
PHYSICAL REVIEW C VOLUME 26, NUMBER 1 JULY 1982

Extended Lee model and three-particle equations

Michael G. Fuda
Department ofPhysics and Astronomy, State Uniuersity ofNew York at Buffalo,

Buffalo, New York 14260
(Received 9 November 1981)

The extended Lee model describes the interaction of two fermions, V and N, with a
scalar boson 0 and its antiparticle 0 through the virtual processes VAN+0 and N~V+0.
Here it is shown that the amplitudes for the physical processes V+0—+V+0 and

V+0~N+20 can be obtained in a reasonable approximation from the solution of an
Amado-Lovelace type of three-particle equation. The analysis presented gives some insight
into the problem of extending a crossing symmetric, Chew-Low type of T matrix off the
energy shell.

NUCLEAR REACTIONS Amado-Lovelace equations for V-0 sector
of extended Lee model.

I. INTRODUCTION

The Lee model' describes the interaction of two
fermions, V and N, with a scalar boson 8 through
the virtual process V~N+0. The model is tract-
able because of the conservation of charge and
baryon number, and the lack of antiparticles in the
theory. The baryon number is the number of V par-
ticles plus the number of N particles. Here we take
the charges of N, V, and 0 to be 1, 0, and —1,
respectively. The model has been solved exactly in
the N-0 sector' where only bare V and N-0 states
contribute, and in the V-0 sector which is spanned

by bare V-0 and N-20 states.
In Ref. 3 (hereafter referred to as F) it has been

shown that the amplitudes for the processes
V+0~ V+0, V+0~N+20, and X+20~N +20
can be obtained from the solution of an Amado-
Lovelace type of three-particle equation. The tech-
nique used to derive this equation depends in an
essential way on the restricted nature of the states in
each sector of the Lee model, and therefore cannot
be used to treat field theories with particles and an-
tiparticles present. Such a theory is the extension of
the Lee model which has been studied in connection
with the distinction between elementary and compo-
site particles. In this model the interaction takes
place through the virtual processes V~X+8 and
N~V+0, where 8 is the antiparticle to 0. Because
of the existence of the antiparticle, the model
possesses crossing symmetry which is absent in the

Lee model. Here we shall derive an Amado-
Lovelace equation for V-0 scattering in this extend-
ed Lee model.

The derivation is based on a dispersion relation
obtained from an exact formal expression for the
amplitude for the production process
V+0~N+20. The dispersion relation is written
in terms of the energy co of one of the 0 particles in
the final state. The amplitude studied, which is a
part of the full production amplitude, has a branch
cut for co)p, where p is the l9 mass. The discon-
tinuity across the low energy end of the cut
(p&co&Mq —Miv+2p) is related linearly to the
amplitude itself. By assuming this discontinuity is
valid for all co)p, a linear scattering integral equa-
tion is obtained. This technique is closely related to
an approach used by Amado to derive three-
particle equations, and is of a very general nature.

The integral equation derived involves a some-
what surprising off-shell extension of the 2V-0 T
Inatrix. The on-shell T matrix is of the form
g u (k)/h (cok+iE), where g is a renormalized cou-
pling constant, u (k) is a cutoff function, and h (z) is
a real, analytic function of z which carries the right
hand unitarity cut and the left hand crossing cut.
An obvious off-shell extension of the T matrix is
gu (p)gu (q)/h (z), but this turns out to be incorrect.
The denominator function h (z) can be factored in
the form d(z) w(z), where d(z) and w(z) carry the
right hand cut and left hand cut, respectively, ' and
d(z) has a zero at z + M~ Mt which gives ri——se
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to the V-particle pole in the X-0 T matrix. The
off-shell T matrix that appears in the three-particle
equation is gf (p)gf (q)ld (z), where f(q)
=u(q)/w'~ (mg). Thus, the form factor f(q) car-
ries the crossing cut. This result is consistent with
Myhrer and Thomas's comments on extending the
on-shell pion-nucleon T matrix off-shell for use in
few particle theories. Another interesting result is
that the form factor f(p) can be obtained directly
from the N 8ph-ase shift 5 and inelasticity parame-
ter g. The equations relating f(p) to 5 and ri are of
exactly the same form as those used by Londergan
et al. to determine the form factors in a separable
potential model of the pion-nucleon T matrix.
Thus, the present work provides a partial justifica-
tion for their phenomenology.

The outline of the paper is as follows. In Sec. II
the extended Lee model is given. The N-0 T matrix
is analyzed in Sec. III. The dispersion theory
derivation of the Amado-Lovelace equations for V-

8 scattering is presented in Sec. III. A brief discus-
sion is given in Sec. IV.

II. THE EXTENDED LEE MODEL

We take for the Hamiltonian the expression

H= Hp+ g f d k a~(k)a~(k)a)k

+ g f d'k[a. (k)J.(k)+a.'(k)J.'(k)],

with a=0, 0, and

H', =M,"'V'V+M„'"X'W,

Jg(k)=gpu(k)V N =Jg(k) . (3)

Here, a~(k) and a~(k) are the annihilation and
creation operators for mesons with three-
momentum k and energy cok ——(k2+@2)'~, and
satisfy the usual commutation rules for bosons.
The operator Ho describes static, noninteracting
fermions whose creation and annihilation operators,
V P' and V,N, respectively, obey the usual an-
ticommutation rules. The bare masses Mq' and
M~' are renormalized to Mz and M~ by the in-
teraction. The interaction term in H describes the

with a bare coupling constant gp and a cutoff func-
tion u (k) which depends only on the magnitude of
the three momentum. In the Lee model only the
virtual process (4a) occurs and there is no crossing
symmetry, while here the additional process (4b)
leads to crossing symmetry.

It is straightforward to verify that the following
operators commute with H;

III. N-8 SCATTERING

We shall now examine the structure of the N-8 T
matrix, as it will play an important role in the pro-
cess V+0—+%+20, for which we shall construct a
three-particle theory in the next section. According
to Eqs. (12), (7), and (5) of F, the N 8T matr-ix is

given by

(N
~
Jg(k)

~
k8N)+ g'u (k)&——(~k+~'&),

where

ig~ J Jg Jg~
1

+Z—

(6)

(7)

(S)
Jg(p)

gu (p)

The states
~

N & and
~

k8N &+ are eigenstates of
H with eigenvalues Mz and Mz + mk, respective-
ly. Throughout the rest of this work all states that
we shall encounter will be physical states, i.e., eigen-
states of H. The plus and minus signs in (6) indi-
cate in and out states, respectively. The parameter

g is a renormalized coupling constant which will be
defined shortly. The X-0 T matrix is given by

(N
~
Jy(k)

~
k8N)+ gu (k)t(cok+ig——), (9)

8=V V+X N,

Q =N N f d—k[ ag(k)ag(k)

—a~(k)ag(k)] .

Clearly 8 is a baryon number operator and Q is a
charge operator. In setting up the charge operator,
we have assigned the charges 1, 0, —1, and 1 to the
particles N, V, 0, and 0, respectively. This is con-
sistent with the assignment made in F.

processes

VIV + 0,
X~V+0,

(4a)

(4b)

where from (3) and (7)

r(z) =r( z) . — (10)

Relation (10) is an expression of the crossing sym-
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[8,Je(k)] =0,
[Q,Js(k)]= —Je(k),

from which it follows that

Qjs ~

iV ) =0,
Qie l&&=2je I» .

(12)

(13)

Thus we see that in the first term on the ri.ght side
of (7) the states

~
V),

~
Eg),

~
V08), . . . contri-

bute, while in the second term we have ~E8),
~

V88), . . . . Using (3), (6), (8), and (9) we find

t(z)=——+ I d q g u (q)
z —6

~

t(co +ie)
~

X

metry in the model. Obviously, we also have the re-
lation

t(z*)=t*(z) .

In order to determine the singularities of t(z), we
shaH insert appropriate intermediate states in (7). It
is straightforward to show that

+i5(co ) .
e ' sin5(coq)

g u (q)t(coq+ie)= —ri(q)—
4'lt qcoq

(18)

h (z) = I/t (z),

it follows from (18) that

Imh(coq+ie)=4m qtoqg u (q)lri(q),

Q)q PP .

(19)

(20)

Using this relation, and one like it for the X-8 arn-
plitude, as well as (10), (14), and (19), as it is
straightforward to show that

—=1+(z—&) I d'q g'u'(q)

where 5 is a phase shift and q is an inelasticity
parameter, which is equal to the ratio of the elastic
to the total cross for X-8 scattering. By comparing
the imaginary parts of (14) and (18), it is straight-
forward to show that ri(q) = 1 for p (coq (b +2p.
The on-shell X-8 amplitude can also be written as
in (18). We shall denote the corresponding phase
shift and inelasticity parameter by 5 and q, respec-
tively. If we let

( V
~ J, ~

X)=1=(X
~

J',
~

V),

From (3), (8), and (15) we have

g = g, (V~ V'X~-X),

(16)

(17)

which gives the relation between the reno~alized
coupling constant g and the bare coupling constant
go. According to (11) and (14), t (z) is a real analyt-
ic function of z except for a simple pole at '.=6, a
right hand cut (RHC) beginning at z =p., and a left
hand cut (LHC) beginning at z =—p.

The on-shell X-{9amplitude can be written in the
form

1

rt(q)(toq &)'(toq -z—)

l+
ri(q)(o)q+ d ) {coq+z)

(21)

In deriving this it has been assumed that h {z) has
no CDD (Ref. 8) poles. It is not difficult to derive
an expression for h (z) in terms of the phases 5 and
5. From (18), (19), and (10), we have

h(coq i e)ih(toq+i e) =—e
2i5{a) )

h ( toq+ie)IIt ( —coq
—ie)=e-2iS(m )

Using these relations and following the method
used in Ref. 9, it is straightforward to show that

(z —&) " 5(~) 5(~)
h (z) =(z —A)exp —— da)

{
(:".~--A)(a~ —-z) (co+ b, ){cg+z)

It is easy to check that this expression for lt (z) satisfies (22) and is consistent with the structure of (21).
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IV. THE THREE PARTICLE EQUATIONS

We now turn our attention to V-8 scattering.
From the conservation of baryon number and
charge it follows that the possible reactions are

V+8 ~V+0
—+ %+28

~ V+20+0

We shall assume that

E=My+uk ~My+3P, (25)

so that at most we can have two mesons in the final
state. Using Eq. (21) of F and Eqs. (8) and (15) of
the present work, we have

4 ~ 0 (24)
J

(N
~
as(p)Js(q)

~
keV)+ ——gu (q)5 (p —k)+gu (p)gu (q)F(E+ie MN ——co&,E), (26)

F(.,E)=(N
~

J', J',
~

kev&, .
M~+z —H (27)

According to Eq. (19) of F, the amplitude for V+O~N+28 is obtained by adding to (26) the same expres-
sion with p and q interchanged, thus the complete amplitude is determined by F(z,E).

We now proceed to determine the analytic structure of F(z,E). From (13) it follows that the only inter-
mediate states that contribute in (27) are those with zero charge, namely,

~
V),

~
Ne), . . .. Using (15), we

have

( V ~j s ~
keV)+ 3 (N [ js ~

xeN) (xeN
~j s ~

keV)+
F(z,E)= + dx '+

z —5 z —co~

Combining Eq. (7) of F and Eqs. (8}, (26), and (27) from here we find

+( xeN
~ Js ~

keV &+ 5'(x k—)+gu (—x)[F(co,+is,E)+F(E+ie Mrq co„—,E)] .—

(28)

(29)

We see that F(z,E) has a simple pole at z =5 and a RHC beginning at z =p, . The residue at the pole, which
is given by

lim (z b)F(z)=(V~ js—~
keV)+, (30)

is essentially the V-8 elastic scattering amplitude [compare Eq. (6)], while according to (6), (28), and (29), the

discontinuity across the RHC for p &z &b+2p is determined by the N-8 elastic scattering amplitude and

F(z,E}itself. Using (28), (29), (6), (8), (18), and (19),we find

2iS(co }
F(coq+ie, E} e' F(coq —ie,E)—

= —2&l
gu (q)

h (coq+ i e)

5(coq —cok )
+4qrqcoqF(E+ie M~ coq E) p &coq &b+2p

gu g
(31)

It is important to realize that this relation is exact, moreover, the values of coq indicated are those that arise
when p and q in (26) are on-shell (E =M~+ coz +coq) and E satisfies (25). Now we let

G(z,E)=d(z)F(z, E),
where we assume d (z) is a real, analytic function except for a RHC beginning at z =p with

d(coq c&) 2is(a) )=e ', p&coq &b, +2p .
d coq+EE

Also we assume that d (z) has a simple zero at z =6 and that

lim
d (z)

az —b

(32)

(33)

(34}
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Using (30)—(34) we find

G(E,E)=( v~ J ~

kev) (35)

5(co& —cok ) G (E+i e M—~ —co&,E)
ImG(co~+i@,E)= mg f—(q) +4mqco~

gu q d E+ie —M~ —cov

where

d (coq +ie), d (~q +i e)f (q)=u (q) =" (q)l
h (coq+i e) h (co~+i e)

, p & co, & b, +2@, (36)

(37)

In writing the last equality in (37) we have assumed that the phase of d (co~+i@) has been chosen equal to that
of h (co&+i@) Thi.s is consistent with (22) and (33).

Using Cauchy's theorem and assuming

G(z,E) ~0,
fz/ ~00

we can write

Im6 (co~+i e,E)
G (z,E)=— d co~

P COq
—Z

Using (27), (8), (3), and the anticommutation rules, we find

lim zF(z,E)=0,
)zf~~

(38)

(39)

(40)

thus according to (32), (38) will be true as long as d (z) diverges no worse than z for large
i
z~. In order to

proceed we must make some sort of approximation. The simplest thing to do is to assume (36) is valid for all

co~)p. If we do this and let

X(p,k;E+ie) =gf (p)G(E+ie Mz —~~—,E)u (k)/f (k),

we find an Amado-l. ovelace type of equation, i.e.,

X(p,k;z)=Z(p, k;z)+ d q Z(p, q;z)
X(q, k;z)

d E+ie MN co- —
d

(41)

(42)

Z(p, q;z) = (43)

From (41), (25), (35), and (8) we have

X(k,k;E+ie) =( V
i
Jo(k)

~
k8V)+,

which is the V-0 elastic scattering amplitude.
Equation (42) can be obtained from the AGS (Ref. 10) form of the three-particle equations for a system of

two finite mass particles (the 8's) and one infinitely massive particle (the Ã) if relativistic energies are used for
the 0 s, it is assumed that there is no 9-8 interaction, and the Ã-0 T matrix is taken to be

T( . )
gf p gf

d (z)

Using (37), (19), and (6) we find that

T(k, k;co +i')=(X
i
Jg(k)

i
kOE)+,
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which is the on-shell X-8 T matrix. Thus (45} is an off-shell extension of the X-8 T matrix. It is worth not-

ing that (45) can be written in the Kowalski-Noyes" form

T(p, q&cok+iE)= g u (k)t(cok+lE)f(p»} 2 2 . f(q}
(47)

which when combined with (18) leads to the off-shell unitarity relation

4&kNk
T(p, q;cok+ie) T(—p, q;cok i—e) = —2niT(p, k;cok+ie) T(k,q;cok+ie), cok )p .

r) k

This plus the fact that from (45) and (34) we have

T(p .
)

gf p gf q
z —5

(48)

(49)

guarantees' that the three-particle theory based on (42) satisfies three-particle unitarity relations if the on-

shell amplitude for V+8~X+28 is taken to be

X(p, k;E+ie)+ X(q,k;E+iE),E =M~+
waco+

coq.
g (q) . g (p)

d (coq+i e) d (co~+i ~)

From (20) and (37) we find

Imd (co +i@)=4dqcoqg'f '(q}&ri(q» coq +P'
which when combined with (34) leads to

d(z)
&

d'q g f (q)=1+ z —b,
z —6 ri(q)(coq —Q) (coq —z)

This is similar to (21) with the important difference that d (z) has no LHC. The alternative expression

d (z) = (z —b, )exp — I d co
(z b) " —5(co)

(co —h)(co —z)

(50)

(51)

(52)

(53)

is similar to (23) and can be derived in the same way. Combining (37), (23), and (53), we find

(coq —~} " dco5(co)f(q) =u (q)exp 2' v (co+b )(co+coq )
(54)

It is important to note that f(q) =u (q) at coq =b, and that f (q) has an additional LHC beginning at coq = —p.

V. DISCUSSION

The equations derived here suggest results of a
more general nature. First of all, when a T matrix
such as (6) is used in a three-particle theory, the
part of the denominator h(z) which carries the
LHC associated with the crossing symmetry should
be absorbed into the form factor u (k) as in (54).
The representation (23) for h (z) guarantees that this
can be done. It is worth noting that there exists
such a factored representation for the denominator
function of the Chew-Low T matrix. Second, (51)
and (53) show that the modified form factor f (q)
can be obtained directly from a knowledge of the

phase shift 6 and inelasticity parameter g for the
N 8system. This -is a partial justification for the
use of phenomenological pion-nucleon T matrices
which do not take the crossing symmetry explicitly
into account. Finally, it is interesting to note that
upon comparing Eqs. (42), (43), and (49) of E with
Eels. (42}, (43), and (52) of the present work, it is
found that the Amado-Lovelace equation for the
Lee model goes over to the one presented here if the
Lee model cutoff function is replaced by f (q) and
the X-0 inelasticity parameter q is set equal to one.
This suggests that some systems, such as the pion-
nucleon and pion-deuteron system, can be fruitfully
analyzed using Lee model type field theories with
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cutoff functions or form factors which incorporate
the crossing cut as in Eq. (54). Such field theories
are much easier to analyze than those with crossing
symmetry.

It seems clear that the techniques used here can
be used to derive three-particle equations for the
Chew-Low' and cloudy bag' models of the pion-
nucleon system. While such models are unrealistic
in that they neglect nucleon recoil, the three-particle
equations should shed some light on the problem of

extending the pion-nucleon T matrix off shell. The
cloudy bag model is particularly interesting in that
it includes the P33 resonance (the 6) as part of the
input. Lovelace's model' of the S-m-n. system sug-
gests that by so doing, it is possible to account for
the large inelasticity in the P~~ channel, as well as
the change in sign of the P» phase shift. These ex-
tensions of the work presented here will be the sub-

ject of future publications.
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