
(0.733)

0.505
+0.186
(0.714)

0.687
+0.173
(0.784)

z plane

4.57
+O.SS
(4.94)

6.99
+0.80
(7.73)

9.16
+0.83
(9.35)

12.83
+0.65
(13.33)

6.23
+0.55
(5.20)

8.61
+0.80
(8.07)

10.20
+0.83
(9.73)

14.07
+0.6S
(13.83)

0.338
+0.108
(0.290)

0.394
+0.152
(0.467)

0.624
+0.149
(0.630)

0.805
+0.130
{0.820)

0.468
+0.090
(0.337)

0.576
+0.102
(0.518)

0.874
+0.060
(0.680)

0.966
+0.089
(0.875)

has helped remarkably in improving the rate of con-
vergence of the polynomial expansions at energies
above 110 MeV. It has reduced the required num-
ber of parameters for the fit by about two every-
where, as indicated by column 8 of Table III. But
the mapping does not provide much improvement
in the lower energy region. Column 6 of Table IV
shows that only at 75 MeV the required number of
parameters decreases from five to four due to map-

ping. At 68 MeV, even though the number of
parameters is not reduced, the X' /NDF value has
fallen from 1.43 to 0.8. But at energies below 60
MeV, there is no improvement at all due to map-
ping. Similar behavior is also noted from column 5
Table V. At 75 MeV, X /NDF has been reduced
from 1.49 to 1.37. But below this energy, 7 /NDF
values become worse with mapping. One possible
explanation could be that at low energies, far away
portions of the cut come closer to the physical re-

gion due to the elliptic mapping and spoil the good-
ness of the fits.

Elimination of the background contribution from
the terms with n &L by subtraction conspicuously
reduces X /NDF values, as can be seen from
columns 5 and 6 of Table IV, thereby providing a
better fit. At 60 MeV, even though X' /NDF is a
little above the acceptable value, one can notice the
substantial improvement the method has provided
by diminishing the ratio from 6.35 as obtained by
usual polynomial fit to 2.04 in x plane, and from
5.34 as obtained by the usual fit to 2.75 in the z
plane.

Figure 6 is a plot of the real part of the forward
amplitude against the laboratory kinetic energy of
pions. The values agree well with those obtained
from Binon et al. They also agree fairly well with
those of dispersion relation calculations made by
Wilkin et al. and Batty et al. However, at 260
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TABLE VII. Total cross section, total elastic and total inelastic cross sections obtained by pole extrapolation from the
data of Crowe et al.

Tlab

(MeV)
tot
(mb)

+0 tot

(mb)
~el

(mb) (mb)
0'inel

(mb)

+
&inel

(mb)

51
57.44

+23.70
88.17

+16.47

x plane

24.77
+0.91

32.68
+0.91

31.67
+23 72

55.49
+16.50

85.50
+22.89

121.10
+12.94

136.23
+7.40

110.04
+17.76

123.65
+14.65

148.13
+6.43

31.95
+1.60

35.60
+1.11

43.03
+1.80

39.05
+1.60

41.40
+1.11

48.17
+1.80

53.55
+22,94

85.50
+12.99

93.20
+7.61

70.99
+17.83

82.25
+14.69

99.96
+6.68

51

60

67.88
+21.69

72.14
+27.83

106.28
+25.38

129.47
+20.91

93.99
+18.08

105.46
+18.68

148.86
+10.22

155.37
+14.31

z plane
24.82
+1.31

31.50
+1.45

35.59
+1.71

42.64
+1.36

33.18
+1.31

39.40
+1.45

41.81
+1.71

48.36
+1.36

43.06
+21.73

40.64
+27.87

70.69
+25.43

86.83
+20.95

60.81
+18.12

66.06
+18.73

107.05
+10.36

107.01
+14.38

clear data at forward angles from the phase shifts
given by Binon et al. The values are given in
Tables III and VI within brackets. It can be seen
that our results of pole extrapolation agree well

2.0-

I.O-

6

O
Z

V
-I,O-

-2.0-
I I I I I

0 50 (00 150 200 300

T (MeV)
FIG. 6. Real part of forward scattering amplitude

versus laboratory kinetic energy of pions. The curves
were calculated from forward dispersion relation by %'il-

kin et al. (dashed curve) and by Batty et al. (solid curve).
Results obtained by Binon et al, (0); results obtained by
pole extrapolation ( 0 ).

250

MeV and at higher energies both Binon's result and
our result differ appreciably from the results of
dispersion relation calculations. The results for n+.
are not shown in the figure to avoid overlapping.

From Table V it is obvious that even after sub-
traction of the "known" Coulomb term and the in-
terference terms, the cross sections for a+and m.
are different. After repeated trials we have ob-
served that this difference is real and is more con-
spicuous with decreasing energy. We are thus led to
believe that there is considerable distortion of the
nuclear amplitude at low energies due to Coulomb
fields of the pion and the nucleus. Figure 7 is a plot
of the total cross section, total elastic, and total in-
elastic cross sections versus pion kinetic energy.
The results are in close agreement with those of Bi-
non. At low energies there are large errors in o;„.
The total cross section is maximum between
150—185 MeV around the energy region of the n.-N

3 3
( —,, —, ) resonance. The extrapolated cross section
versus the laboratory kinetic energy is displayed in
Fig. 8 for both negative and positive pions. The re-
sults are also in agreement with those of Binon for
g

As an additional check, we have calculated nu-



26 COULOMB-NUCLEAR INTERFERENCE AND EXTRACTION OF. . . 223
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250-

200-

tot

IOO-
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80-

150—

100-

60—

'0 'D
40

50- 20-
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T (MeV)

OI I

50
I I I I

100 150 200 250 300

T (MeV)

FIG. 7. m - He total cross section, total inelastic cross

section, and total elastic cross section versus pion kinetic

energy. Results obtained by Binon et al. (). Results ob-

tained by pole extrapolation ( 0 ). The curves are to guide

the eye only.

FIG. 8. Elastic differential cross section at 0' versus

pion kinetic energy. Results obtained by Binon et al. (~);
results obtained by pole extrapolation for m (o ) and for
m+ (5). The solid curve is to guide the eye.

with their values. We emphasize that our results
should be more reliable, as they are free from any
ambiguity arising from normal phase-shift analysis.

It is worthwhile mentioning that there have been
various attempts' ' for determining pion size
from experiments on charged pion scattering from
atomic nuclei, especially from He. We find that
our method, in the present form, cannot predict the
value of r~ accurately.

More exact values of the magnitude of Coulomb
distortion at low energies can be found when more
accurate data, still closer to the forward region, are
available. This analysis can be extended to scatter-
ing of pions from other light nuclei such as ' C and
' 0, which will perhaps throw more light on the
behavior of the 533 resonance inside a nucleus.

To summarize, we have succeeded in our purpose
of presenting a model independent method for cal-
culation of nuclear parameters in the forward re-

gion. The results obtained by the method for +—+-

He agree with the best known values obtained so
far. The conformal mapping technique has also
helped in reducing the number of parameters and,
at the same time, improved the goodness of the fits.
Data on scattering of heavier charged nuclear ob-
jects are accumulating. Our method will help to ex-
tract the nuclear parameters without explicit
knowledge of the strong nuclear amplitude.
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