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A set of proton spin observables Dt, g =Q, x, y, and z, is described which provides selec-

tive information on the tensor components of the collision matrix describing the (p,p ) reac-

tion. These D~ are related linearly to the experimentally determined components of the

depolarization tensor. Simple relations are derived between the D~ and both the spin com-

ponents of the nucleon-nucleon amplitudes and the nuclear multipole form factors. For un-

natural parity transitions the observable D„is related to the axial longitudinal form factor
which does not enter in the (e,e') transition amplitudes for the one photon exchange

mechanism.

NUCLEAR REACTIONS New polarization parameters in (p,p') reac-

tions.

I. INTRODUCTION

With the recent developments in polarized proton
beams and in high resolution spectrometers with fo-
cal plane polarimeters for intermediate energy (-1
GeV) proton-nucleus reaction studies, it has become
possible to study experimentally elastic and inelastic
scattering processes in which proton beams polar-
ized in an arbitrary orientation are utilized and in
which all the components of the polarization for the
scattered protons are determined. ' One of the
motivations for the growing interest in these studies
is that the theoretical description of the proton-
nucleus interaction simplifies considerably at these
energies since the projectile wavelength is small
compared to the nuclear size. The interaction of
the projectile with the target can therefore be
described in terms of sequences of collisions with
individual target nucleons. In particular, the
Glauber multiple scattering theory, as well as its
extended version corrected for finite energy effects,
provides a transparent, parameter-free prescription
for the construction of the transition amplitudes in

terms of the (free) nucleon-nucleon (1VN) amplitudes
and the nuclear elastic or inelastic transition densi-

ties. Considerable efforts have also been made to
develop the distorted-wave impulse approximation
treatment in terms of potentials related to the free
NN amplitudes.

Until quite recently little attention has been given

to the investigation of what new information on the
reaction mechanism and on the structure of the nu-

clear states involved can be extracted from measure-

ments of the spin observables in double scattering

experiments at intermediate energies. The only

theoretical studies have been concerned with polari-

zation observables in the elastic scattering of pro-

tons from spin zero nuclei and from deuterium;
and two related experiments have already been

completed. '
In the experimental conditions where the incident

and the scattered proton polarizations can be deter-
mined the maximum information on the scattering
matrix describing the (p,p ') reaction can be ob-

tained by measuring all the Wolfenstein parame-
ters. However, although the Wolfenstein parame-
ters are related in a direct way to the experimental
measurements, they are not related in a transparent
way to the (p,p') collision matrix. The purpose of
this paper is to discuss a different parametrization
of the experimental results, alternative to the con-
ventional Wolfenstein parameters. We introduce a
particular convenient set of observables Do, D„,Dy,
and D, which depend separately on the specific ten-

sor components of the (p,p') collision matrix. These
observables can be expressed in terms of linear com-
binations of the Wolfenstein parameters. As will be
discussed below, the advantage of using this
parametrization is that it displays clearly the sensi-

tivity of the (p,p ') reaction to the different in-
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p( , )+&(J-) p( , )+-&*(J-ff), (2.1)

where p is a spin —, projectile (a proton in the exam-

ples we will be discussing in this paper) and A and
A~ are the initial and final states of the target nu-

cleus with spins (parities) J~(~;) and Jf(~f), respec-
tively. By using rotational invariance the general

expression for the collision matrix of this reaction

may be written as

F=Epo.p-+E„o.+Eygy+E, g, , (2.2)

where oo——1 and 0~, g=x, y, and z, are the Pauli
spin matrices for the proton in the right-handed
Cartesian frame where the x, y, and z axes are
parallel to (kf —k;), k; Xkf, and k;+kf, respec-

tively, k; and kf being the initial and final momen-
ta of the projectile in the center of mass (c.m. )

frame. The F~ are (2Jf+ 1)&&(2J~+1) matrices
connecting the spin spaces of the initial and final
target states with elements

(Fg )M M
——(JfMf

~
Fg

~

J;M~ ), (2.3)

where E~ is a transition operator in the space of nu-

clear coordinates. Up to an arbitrary phase the
complete determination of all the amplitudes can be
achieved by performing a sufficient number of po-
larization measurements. Some of these measure-
ments would require the determination of spin
alignments for the nuclear target; and the requisite
experiments are in general very difficult. Therefore

gredients in the reaction theory since the individual

D~ are related to particular components of the 1'
amplitude and to particular nuclear multipole form
factors. In particular, the observable D~ is related
to the longitudinal part of the axial form factor
which does not enter either into (e, e') transitions

proceeding via the one photon exchange mechanism
nor in (n, n') .reactions.

In Sec. II the D~ observables are defined in terms
of components of the general collision matrix and
in terms of the experimental Wolfenstein parame-
ters. In Sec. III expressions are derived for the D~
observables in the single collision approximation
which display the dependence of the individual D~
on particular components of the XÃ amplitude and

on particular nuclear form factors. Specific exam-

ples of the usefulness of the D~ observables are
described and discussed in Sec. IV. Some of the re-

sults discussed here have already been reported in

an abbreviated form.

II. THE Dg QBSERVABLES

Let us consider the scattering process

we focus our attention here on the experimentally
feasible scattering measurements, those in which
one can analyze the spin projections of the incident
and scattered proton, averaging over the magnetic
substates of the target. In other words we analyze
those reaction processes where a proton of known
polarization scatters from an unpolarized target nu-
cleus and the polarization of the scattered proton is
measured,

In the situation described above, the components
of the polarization vectors P' and P for the respec-
tive incident and scattered protons are related
through the equations:

[1+DoyPy ]Pf=D P„'+D„,P,',
['+D»~~]~~ =D"+~~.~~

[1+Day~)']~. =D~~.'+D~~z,

where

(2.4a)

(2.4b)

(2.4c)

D„(k;,kf)=
Tr(Fo~F cr„)

Tr(FFt)
(2.5)

Tr'(FgFv ), (2.7)

where the trace (primed symbol) is now taken over
the spin projections of the target nucleus alone. In
particular for Ip, D~, D~~, and D we then obtain:

Ip Tr'(F——OFO+F„F„t
(2J;+1)

+Eye +F,F, ), (2.8a)

1

(~ Tr'(FoFo+F, Fi+ 0

Fy Fy F,F, ), (2.8—b)—

The trace in Eq. (2.5) is taken over the spin projec-
tions of both the projectile and the target. From the
conservation of parity it follows that the only non-

vanishing functions D„~ are the following:

Dao —= 1 Dp& (analyzing power), D~o (polarization),
D, D~~, D~, D, and D~. The differential cross
section, Io, for the scattering of an unpolarized pro-
ton beam is given by:

TrEEt
2(2J~+ 1)

(2.6)

Now if we insert Eq. (2.2) into Eqs. (2.5) and (2.6)
and evaluate explicitly the trace over the projections
of the spin- —, projectile proton we obtain expres-

sions for the D„and Io in terms of linear com-
binations of the functions
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Tr'(FoFO F„—F„

+FyFy F,F—, ),

Tr'(FpFO FF—
„

(2.8c)

FyFy+FgF )

(2.8d)

Since the observables in Eqs. (2.8) are expressed in
terms of functions [Eq. (2.7)] where g =il it is both
natural and useful to define the observables D~ by:

1

(2J;+ 1)IO

)( g ~
(JfMf ~Fy

~

J'M~)
M;, Mg

(2.9)

where (=0, x, y, andz.
Using Eqs. (2.8) and (2.9) we can express the D~

in terms of D~, D„y,and D:
Do= —,[I+D~+Dyy+D 1

Dx = , [I+D~ D—yy D~]— —

Dy = , [I D~+D—yy —D~I—
Dz= .[1 D~ Dy—y+D—~] . —

(2.10a)

(2.10b)

(2.10c)

(2.10d)

From their definition [Eqs. (2.9)] it follows that the

D~ are not independent:

and N' is along the direction K; && Kf. (S,N, L) and
(S',N', L') represent right-handed Cartesian frames.
The geometrical relation between these frames and
the (x,y,z) frame used in our discussion is shown in

Fig. 1. For simplicity we use here the approximate
relations 0=0~,b ——0, which are strictly valid in
the limits (projectile mass)/(target mass)~0, and
(target excitation energy)/(projectile kinetic ener-

gy)
In terms of the (S,N, L) and (S',N', L') frames

the relations between the components of the polari-
zation vectors P and P' for the incident and scat-
tered protons are given by:

[1+DNoPN ]Ps' =Dss Ps+Dr s PL

[1+DNOPN]PN'=DON+DNNPN ~

(2.13a)

(2.13b)

(DLs DsL—)sin8 ]—,
1

Dx =
g [1+DSS' DNN' DLL'] ~

(2.14a)

(2.14b)

[1+DNpPN ]PL DsL Ps——+DLL PL . (2.13c)

In the usual (p,p ') experiment the measured depo-
larization parameters are Dss (R ), DNN (D),
DI.L (A'), DLs (A), and Dsr (R'), where the symbols
in parentheses are the conventional Wolfenstein
parameters. Equations (2.4) and (2.13) and the
geometrical relations represented by Fig. 1 can be
used to express the D~ defined by Eq. (2.9) in terms
of the experimentally measured depolarization
parameters:

1

Do =
4 [I+DNN'+(Dss'+DLL )coso

Do+D„+Dy+Dz ——1;
and that the D~ are non-negative:

0(Dg &1 .

(2.11)

(2.12)

In the usual experimental setup for (p, p ')

scattering the quantities D, D~„,and D are not
measured directly. The components of the polariza-
tion vector for the incident proton beam are ex-

pressed in terms of the directions S, N, and L,
where L is along the incident beam direction, K;,
and N is along the direction K;)&Ky. K; and Ky
are the laboratory momenta of the incident and
scattered proton, respectively. The components of
the polarization vector for the scattered proton are
measured along the directions S ', N ', and L ',
where L ' is along the scattered beam direction, K~,

N, N and y

FIG. 1. Geometrical relation between the coordinate
frames (S,N, L), (S',N', L'), and (x,y, z) for the case
where (projectile mass)/(target mass) ~0, or
8=8),b ——8, . N=N'=y.
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1

D~ = —,[1+DE' (D—ss'+DLL )cos8

+(DLS D—SL )sin8],
1

Dz g [ 1 Dss' DNN'+DLL']

(2.14c)

(2.14d)

The selective dependence of the observables Dg
on the components E~ of the collision matrix E can
be very useful in the theoretical interpretation of the
cross section and polarization data. Suppose, for
example, that the reaction theory correctly predicts
the three components Eo, F~, and F„but fails to
describe the F„component. As a consequence the
experimental cross section and Wolfenstein parame-
ter data would be incorrectly predicted and it would
be a difficult task to track down the error in the re-
action theory. On the other hand, if one would

compare the quantities Io"~a~""with the predictions
of the reaction theory, then, in our hypothetical ex-

ample, the theoretical difficulties could be easily
traced to the miscalculation of F . Also, as we
shall discuss, each D~ depends on different com-
ponents of the NN amplitudes and on different nu-

clear multipole form factors which enter into the re-
action theory calculation.

III. THE Dg OBSERVABLES
IN THE SINGLE COLLISION

APPROXIMATION

In order to gain some simple physical insight into
the dependence of the parameters D~ on the NE
amplitudes and the nuclear wave functions, it is in-

structive to derive expressions for the component
matrices F~ of the general scattering matrix F [Eq.
(2.2)] in the case where only the single collision
term in the Glauber multiple scattering series is
evaluated. These particular matrices will be denot-
ed by Fg", g =0, x, y, and z. The transition ampli-
tude between two nuclear states

I

i ) and
I f ) can

be written in the single collision approximation as:

&f IF"'Ii&=~&f Ie'" "&x~(q)
I
i&

where fez(q) is the NN collision operator, r is the
coordinate of a target nucleon (the nuclear wave
functions are antisymmetrized), q is the momentum

I

transferred, k; —k~, and A is the number of nu-

cleons in the target nucleus. To derive the com-
ponent matrices Fo', F„'', Fz ', and F,' ' of Eq.
(2.2) the NN scattering operator is decomposed in
terms of the projectile spin operators

five(q) =fo(q)ao+f. (q)a

where

+f~(q)err+ f, (q)cr, , (3.2)

fo(q) =a (q)cro+if'(q)or

f„(q)=&(q)cr„',

fy(q) =iy(q)oo+P(q)os,

f, (q) =e(q)cr,' .

(3.3a)

(3.3b)

(3.3c)

(3.3d)

The 0.
&

are target nucleon spin operators; and the
a(q), 13(q), j(q), 5(q), and e(q) are the convention-
al components of the NE collision matrix. These
components can be further decomposed in terms of
isoscalar and isovector contributions; for example,

a(q)=ao(q)1+ai(q)r r', (3.4)

where ~ and ~' are the isospin operators for the
projectile and target nucleon, respectively, with
similar expressions for P(q), j(q), 5(q), and e(q)
For simplicity we will suppress the isospin indices
in the following discussion. By using Eq. (3.3) we
can express the F~ operators as

Fg"(q)=A f d r p(r)e' '
'fg(q),

(=0, x, y, and z, (3.5)

where p( r ) is the single particle density operator.
At this stage it is convenient to perform a mul-

w( f]
tadpole expansion of the operators E~ in the manner
analogous to the treatment of the operators entering
into the Hamiltonians describing semileptonic and
weak interactions in nuclei. ' '" By using the ex-

' M ~ M
pansions for the plane waves e'q'', cr„'e'
oze' q ' ', and cr,e' q ' " in the Cartesian frame of
reference defined in Sec. II (see the Appendix), the
following expressions are obtained for the Fourier
transforms of the density, P(r), and spin density,
p(r)o'„operators entering in the formulas for the

+g (q):

f d r e p( r )cro ——g CLM~LM (q)
L,M

0d re' ' "P(r)cr„'=—g cLMWLM (q),
L,M

~ ~"«' 'P(r)ay = —ig [eLM TLM (q)+cLM'TL'M(q)],
L,M

(3.6a)

(3.6b)

(3.6c)
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d re' ' 'p r 0,'= cI.~'Tg~ q +cI.M'TI.M q
I.,M

(3.6d)

In the above formulas ~L~, WI.M, Tz~, and TI.~ are the Coulomb, axial longitudinal, axial transverse
magnetic, and axial transverse electric multipole operators. ' '" These are:

MrM(q)= I d r p(r)@rM(q, r),

WrM (q)= —' I d r p(r)IV-, kz~(q, r)j o',
q

Tr.M (q)= .
r [L, (L, +1)]'" d3r p(r)I r)&V-„@r~(q,r) j o',

Tr'.~(q) = . / d "p ~ V-. X 'X -. 4 q
iq [L (L +1)]'r

where

e're(q, r ) =J,(qr) r,~(r") .

The constants cr'I', a =0, +, and —,in Eqs. (3.6) are given by:

cr'M i [4r——r(2L +1)]'r dMo(~I2),

cr'~ i [4m (—2—L +1)] [de & (n l2)+d~, (al2) j l2,

(3.7a)

(3.7b)

(3.7c)

(3.7d)

(3.8)

(3.9a)

(3.9b)

(q) jr.M =o

I Fr (q) jr =i)'(q)AcP~~r. M(q)

if3(q)Acr'M'Tr M
—(q), (3.10c)

[F. (q) jrM=«q)Acr'M'~~iÃ(q),

(3.10b)

where the d~~ are components of the matrices
describing rotations about the y axis.

Since the nuclear states have definite parity and
the operators M and T 's have parity ( —1) while
the parity of the operators T" and W is —( —),
at most only a pair of these operators will enter into
a nuclear transition matrix element with given I.,M.
By inserting Eqs. (3.6) into Eq. (3.5) we find that
the natural parity transitions corresponding to the
transfer L,M are described by the operators

[Fo «) j L~ =c(«)AcrM~r~(q)

+y(q)AcrM Tr.M (q) ~ (3.10a)

I ry "(q)j,M = iP(q)Acr'M—'TrM(q),

(q) jLM e(q)AcLM TLM(q)

(3.11c)

(3.11d)

The matrix elements of the operators +&, g=(},A( i )

x, y, and z, between two nuclear states can now be
expressed in terms of the reduced matrix elements
of the multipole operators of Eqs. (3.7). As an ex-

ample let us calculate the transition amplitudes and
the D~ functions for the transition

I

0+,0)
I
J,T) (3.12)

in the single collision approximation. For the na-

tural parity transitions we have

I

while the unnatural parity transitions corresponding
to the transfer I,M are described by the operators

IFO (q) jLM Y(q)AcLM TLM(q) (3 1 la)

[Fx (q) jLM ~(q)AcLM~LM (q), (3.11b)

&J,M T
I
Fo"

I

0' o,o & =A~r«)cJM'& J T
I I~»(q)

I I

o'o &

+A»«)cd (J Tll&n'

&J",M, T IF"„'"
I
0+,o,o&=o,

(J,M, T
I Fy I

0+,0 0) =iA»(q)cJ~( J Tl IMJz (q)
I

lo+0)

iAI3r(q)cr'M & J TII—T~iT '(q)llo'o&

o+,o, o& =A~, (q)cJM'& J T

(3.13a)

(3.13b)

(3.13c)

(3.13d)
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while for the unnatural parity transitions we have

(J,M, T
I
Po I

0+00, & =Ay&(q)cJ~+'(I Tl IT@(q)llo+o&,

(J &M, T I
I„'

I
0+,0, 0& = A5—T(q)cg (J Tl I

&»'( q)
I I

0+ 0&,

&~ Itf Tl+y" Io' o o&= &&—r(q)~e~ &I TIITJT«) Io'o&

(3.14a)

(3.14b)

(3.14c)

(3.14d)

where the symbol (II II & denotes the matrix ele-

ments reduced with respect to the isospin and spin
projections. Now if we insert Eqs. (3.13) and (3.14)
into Eqs. (2.8) and (2.9) and use the normalization
properties of the cd coefficients

t

where

(J TI
I
Tg"(q)

I Io+0 &

RT(q) =— (3.17)(J Tllm»(q)llo+0&

X I
c,'M

I
'=4~(2I+1)

m

g I cgM I
=2m(27+1),

(3.15a)

(3.15b)

IT" (q) = I1T(q)
I

'+
I
13r(q)

I

'

+ le'T(q)
I
'+Rr (q) I &r(q)

I

' .

D„(q)=0,

Dy (q) =-I1T(q) I'+Rr"(q)
I ~T(q) I'

IT" (q)

Rr(q)
I
eT(q)

I

g (q)—
IT (q)

where

(3.16b)

(3.16c)

(3.16d)

and

(g TIIz;p'(q)l o+o&
R (q)=— (3.17)

(J Tll~»(q)llo+o&

IT (q)=
I
t T(q) I

'+
I
rr(q) I

'+Rr(q)

x I I)'T(q) I

'+
I
&T(q) I

'+
I
&r(q)

I

'I

expressions may be obtained for the D~ observables
in the single collision approximation. For the
natural parity transitions

Do(q)= I
~T(q)

I
'+RT(q)

I
1'T(q)

I

'
(3.16a)IN'( )

Equations (3.16) and (3.19) demonstrate the sensi-
tivity of the D~(q) observables to specific com-
ponents of the XX amplitude and to specific nu-
clear form factors under the single collision approx-
imation. In particular, for unnatural parity transi-
tions a given D~(qj is dependent (to within an
overall normalization factor) on only one com-
ponent of the complete NA amplitude. Also, for
unnatural parity transitions the dependence of the
observable D (q) on the axial longitudinal form fac-
tor should be especially noted. Bemuse of the
transverse nature of electromagnetic waves the axial
longitudinal form factor does not enter either into
(e, e') transition matrix elements in the one photon
exchange mechanism as well as in (vr, ~') reactions.
Thus the (p p ') reaction offers a rather unique
means of studying nuclear transition densities corre-
sponding to the matrix elements of the opera-
tor W'.

IV. SPECIFIC EXAMPLES
AND DISCUSSION

while for the unnatural parity transitions:

UN'
IT (q)

Rr' (q)
I
&T(q)

I

'
UXIT (q)

Ilb(q) '
D:«)= U~-

(q)

Dz (q)=
Ir (q)

(3.18)

(3.19a)

(3.19b)

(3.19c)

(3.19d)

As an illustration of the usefulness of the D~ ob-
servables let us consider the (p,p') excitation of the
J =1+ states in ' C at 12.71 MeV (T=0) and
15.11 MeV (T =1), which can be well described in
terms of the single particle-hole excitation mechan-
ism. In the single scattering approximation it can
be seen from Eqs. (3.14) that each of the elements in
the matrices F~ (3X 1 matrices in this case) is pro-
portional to the product of a single isoscalar (T =0
excitation) or isovector (T = 1 excitation) com-
ponent of the XX amplitude and a single nuclear
multipole form factor. The nonzero matrix ele-
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ments (F~)M M are the following:f i

(Fo ) i,o=(Fo )—i,o
T T

=i@nAy. r(q)

&& & 1+,Tl I

T-"'(q)
I
lo+,0),

(F )(,o= —(F„)i,o

i v—'2nA5.r(q)

x &1+,Tl l~ '(q)
I
IO+,0),

(Fy )),o=(F3 )—i,o

=i~nAPr. (q)

y &1+,TIIT" (q)IIO+, 0),
(F, )o o i v'2~A——er(q)

x &1+,TIIT""'(q)IIO+,0) .

Thus from Eqs. (2.8), (2.9), and (4.1) we obtain

Ir(q)

D„(q)=
Rr(q)

I
5r(q)

I

Ir(q)

I Pr(q I

Ir(q)

D, (q)=
Ir(q)

where

Iv =
I 1'r(q)

I

'+
I &r(q) I'+

I &r(q) I

'

+Rr(q)15'(q) I

'

&1+ Tll~ '(q)IIO+, 0&

&1+ TIIT"'( )llo' 0)

(4.1a)

(4.1b)

(4.1c)

(4.1d)

(4.2a)

(4.2b)

(4.2c)

(4.2d)

(4.3)

(4.4)

Dz(q), and D, (q) calculated for the (p,p') excitation
of the 12.71 MeV (T=0) and 15.11 MeV (T =1)
levels in ' C at a bombarding energy of 500 MeV.
The dashed lines represent the predictions of the
single collision approximation [Eqs. (4.2)] while the
solid lines represent the prediction of the full multi-

ple scattering expansion in the Glauber theory. The
NN amplitudes for these calculations were taken
from phase shift analyses. ' As can be seen from
Fig. 2 it is an important feature of the D~ observ-
ables that they depend rather weakly on the multi-

ple scattering corrections at small momentum
transfers (q (0.6 fm '). Since Eqs. (4.2) show that,
in the single scattering approximation, each of the
observables Dp, Dz Dy and D, is proportional to a
single component (isoscalar or isovector) of the NN
amplitude squared, this selectivity, taken together
with the reasonable validity of the single scattering
approximation at low momentum transfers, may be
useful in resolving recently observed discrepancies
between the data for polarization observables in
proton-nucleus elastic scattering and the predictions
of multiple scattering theory calculations based on
free NX amplitudes. ' As an experimental aside, it
should be noted that it is in the region of low q
where it is reasonably easy to measure the D~
parameters for the (p,p') excitation of the well

known 1+ states in ' C. The cross section for the
excitation of these 1+ states are peaking at q;„(0');
and at small angles (low q) these states stand out
above the background of broad natural parity tran-
sitions.

Another interesting aspect of studying the ob-
servables D~ is that their determination may be use-
ful in resolving discrepancies between the experi-
mental data and the reaction theory which can be
enigmatic when only data on the unpolarized cross
section are available. The unpolarized differential
cross section Ip may be written as

[Rr(q)~1 as q~O) .

The ratio Rz(q) can be calculated from the model
of the nuclear structure involved; for example, by
assuming that the 1+ states represent pure

p 3/2 ~p ]/2 transitions from a closed p 3/2 shell ' C
ground state' or by using the wave functions of
Cohen and Kurath. '

It should be mentioned that since in our example
we assume the local form of the XN amplitude, we
do not take into account the nostatic (exchange) in-

teractions. These, in general, may lead to transi-
tions which give negligible contributions at energies
of our interest.

ln Fig. 2 we present the quantities Do(q), Dx(q),

Ip ——
d0 d0
dQ

p
dQ

de d0
dQ dQ

(4.5)

where

d&
dQ

=D&Io Tr'(FgF~ ) . —— (4.6)

Note that no interference terms between the E~
enter into the expression for the differential cross
section. Now, if each of the contributions

(do/dQ)g possesses a diffractive structure with
maxima and minima positions occurring at dif-
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=500 MeV
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FIG. 2. The observables Dt, g =0, x, y, and z, calculated for the ' C(p,p') reaction at an incident proton energy of 500
MeV for the excitations of the 12.71 MeV (T =0) and 15.11 MeV (T =1) 1+ levels of ' C. The dashed and solid curves
represent Glauber theory predictions. The dashed curves correspond to the predictions of the single scattering approxi-
mation while the solid curves correspond to the full multiple scattering expansion. In these calculations the nuclear wave
functions were those of Cohen and Kurath (Ref. 13), while the NN amplitudes were taken from the Amdt compilation
(Ref. 14).

ferent values of q, the summed cross section in Eq.
(4.5) may exhibit very little structure. In particular,
for the excitation of the ' C 1+ states which have
been considered above, the contribution due to F
will have a different momentum dependence than
the contributions due to Fo, Fz, and F„sinceF~ de-
pends on the longitudinal axial form factor while

Fo, Fz, and F, depend on the transverse axial form
factor [Eqs. (3.14)], and these two form factors have
a different q dependence. The latter effect is illus-

trated in Fig. 3 where the predictions of a Glauber
theory are compared with the experimental data' '
for the excitation of the 15.11 MeV T =1 1+ level
in ' C at 800 MeV. The Glauber calculation used
the 800 MeV EN amplitudes of Amdt' and form
factors calculated from the wave functions of
Cohen and Kurath. ' The solid curve represents the
predicted total cross section while the dashed curves
represent the individual contributions of the four
terms in Eq. (4.5). Note that the kink in Io at
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do
dQ

do
dQ

(4 7)

components of the general collision matrix I'. This
interplay of the transverse and longitudinal form
factors in the (p,p') differential cross section is
somewhat related to the D-state effect in the unpo-
larized differential cross section for p-d elastic
scattering, where the lack of a minimum in the an-
gular distribution is related to the different momen-
tum transfer behavior of the components of the
elastic p-d collision matrix which depend upon the
spherical and quadrupole deuteron form factors. '7

For unnatural parity transitions the measurement
of the observable D„allows one to separate the con-
tributions to the unpolarized differential cross sec-
tion from the longitudinal and transverse parts of
the spin transition density. Equation (4.5) can be
written as

where

10
do =IoD„

L

and

1

, Io(1 D—N+'+—DSS' DI.L') ~ (4.8)

10 15 20
dQ

=IQ(1 D„)—
g (deg)

1

, Io(3+—Dxz &ss +—DI.L, ) (4.9)FIG. 3. Differential cross sections for the (p,p') excita-
tion at 800 MeV incident energy of the 15.11 MeV
(T= 1) 1+ level of "C. The data are taken from Refs. 15
and 16. The dashed curves represent Glauber theory pre-
dictions for the contributions (do/dQ)~, / =0, x, y, aud

z, described in the text, while the solid curve represents
the sum (incoherent) of these individual contributions. In
these calculations the nuclear wave functions were those
of Cohen and Kurath (Ref. 13), while the NN amplitudes
were taken from the Amdt compilation {Ref. 14).

8, =-4' (q=0.55 fm ') can be traced to the
minimum in the contribution from (do/dQ)„. The
fact that the experimental data do not show the
minimum at 8, =12' (q—:1.35 fm ') predicted

by the Glauber theory could be due to the incorrect
momentum transfer dependence of the axial longi-
tudinal form factor, which, as has been mentioned

above, cannot be measured in the (e,e') or (vrrr') re-
actions. Thus the determination of the observable

D~ should provide a rather sensitive test of the reac-
tion theory, because it allows one to study specific

This separation therefore requires four measure-
ments: Io, D~~, Dqq, and DII . The measurement
of (do/dQ )I has particular interest since this quan-
tity depends directly on the longitudinal part of the
spin transition density, and this part does not con-
tribute to (e,e') scattering in the one photon ex-
change reaction mechanism.

Finally, the extraction of the observables D~ may
be interesting with regard to the question of the sen-
sitivity of unnatural parity (p,p ) excitation process-
es to pion condensation effects. ' ' These effects, if
present at all, should contribute mainly to the am-
plitude E„andconsequently to the observable D„.

In view of the above discussion the study of the
proton polarization observables in the context of
(p,p') reactions should deserve more attention in the
future, both with regard to theory and experiment.
%e have suggested a new way of describing the ex-
perimental results in terms of the parameters Do,
D, D~, and D, which are related in a simple and
useful way to the amplitudes describing the (p,p')
reaction.
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APPENDIX

In deriving Eqs. (3.6) we made use of expansions
of the functions e' q ', xe' q ' ', ye' q

' ', and ze' q ',
where x, y, and z are unit vectors in the Cartesian
frame of reference with the axes x

~
~(kf —k;),

y~~(k;Xkf), and z~~(k;+kf). The general expan-
sion of e'q' in terms of spherica1 harmonics is
given by

M =+L
e'q'=4rrg g i jt.(qr)

L=OM= —L

X I't*.M(q) ~t.M(r") '

oo M =+L
e' ''= g g ctM+tw(q, r),

L =0M=- —L
(A3)

where @t.M(q, r ) and ct M are defined by Eqs. (3.8)
and (3.9), respectively. Expansions of the products
of the unit vectors x, y, z, and e' q

' ' can be derived
in the analogous way as, for example, in Ref. 10 or
Ref. 20. One obtains

In the frame of reference (x,y, z) we have

I'tM(q) = [(2L + 1)jar ]' dMo(sr /2), (A2)

where dMO is the Wigner d function for rotations
about the y axis. The expansion of e' ' in Eq.
(A 1) then becomes

xe'q "= . QcP~—q-,e(q, r),
iq

, ; .cgM'+ —et~+i'V-„X (r X't7-, )@tM(q, r)
[L (L +1)]" (A4)

ctM'+ ctM'V'-„—X (r X&-, )+t.M(q~r) ~

t Mi[L(L+1)]'

where the coefficients cr~ M+~ and ci.M' are defined by Eq. (3.8). In Ref. 10 the z axis is taken along q, while in
our case q is a1ong the negative x axis. Our choice for the quantlzatlon axis ls more convenient ln the actual
calculations of the Glauber multiple scattering series.

]A. Rahbar et al., Phys. Rev. Lett. 47, 1811 (1981).
R. Glauber, in Lectures in Theoret~ca/ Physics (Intersci-

ence, New York, 1959), Vol. 1.
M. Bleszynski and P. Osland, Phys. Lett. 848, 157

(1979), and references therein.
4W. G. Love and M. A. Franey, Phys. Rev. C 24, 1073

(1981).
5R. J. Glauber and P. Osland, Phys. Lett. 808, 401

(1979).
M. Bleszynski, Phys. Lett. 928, 91 (1980).

7A. Rahbar et al., Bull. Am. Phys. Soc. 26, 1125 (1981).
sL. Wolfenstein, in Annual Reuiew of Nuclear Science

(Annual Reviews, Palo Alto, 1956), Vol. 6.
E. Bleszynski, M. Bleszynski, and C. A. Whitten, Jr., in

Polarization Phenomena in Nuclear Physics —1980
(Fifth International Symposium, Santa Fe), Proceed-
ings of the Fifth International Symposium on Polariza-
tion Phenomena in Nuclear Physics, AIP Conf. Proc.
No. 69, edited by G. G. Ohlson, R. E. Brown, N. Jar-

mie, M. W. McNaughton and G. M. Hale (AIP, New
York, 1981),p. 556.
J. D. Walecka, in Muon Physics, edited by V. Hughes
and C. S. Wu (Academic, New York, 1973).
T. W. Donnelly and W. C. Haxton, At. Data Nucl.
Data Tables 23, 103 (1979).

~J. S. O'Conne11, T. W. Donnelly, and J. D. Walecka,
Phys. Rev. C 6, 719 (1972).

'3S. Cohen and D. Kurath, Nucl. Phys. 73, 1 (1965).
l4R. Amdt, private communication.
~5J. Moss et al., Phys. Rev. Lett. 44, 1189 (1980).
~ M. Haji-Saeid et a/. , Phys. Rev. C 25, 3035 (1982).
7D. R. Harrington, Phys. Rev. Lett. 21, 1496 (1965).
SH. Toki and W. Weise, Phys. Rev. Lett. 42, 1034

(1979).
J. Delorme, Nucl. Phys. A374, 541c (1982), and refer-
ences therein.
D. M. Brink and G. R. Satchler, Angular Momentum

{Oxford University Press, Oxford, 1968).


