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%e develop a simple model for the average S matrix that describes heavy ion direct pro-
cesses in the presence of absorption due to compound nucleus formation. The fluctuation
cross sections and the fusion cross section are then derived for deformed heavy ion systems
where multiple Coulomb excitation is important. The modifications in the conventional ex-
pressions for these cross sections, due to multiple Coulomb excitation, are discussed. Appli-
cations are made to the systems ' 0+' ' ' Sm.

NUCLEAR REACTIONS Coulomb excitation effect on heavy-ion

compound and fusion processes are studied. ]

I. INTRODUCTION
I@0

D

Heavy ion compound and fusion cross sections
have usually been calculated assuming the complete
separation from the fast, direct transitions. Of
course the latter are partially accounted for through
the use of appropriate absorptive potentials. It is by
now, however, well established that the presence of
directly coupled channels affects not only the values
of the transmission coefficients needed in the calcu-
lation of the compound nucleus (fluctuation) and
fusion cross sections, but, more importantly, the
structure of the statistical theory (i.e., the Hauser-
Feshbach theory). This is borne out by several in-

vestigations.
An interesting example of directly coupled-

channels effects on the compound nucleus and
fusion cross sections of heavy ions is that of multi-

ple Coulomb excitation. These effects have been

very nicely demonstrated for the system ' O+ "Sm
(2=148, 150, 152, and 154) at sub-barrier energies

by Stokstad et al. Earlier discussion of these ef-
fects in a-induced reactions on deformed targets
was given in Ref. 3.

For the purpose of simple analyses, several con-
cepts have been introduced, e.g., static deforma-
tion, dynamic deformation, zero-point vibration,
etc. Clearly these concepts are physically motivated
and represent to a large extent a simulation of the
overall physics involved in a more complete, cou-
pled channels description of the fusion process. In
such a calculation one identifies the fusion cross
section 0.+ with the difference

where O.z is the total reaction cross section in the
entrance channel, and

D

I+0

respresents the total direct reaction cross section.
In the present paper, we develop a theory for oF

as well as the different components of oF, the fluc-
tuation cross sections, which takes explicitly inta
account multiple Coulomb excitation. It is found
that the compound nucleus differential cross sec-
tions become less anisotropic as a result of Coulomb
excitation. The oscillations seen in the singular dis-
tributions of transitions involving zero spin en-
trance and exit channels become more damped, and
exhibit a large period. The fusion cross section at
energies slightly below the Coulomb barrier is found
to decrease by as much as 10%%uo (in, e.g.,
16O + 152Sm)

II. SALIENT RESULTS
OF THE STATISTICAL THEORY

The general formula for the fluctuation cross sec-
tion describing the transition a ~P for a given par-
tial wave J is'

J J J J
o p(J)= (2J+1)Q 7T ~aa TPP +TaP TPa

k TrTJ
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where T is Satchler's transmission matrix, given in
terms of the average S matrix, S, that describes the
coupled direct channels part of the problem

T=1—S ts . (2)

Equation (2) is valid when the number of open
channels, N, is large. Notice that unitarity is ap-
proximately satisfied in the sense

where the second term on the right hand side, of or-
der I/N, measures the violation of unitarity in Eq.
(1). However, Eq. (1) was originally obtained' by
neglecting the same type of term as the one above.
Therefore to be consistent, we shall neglect this
term when calculating the total compound (i.e.,
fusion) cross section, oF, and write for channel a

Feshbach formula lacks a foundation in the case of
heavy ion. systems, we shall, however, use it as the
basis of our theory. We remind the reader that the
statistical, Hauser-Feshbach formula Eq. (1)
(without the second term) has been widely used, and
with success, in heavy ion compound reactions.

It is clear from our Eqs. (1) and (2) that the basic

quantity in our theory is the transmission matrix, T.
In order to construct this matrix one has to solve
for the average S matrix, S, which requires a solu-

tion of the full coupled channels problem describing
multiple Coulomb excitation in the presence of corn

pound nucleus absorption. Although exact numeri-
cal solution of this problem is now feasible for
heavy systems, ' what we seek here is an approxi-
mate analytical solution for S that would lead to a
transparent expression for T, and accordingly oF
and the fluctuation cross sections, and the presence
of multiple Coulomb excitation.

III. SIMPLE MODEL
FOR THE AVERAGE S MATRIX

o' '= g (2J+1)T
ka J=0

(4)

where J is the compound nucleus angular momen-

tum (which is the same as the incident orbital angu-

lar momentum for the case of spinless projectile and

target considered here).
Although we agree fully with the warning given

by Mahaux and Weidenmuller that the Hauser-

A very powerful method for solving iteratively
the many-coupled-channels equations of heavy ion
Coulomb excitation problem is the inward-outward
integration scheme developed at Copenhagen. " We
shall use this formulation to obtain an approximate
expression for the matrix S. In the inward-outward
method, the solutions, P~(r), to the coupled radial
Schrodinger equations

+k~ —
z U~(r) Q~(r)= g V~p(r)gp(r),

which are regular at the origin [P~(0)=0], are written in terms of r-dependent coefficients a(r) and a'+'(r) of
the regular and outgoing, qr(r) and h'+'(r), parts of the homogeneous (uncoupled) optical wave function

1 (+) (+)1('a(r)-
&&z

—aa(r)%a(r) ~&z
—aa (r)ha

k k~ k

Inserting Eq. (6) into Eq. (5) we then obtain the following two sets of coupled linear equations":

a (r) =
&&

h'+'(r) g V ~(r)q&p(r) &&z a~(r}—h~+'(r) g V ~(r)his+ (r)
&&z

ass'+'(r)

a~+'(r)=
&&z g&~(r) g V~p(r)h&+'(r)

&&z a~(r) gr~(r) g V~p(r)—h~+'(r)
&&z

a&+'(r)

It should be clear that we have the freedom to consider a part of the channel-channel coupling in the gen-
eralized potential U. This is precisely what we shall do. The interaction V contains only the long-range
Coulomb coupling, whereas U contains all short range (nuclear) couplings as well as the average effect of the
coupling between the open-coupled-channel space and the compound nucleus (absorption due to fusion). We
shall see that such a decomposition would be quite convenient for our purposes. The above implies that the 5
matrix resulting from solving the homogeneous equation (5), S' ', would be generally nondiagonal.
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To simplify the discussion we shall use matrix notation in what follows. Outside the range of the short-

range nuclear coupling the wave functions y(r) and h'+'(r) behave like

( —) (+) (0) io
1/2 2 I /2 ~ "i i/2—k 2 k k

h'+'(r) =e' H'+'(r)1 1

k 1/2
(10)

where H+' ' is the outgoing (incoming) Coulomb wave function and o. is the Coulomb phase shift. Inserting

Eqs. (9) and (10) into Eqs. (7) and (8) and dropping rapidly oscillating terms involving the products
H'+'(r)H'+'(r) and H' '(r)H' '(r), we obtain'

d; i 1e' a (r) =— H'+'(r) V(r)H' '(r) e' a(r),1

dr 2 k'/2 k 1/2

d; 1 1 1
e ' a'+'(r)= —— H'+'(r)V(r)H' '(r) S"&1 —0

dr 2 2 k 1/2 k j/2—

+ —S' ' H'+'(r) V(r)H' '(r) e' a (r)
1 — 1 1

k 1/2

1H' '(r) V(r)H'+'(r) e ' a'+'(r) .
k 1/2 k'/' (12)

Equations (11) and (12) may be further simplified by recognizing the fact that because of strong absorption,
the long-range coupling potential, V(r), modifies the wave function of the system at radial distances larger

than the classical turning points. At these separation distances the following approximation is quite good.

H'+'(r)V(r)H' (r)=2F(r)V(r)F(r), (13)

where F represents a vector whose components are the regular Coulomb functions in the different channels.

Corrections to Eq. (13) involve rapidly oscillating terms that would contribute very little when integrated. In
what follows we use Eq. (13) for all values of r.

We introduce the following matrix:

C(r): , /2 I F(r—')V(r')F(r')dr' (14)

We then have

e' a (r) =i C(r) e' a (r),
dr dr

(15)

e '~a'+'(r) =—S'+ C(r)+ C(r)S' ' e' a (r) —— C(r) e ' a'+'(r) . (16)

Equations (15) and (16) have to be solved in con-

junction with the boundary conditions.

a(00)=1,
a'+'(o)=o, a'+'(

(17)

where t is the total t matrix and t' ' is the corre-
sponding one for the homogeneous equation (V=o),
i.e.,

t'0'= —.(1—e' S' 'e' ) .
21

I

Of course the original equations (7) and (8) also
satisfy the above boundary conditions.

Equations (15) and (16) with the conditions (17)
and (18) can be solved analytically if we ignore or-
dering effects, namely if we set the commutator

p
dr r'

which we believe to be related to the sudden approx-
imation. We thus find
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a(r)=e ' exp[i[C(r) —C]]e
iCT(+). ~ e, —

(p) ic(r) —ic(r) —
(p)]

2L

Xe —e'

C=C(r =ao) .

Thus

a'+'(~ ) =~Lr r"']—

(19)

(20)

However, since the matrix e '—corresponds to a
physical process, namely the transition operator for
pure Coulomb excitation at half the strength [see
Eq. (24)], we do not need to deal explicitly with the
EW transformation in our analysis, as we show
below.

IV. THE TRANSMISSION MATRIX
AND THE FLUCTUATION

CROSS SECTIONS

and finally

IO.

[S(o) —~IS (o) —
]

2L
(21)

1 —e' e '—S' 'e '—e'
1Tt=-

2L
(22)

Equation (23) is the principal result of this section.
It is interesting to observe that in the limit of pure
Coulomb excitation, S' '=1, the S matrix becomes
exactly the one obtained by Alder and Winther in
the sudden limit, namely

SAW eioe —2iceio (24)

Approximation (13) has been used previously in a
more restricted sense and was found to give results

quite close to the coupled channel calculations. '

We call the above approximation the on-shell plus
off-shell corrections method. '

We shall discuss the compound and fusion cross
sections at energies higher than but close to the bar-
rier. We thus feel comfortable in ignoring the
short-range nuclear channel-channel coupling and
take S' ' to be diagonal.

With S' ' diagonal, Eq. (23) written as
~ ~

S[0] e ice i~Sei~e rc

supplies a nice example of the Engelbrecht-
Weidenmuller (EW) transformation. ' The matrix
U=e'- diagonalizes e ' Se '~, in the sense that

U"e ' Se ' U=S' '

and also diagonalizes the transmission matrix given
in Eq. (2) in the sense that

U T U=1 —S' 'S =diagonal .

Therefore the total average S matrix can be identi-
fied through

1 —S
2L

(23)
S=e' e '—S' 'e '—e'~

In applying our results of the previous section, we
shall assume that several collective channels
(members of a rotational band of the deformed nu-

cleus) are strongly coupled, thus giving rise to non-

diagonal elements of the transmission matrix. We
also assume the presence of many more weakly cou-
pled channels. The totality of all the channels is as-
sumed to be very large so that TrT gal.

The transmission matrix, T, is obtained directly
from the average S matrix through Eq. (2). Using
our expression for S of Eq. (23) we obtain the Her-
mitian matrix

T=e ' e+'—T' e '—e' (26)

T'0'= 1 —S' ' S' ' . (27)

i(o —op)Xe (28)

The channel label y implies I lI,J) with l being the
orbital angular momentum, I the intrinsic spin of
the excited state, and J the total angular momentum
of the channel which is conserved and also the an-
gular momentum of the compound nucleus.

The diagonal elements, T, have a very simple
physical interpretation

(29)

Equation (29) demonstrates the fact that the flux
in the entrance channel is distributed among the
strongly coupled channels before fusion takes place.
Since the intermediate channels are not observed,
the transitions from the entrance channel to these
channels is described by the factors ~(e

'—
) r ~

which are the usual inelastic probabilities calculated
at half the value of the coupling strength.

If we further assume S' ' to be diagonal we ob-
tain for the element Tp

Tp = g(e+ )prTr (e )r
y
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Using the fact that the operator e '- is unitary
we can rewrite Eq. (29) as

(0) y ~
( -C)

~

2[T(0) T(0)]

r

k TrT' '

(35)

(30)

At above-barrier energies, the second term on the
right hand side of Eq. (30), which represents the
coupled-channels effects on the compound nucleus
transmission, is generally negative since the critical
angular momentum associated with the bare en-

trance channel transmission coefficient T~
' is

larger than that of the inelastic channels T& '. This
is clearly seen in the particular case of two channels
labeled 1 and 2,

T]] T'] ' ———
~

(e '-)]2'[T']"—T2 '],
T22 T2 + I

(e )(2 I
'[T] ' —T2"']

and the nondiagonal'elements

(31)

(32)

] 2 [( iC)
(

—iC) [T(0) T(0)]]

(33)

T e ] 2 [( ic) (
—ic) [T(0) T(0) ]]

(34)

Therefore the corrections to the compound nucleus
transmission coefficients due to channel coupling
are proportional to the differences between bare
transmission coefficients pertaining to different
channels. As functions of the angular momentum

(J), these differences correspond to narrow windows

centered close to the critical angular momentum for
fusion, /„.

The partial cross sections, cr~p(J) [Eq. (1)] that

appear in the Hauser-Feshbach expression for the
compound cross section are "windowlike" defined

by a centroid, J' ' and a width 6' '." As a conse-

quence of this localization of o' tI(J), the compound
cross section is completely specified by three fac-
tors: an overall phase-space factor (sin8) ', an os-
cillatory function given by -sin(2J' )0), and a
damping function I'(b' )8) which attains a max-
imum value of unity of 0=0. At not too large an-
gles, the above oscillations are quite conspicuous'
(though becoming increasingly damped for nonzero
final spin transitions).

Introducing the correction to J~ ' due to Coulomb
excitation, Eq. (30), would imply changing the sta-
tistical window function, cr' tI(J), into (to first order
in b, T),

If l„plP„ the term Tp 'hT would contribute
very little as a consequence of the fact that hT~
peaks at a value of J larger than l~,. Since

T."'aTp
TrT'0'

peaks at a value of J larger than that of o' tI(J), we
conclude that the correction to the statistical win-

dow, ' o'tI(J), arising from Coulomb excitation,
will result in an overall shift of its center of gravity
to lower values of J. Furthermore, the effective
width is increased, due to the increase in the dif-
fusivity of the surface, with the overall shape of the
window becoming more asymmetrical. These
changes in the characteristics of the partial cross
sections imply corresponding changes in the angular
distributions: (a) a smaller period of angle oscilla-
tions (usually encountered in zero-spin transitions),
(b) less damping with correspondingly larger coher-
ence angles, and (c) a smaller overall magnitude.
Owing to the shifting of the center of gravity of the
statistical window towards smaller J, we also expect
a smaller value of the total anisotropy,

(r t](0) —1o. t](]r/2)

Simple estimates of the changes in the angle period,
P~, and the anisotropy can be made in the sharp
cutoff and sudden limits, giving

V 45 &0 2
x~

4 (0) 2(J )

v 45 t]AR =— ~x0 (37)

where x0 2 is the average quadrupole strength
parameter in channel I3 (Ref. 7) (see below).

We should mention that the above esimates for
AP~ and b R could have been easily guessed by the
mere consideration of the average collective angular
momentum transferred in the Coulomb excitation
process. However, we believe that the above esti-
mates are only good for higher energies (see the
later discussion on the fusion cross section) and are
not quite valid for energies close to the barrier in
the exit channel. For such cases Eqs. (35) and (30)
for the corrections to o't](J) should be fully incor-
porated into existing Hauser-Feshbach codes in or-
der to obtain the changes in P and R. These calcu-
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T(0) (38)

lations are in progress. %e believe that the above
considerations concerning the changes in the period
of oscillation and more importantly, the anisotropy,
are quite relevant to studies of high-spin states in
which the target and/or residual nucleons is de-

formed.
For cases involving competition between direct

transitions dominated by Coulomb excitation and
compound transitions, the nondiagonal elements of
the transmission matrix, T p, would contribute the
second term of cr~p(J) [Eq. (1)]. Although these
cases involve small cross sections, we shall discuss
them for completeness. To lowest order in the
correction hT, we may keep just the first term of
Eq. (1). For P=a (compound elastic), the correc-
tion to the HF formula arising from Coulomb exci-
tation appears in the form of a reduction in the elas-
tic enhancement factor (for strong absorption, this
factor is -2). Thus

tional expression. Equations (38) and (39) are con-
sistent. Owing to multiple Coulomb excitation, the
channel-channel correlation present in the com-
pound elastic cross section, which gives rise to the
elastic enhancement factor of 2, is reduced. Howev-

er, part of the lost strength should appear as an
enhancement in the elastic cross sections Eq. (39).

Note that Eq. (39) is characteristic of heavy-ion
reactions. Generally there should be another factor,

AT
T(0)

a

inside the square bracket, which would cancel the
factor

ATp
T(0)

p

if the bare transmission coefficients T~
' and Tp

'

are equal. This would happen at high energy
and/or when a small energy loss is involved in the
transition.

For inelastic transitions involving large energy
losses, the fluctuation cross sections obtained from
Eq. (35) are

(r~p(J)= 1+ (o) o p(J) .a ATp (0)

Tp
(39)

Thus we obtain an enhancement over the conven-
I

V. THE FUSION CROSS SECTION

We turn now to the fusion cross section in chan-
nel a (the entrance channel with the two nuclei in
their ground states) defined in Eq. (4). Using our
result for T«given in Eq. (30) we obtain'

aF =
2 g (21+ 1)Tt0 2g (2—l + 1) g I

(e
'
')to, t'I [T-l,0 ~l', I ]k ka' 1 1'r@0

where the total angular momentum of the corn-

pound nucleus, J, is set equal to the orbital angular
momentum in the entrance channel, l, since the
ground state spins of the two nuclei are assumed to
be zero. Notice that l' could only have the values
permitted by the selection rule

g(21+1)Tt' ',
k

which in the sharp cutoff limit becomes

g (2l+ 1)Tt() ~
(I + 1)

k k~
(42)

/'+A, +/ =even, (41) where

where A, denotes the multipolarity of the transition.
At sub-barrier energies, the sum over /' in the

second term on the right-hand side of Eq. (40) has
to be evaluated very carefully since the difference

(Tt, o
—TI't )

(0)1 (0)1

is nonzero even for very small values of /. At
higher energies, the contribution of this difference
is centered about the critical angular momentum for
fusion in the entrance channel, i.e., the angular
momentum that specifies the value of

1/2

Since l'„' &&1 for heavy systems, even at energies
slightly higher than the barrier, e.g., for
"O+ '"Sm at

—1.1 M V, l,', '-25,
Ec

we expect that an approximate evaluation of the l'
sum involving consideration of the average value of
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TI p
—TI I would be adequate. The correction to

this approximation would be proportional to

XP 2

where xp 2 is the quadrupole strength parameter,
which is a small quantity for the systems studied so
far; for ' 0+ ' Sm considered above,

Xp

lcr

Therefore we use for Tip' and TI I' Hill-Wheeler
forms, with I appearing in TI'I" only through the
excitation energy, eI. Owing to the localization of
Tip —TI I in l space and the rather slow variation
of the reduced excitation probabilities within this l
range, we may perform the l sum in closed form,
obtaining for O.F the following three-parameter ex-

pression

2
( )

fico,R,
2E

In obtaining Eq. (43) we have assumed that the fre-

quency co, is the same in the different channels and
that it varies slowly with l.

It is interesting to note that at high energies,
E &Ec+Er, the above expression for crF

' reduces
to (), Ec

OF m'Rc 1—
E (44)

~E= 2 ~(e
'

)'ro, r'r I
~r .

I'I+0
(45)

The quantity AE can be evaluated in closed form, in
the sudden limit, giving

—(a)

bE-=E2+ R, (8(l))
2

16' 2p B(E2)t
225 g2 +

where hE is the average energy loss of the projectile
due to Coulomb excitation,

—(a)

x g Pr 8(lr)
I =0

R 2'(8(l ) )E'
X

Z 2Z 4e 4
P T

(46)

277
)&ln 1+exp (E Ec er—)—

Ace,

(43)

where

9 1 tan 'l 3 1
R (8)=—:1 — +—

2

which is a generalization of Wong's formula. In
Eq. (43), co, is the frequency of the inverted parabo-
la that approximates the fusion barrier and

—(a)

are the Coulomb excitation probabilities at half the
strength evaluated at an angle

1 tI9=2tan
l

with

'9I 1 'Qa '9y

lI 2 I„ l~,

The number of terms contributing to the I sum in

Eq. (43) is determined by the value of the coupling
strength xp 2. For a pure quadrupole rotor, the

—(a)

sum may be truncated at

v 45 (()
lmax 4

+0—+2

(47)

If one were to relax the sudden approximation
and include nonzero energy loss, several complica-
tions arise in the evaluation of bE. For a full dis-
cussion we refer the reader to Ref. 17.

Clearly at energies close to the barrier one should
use the more precise Eqs. (40) or (43). To exhibit
the energy dependence of the correction to the
fusion cross section, we have evaluated O.F ', Eqs.
(40) and (43) for the systems ' 0+ ' ' ' Sm.
The bare transmission coefficients were calculated
using a slightly modified approximation used re-
cently by Dethier and Stancu' in their study of the
fusion cross sections in light heavy-ion systems.
The modification introduced cuts off the Coulomb
"ear" that appears in the Dethier-Stancu approxi-
mation. The resulting transmission coefficients
were found to approximate the WKB expression
reasonably well. In our calculation of the coeffi-
cients we used for the ion-ion interaction the one re-
cently employed by Esbensen. This interaction is
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based on the proximity approximation and is quite
similar to the Christensen-Winther empirical poten-
tial'9 (see the caption to Fig. 1). All pertinent phys-
ical parameters were extracted from the Nuclear
Data Sheets. In our evaluation of the sum over I
[Eq. (40)] we have considered the contribution of
the 2+ in the case of ' Sm. In the cases of ' Sm
and ' Sm we have included the 4+ state with
reorientation as well. The 4+ state in ' 'Sm was

UJ

LLJo
CC
LLI

0
50

I 1

60 70
( IVIev)

80

X I 1+exp

FIG. 1. The percentage correction (reduction) in the
fusion cross section for the system ' O+ ' Sm. The full
curve is obtained from Eq. (40), the dashed one from Eq.
(43). In the calculation, we have included the 2+ state in
' 'Sm (e + ——O.S22 MeV). Other physical parameters

were extracted from the Nuclear Data Sheets. The ion-
ion potential employed is that of Ref. 6:

31~ 67RpRT
~~(&)=-

Rp+RT

found to contribute very little. Our results for the
percentage correction (loss in fusion) in the system
' 0+ ' Sm are shown in Fig. 1. For comparison,
we also show the results obtained with the general-
ized Wong formula, Eq. (43). It is clear from Fig. 1

that the percentage correction peaks at a value of
-6%%uo at an energy slightly below the barrier. Simi-
lar results were found for the ' 0+ ' Sm and
0 + Sm systems with maximum percentage

corrections of about 10%.
The rather large differences found between the

results obtained with the generalized Wong formu-
la, Eq. (43), and our more exact expression, Eq. (40),
at low energies arise chiefly from the different ap-
proximations to the barrier used in these expres-
sions. The inverted parabolic barrier used in the
Wong expression yields a transmission coefficient
which falls off more slowly with energy. The loss
of energy due to excitation is then less important in
inhibiting fusion and the percentage reduction of
the fusion cross section is smaller. The neglect of
the angular momentum dispersion (l dispersion) em-

ployed in the derivation of the generalized Wong
expression was found to be a good approximation in
the calculations performed. Comparisons were
made using the transmission coefficient resulting
from an inverted parabolic barrier in the more exact
expression, Eq. (40). The generalized Wong formu-
la was found to give a slightly higher percentage
reduction at energies below the barrier and a slight-
ly lower reduction above the barrier. In spite of its
lack of importance in the cases studied, we believe
that, in general, the dispersion in angular momen-
tum should be treated carefully at sub-barrier ener-
gies.

In this case, it is possible that the dominant con-
tribution to the correction comes from terms like

X [(r —Rp —Rr —0.29)/0. 63]J
' (MeV)

with

Rp T ——1.233Ap T'

—0.98Ap T
1~3 (fm)

and Ap T the projectile and target mass numbers. For
the transmission coefficients appearing in Eq. (40) we
used an approximation (Ref. 18) based on constructing
a barrier composed of half a parabola on the inner side
(obtained from the potential above) and a Coulomb po-
tential on the outer side. To reduce the effect of the re-
sulting Coulomb "ear," we have cut it off. The re-
duced Coulomb excitation probabilities that appear in
Eq. (40) were evaluated using the explicit form of the
coupling matrix C of Ref. 12.

(0)I (0)1 (0)$
Tl, o

—Tl —I,I = —Tl —z, i ~

yielding an enhancement rather than a reduction of
the fusion cross section. At these energies, an
enhancement of the fusion cross section for de-
formed systems is expected. In the cases studied in
the present paper, however, the energy loss, rather
than the I' dispersion, was found to be the dominant
factor. The introduction of the dynamical deforma-
tion effects always led to a reduction of op '. This
result is in part consistent with the conclusions
reached in, e.g., Ref. 5. The observed enhancement
of o.F

' must then be a result of the static effects of
deformation. In our model these effects could be
accounted for by performing equivalent spheres cal-
culations of the bare transmission coefficients, T& '.
Such a calculation would presumably enhance the
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effect of the I' dispersion.
What is interesting about our formulae, Eqs. (40)

and (43), is the clear separation between static de-
formation effects, which enter through T& ', and the
dynamic deformation effects related primarily to
the present of the reduced transition probabilities.

In conclusion, we have developed a simple model

which accounts for some of the effects of multiple
Coulomb excitation of the heavy ion statistical,
compound nucleus cross sections. More generally,
we have supplied an indirect support for the validi-

ty of the generalized statistical theory of compound
nucleus reactions in heavy ions. We have accom-
plished this in part by showing that within certain
reasonable approximations, our formulae reduce to
expressions which have very simple physical inter-
pretations. A fuller account of the results presented
in this paper, together with further developments,
will be published later.
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