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The proximity potential is applied to the coupled-channels analysis of the inelastic
scattering of heavy ions. It is shown that a suitably chosen proximity potential accurately
reproduces the effect of a folding-model interaction between spherical nuclei. The heavy-
ion Woods-Saxon potential is then considered as the result of a folding procedure and
presented as an optional form for a proximity type potential. An analysis of the collision
between spherical and deformed nuclei shows that, while the proximity potential well

reproduces the folding model for this system, the proximity and center-line potentials lead
to the extraction of significantly different values of high-multipole deformations. Formu-
las appropriate to the proximity interaction between two deformed nuclei are also present-
ed.

NUCLEAR REACTIONS "Sm(' 0, ' 0')' Sm, calculated
o(0+,2+,4+,6+) in coupled channels with deformed proximity

potential; determined P6.

I. INTRODUCTION

The usual treatment of the deformed optical
model for analysis of the inelastic scattering of
heavy ions involves a potential which is a function
of the distance between the nuclear surfaces along a
line connecting the nuclear centers. Several au-

thors, ' using various approaches, have shown
that this "center-line potential" is geometrically
inadequate, especially if either or both of the nu-

clear surfaces have high-multipole deformations.
Yet, despite its inadequacy, the center-line potential
continues to be commonly used. This may be be-

cause the center-line potential works fairly well for
the most commonly measured quadrupole deforma-
tion parameters, and none of the more sophisticated
procedures are perceived as being either definitive

(they still contain serious geometrical approxima-
tions) or easily related to the Woods-Saxon poten-
tial.

We have adapted the proximity potential"' to
give an improved treatment of the interaction be-
tween deformed nuclei. In this paper we work out a
quantitatively adequate form of the deformed prox-
imity potential, suitable for use with a coupled-
channels reaction code in the analysis of inelastic
scattering data above the Coulomb barrier. A ma-

jor objective is to be able to extract reliably higher
deformed multipole moments from such data. The
deformed potential calculated in the folding model
will serve as a geometrically exact benchmark to
evaluate the accuracy of the proximity potential
prescriptions.

We begin in Sec. II with a discussion of the
spherical proximity potential and its relationship to
the folding model. Analytical results are presented
to illuminate the general form of the proximity po-
tential and its relationship to the Woods-Saxon po-
tential. Section III contains the development of the
proximity potential for a spherical projectile on a
deformed target and an evaluation of its validity. A
set of inelastic scattering data is reanalyzed to
demonstrate the importance of the present
geometric treatment. In Sec. IV we consider the use
of the proximity potential when both nuclei in-
volved in the collision are deformed. Section V re-
lates the present treatment to previous work and
presents conclusions.

II. THE SPHERICAL PROXIMITY POTENTIAL
AND THE FOLDING-MODEL POTENTIAL

The proximity potential as discussed by Blocki
et al. and by Brink and Stancu is based on a
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Thomas-Fermi treatment of the energy density of
the ion-ion system. However we are interested in
the tail of the potential for inelastic scattering
analysis, and it is in just that region that the
Thomas-Fermi method breaks down. Thus we will
frame our development in terms of a model which
should have its greatest validity in the tail of the
potential, namely, the folding model. We are not
particularly interested in the normalization of the
basic ingredients of the folding model since the ob-

ject of our consideration is the geometry of the de-

formed heavy-ion potential. The normalization can
be obtained from a fit to data. In this section we
assume that both the projectile and target are spher-
ical. We take a single folding approach in which

the nucleon-projectile optical potential (obtained

empirically} is folded over the density of the target.
We have for the folded potential VF

Vp(R)= I d r Vp(r —R)pr(r),

where Vp(r —R} is the nucleon-projectile real opti-
cal potential and p(r } is the target density (see Fig.
1). This integral may be evaluated exactly on a
computer. To obtain its proximity form we follow

the approach taken by Brink and Stancu in the re-

lated Thomas-Fermi problem. Owing to spherical

symmetry Eq. (1} can be reduced to a two-
dimerisional integral over rT and rp (Fig. 2)

2K
V(R) = rr drr rp drp Vp(rp —Rp)pr(rT —Rr)

R

(2)

with the limits of integration

rr+rp)R ) j rtt rpi—
From this form Brink and Stancu obtain a two-

term proximity potential

RTRp
Vp2(R )=2m'

RT+Rp+S

FIG. 2. Coordinates for a two-dimensional integral in
the folding model.

with

e„(S)=I t"e(t)dt

and, in our folding-potential case,

e(t) = I Vs(u)p(t —u }du .

(4)

RTRp
Vpi(R)=2m' eo(S) .

RT+RP
(6)

If we assume that both the nucleon-projectile po-
tential and the target density have the same Fermi
function form (with the same diffuseness a)

PVs(rz)=.
1+exp[(rr R, )/a] —'

p(rp )= PT

1+exp[(rp Rp)la]—
then the integral in (5) is equal to

e(t) = V,'p',
exp(t/a ) —1

Brink suggested this form for the one-term prox-
imity version of the folding potential Eq. (6), which
becomes

In (3), S is the distance between the nuclear surfaces

along the line between the centers. This form con-

tains the next correction for finite curvature, in

comparison to the more approximate form of
Blocki et al.,

RTRP
Vp)(R)=2m Vppr

RT+RP

T

FIG. 1. Coordinates and volume element for the fold-

ing potential.

(10)R RT Rp exp(t/Q —)—
We have adapted Eq. (9) also for the two-term prox-
imity potential, Eq. (3), and obtain
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o RpRp tdt RT+Rt I; dtV»(R) =2~v~pT
R " "T—~p exp(t/A) —1 2RTRI " "r— p—exp(t/g) —1

+

To test the validity of the proximity potential ap-
proximation we have made comparisons of the one-
and two-term proximity potentials generated by
Eqs. (10) and (11) with exact results obtained by nu-
merical folding on a computer. Five representative
cases are taken, spanning the region of heavy-ion re-
actions 16p + 16p 16p +58Ni 16p +208pb

Ni+ Pb, and Pb+ Pb. In all cases ro is set
to 1.2 and a to 0.65 for both target and projectile
Woods-Saxon densities.

The results seen in Fig. 3 are conclusive: The
proximity potential in its two-term form is in excel-
lent agreement with the folding model for all
heavy-ion reactions, not only in shape, but in abso-
lute magnitude. Furthermore, with a slightly in-
creased normalization, the one-term proximity po-
tential is also essentially identical to the folding

I

model. Brink and Stancu make the statement that
the one-term proximity potential should be a less
accurate approximation in the folding model than
in their extended Thomas-Fermi case, but in fact
our accuracy is comparable to their case. The two-
term expression is even more suited to the folding
model than to the more complicated angle depen-
dent Thomas-Fermi case of Brink and Stancu.

While the folded potential is an attractive geome-
trical model for describing the real part of the
heavy-ion optical potential, the fact is that for his-
torical reasons the phenomenological potential most
used in analyzing heavy-ion data has been the
Woods-Saxon potential. It is amusing to do the in-
verse proximity potential problem, to obtain the
form of the single nucleon density and single nu-
cleon optical potential, which, when folded, would

IOO I I l I

FOLDING MODEL

IO—

O.I—

0.0 I

4 5 6 7 8 9 IO I I I2 I3 l4 l5 l6 l7 l8 l9 20

FIG. 3. Comparison of proximity and folding model calculations of the ion-ion potential. Both Vo and po are normal-
ized to unity.
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yield a %oods-Saxon potential in the proximity ap-
proximation. %e will limit ourselves to the one-
term proximity potential which is analytically tract-
able. Then we assume a proximity potential solu-
tion of the form

RTRp wVpt(R)=2m. eo (&)
RT+Rp

f(u)f(t —u)du

C expt/a

aVO po (1+exp(t/a))
We may solve for f(x) using Fourier transforms
and the convolution theorem (Appendix A), to ob-
tain

RTRp=2'
RT+Rp R —RT —Rp

1 Cf(x)=
V8' W'

oPo

1/4
1 2

5-2

RpRp
=2m e(t)dt, (12)

RT+Rp R —RT —Rp

where eo (S) is a universal function of the ion-ion

separation

S=R —RT —Rp .

The function e (t) that satisfies (12) may immediate-

ly be written down as the normalized first deriva-
tive of a Fermi (Woods-Saxon) function

C exp(t/a ) (13)
a (1+exp(t/a))

Thus the universal slab on slab force is a surface
force for the Woods-Saxon potential. To find the
radial forms f„(r)and fq(r ) for the density and po-
tential which generate e (t),

V (r)=Vo f„(r),
p (r)=po f~(r),

we rewrite Eq. (5) in the form

C exp(t/a)et=
a (1+exp(t/a))'

= V p f f„(u)f(t —u)du .

(14)

f„(x) =fp(x) =f(x),
yielding the nonlinear integral equation

Obviously one solution of this integral equation is
to take f~(r) as a surface peaked function of the
same form as e(t) and f„asa 5 function. This cor-
responds to a 5 shell potential folded over a surface
nucleon density. Of course the converse, a 5 shell
density folded over a surface nucleon potential, is
also a solution. However a more interesting solu-
tion is one in which we require the same functional
form

r

X f ~u[csch(u)]'~ cos du .
0 KQ

&f, for convenience, we let

2yW W

C=
+2

1/4
1 2f(x)=

Xm

X f &'u [csch(u)]'~'cos —du,
0 ma

Vo po a exp(t/a)
(1-(-exp(t /a) )2

=Vo po f f(u)f(t —u)du,

yW W

Vw(~) 2
T P 0 Po 2 l

~ r +&p E ( l.+exp(S/a ) )

(22)

The physical implication of these results is of in-
terest in interpreting the successful use of the
Woods-Saxon parametrization in fitting heavy-ion
data. What generates a Woods-Saxon potential in
the one-term proximity approximation is the fold-
ing of a surface nucleon density with a surface nu-
cleon potential, both of which have the radial form
of Eq. (21). Tlus universal surface function is
evaluated numerically and plotted in Fig. 4 as a
function of x/a. Also plotted in Fig. 4 are approxi-
mate derivative Fermi function representations of
the surface term a'=1/1. 4 and a'=a/1. 33 where a
is the diffusivity of the Woods-Saxon potential gen-
erated from the folding of these surface forms.
Thus a Woods-Saxon potential of diffusivity a im-
plies effective surface densities of -0.7a in the two
ions. This makes it hard to understand the use of
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FIG. 5. Geometry needed for the proximity interac-
tion between spherical and deformed nuclei.
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FIG. 4. Comparison of an arbitrarily normalized sur-

face function f(s/a}, Eq. (24}, with derivative Woods-

Saxon functions of s/a'.

f(R —Rp —RT(8) )= 1 +exp

—]
R —Rp —RT(8)

real potential diffusivities of -0.5 in analysis of
heavy-ion data when the diffusivity of finite nuclei
1s —0.6.

III. PROXIMITY POTENTIAL FOR THE
INTERACTION BETWEEN A DEFORMED

AND A SPHERICAL NUCLEUS

The geometry associated with the use of the prox-
imity interaction between these nuclei is shown in

Fig. 5. The interaction is a function of the distance
S between the surfaces along the shortest line con-

necting them, and of the radii of curvature at the

opposite ends of this line. For given values of R
and 8, the angle n in Fig. 5 is obtained by solving

the equation

cos(8 —a ) sin(8 —a ) 1+R,(a)

Suppose we have a spherical projectile of radius

Rp, and an axially symmetric target whose shape is
given by

where

RT(a ) = (dRT Ida ) .

RT(8)=ro[1+ +PI Fi (cos8)] .

The center-line prescription takes the interaction be-

tween these two nuclei to be of the form

Equation (25) expresses the condition that the line
of minimum length S is perpendicular to both sur-
faces. In general, (25) must be solved numerically.
Once n has been determined, we get S from

S=[R +RT (a ) 2RRTcos(B —a—)]'i —Rp .
V(R 8 ) = Vof(R Rp —R z'(8 ))—(24) (26)

where f is a radial form factor, often taken to be a
Woods-Saxon shape

The principal radii of curvature of the target sur-

face at a point whose polar angle is a are given by
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[Rr'(a)+ [RT(a)1']'"
R, (a)=

RT'(a )+2[RT(a )]'—RT(a )R "(a )

Rr(a)sina[Rr (a)+[Rr(a)] ]'/
R2(a) =

RT(a )cosa —Rr(a )sina

(see Appendix B for derivations). The principal radii of curvature of the gap between the nuclei are then

R, (a }R,
R)(a)+Rp

(27a)

(27b)

R2(a)Rp

R2(a)+Rp

„(s)
respectively, so the one-term proximity interaction between the nuclei shown in Fig. 5 is

1/2 1/2R ((a )Rp Rq(a )Rp
Vp i(R, O) =2m.

R ) (a )+Rp R2(a)+Rp
(28)

[cf. Eq. (9)].
To find a two-term generalization of (28), we compare the two-term and one-term forms of the spherical

proximity potential [Eqs. (6) and (9)]. This suggests that a reasonable form for a deformed Vp2(R, O) would be

Ri(a)Rp"""='
R,(.)+R,+S

I/2
R ( )R

I /2

R2(a)+Rp+S

Ri(a)+Rp R2(a)+Rp
x eo(s)+ E~(s) ~o(s)+ e~(s)

2R( a Rp 2R2 a Rp

1/2

(29)

In (28) and (29), eo(S) and e~(S) are the one-dimensional slab-on-slab functions given by (4), (5), and (9).
Up to now we have only really treated the real part of the optical potential. One does not expect the folding

picture to have much validity for the imaginary potential. We will assume, however, that the geometrical pic-
ture of the deformed proximity potential can be taken over to the imaginary potential in conjunction with a
Woods-Saxon or other empirical potential for the slab-on-slab radial form. As we saw in Sec. II, the Woods-
Saxon potential form can be seen to arise out of a surface-surface folding. This picture does not seem geome-

trically unreasonable for the generation of a heavy-ion imaginary potential. Adopting a one-term proximity
potential treatment of the deformed imaginary potential we obtain

R, (a)Rp R,(a)Rp""'= '"
R, (a)+Rp R, (a)+Rp

1/2
RT+Rp
RpRg

R i (a )R p(a )= 8'(S)
(R )(a)+Rp)(R2(a)+Rp)

1/2
(Rr+Rp)

RT
(30)

where W(S) is any empirical potential form and R T is the spherical radius of the deformed radius R t(a ).
This potential form might also be utilized for the real potential if one did not want to abandon empirical

Woods-Saxon potentials, but nevertheless wanted to provide a geometrically more correct treatment of defor-
mation.

As we did in Sec. II we would like to use the folding model as a benchmark to help us understand the prox-
imity potential. We will evaluate the angle dependent folding potential by folding a spherical Woods-Saxon
projectile density over a deformed Woods-Saxon target density with a 5 function interaction
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fR—r[ —R~1+exp

3
pJ

r R—r(a )
1+exp

(31)

V~(R)=2m I sin0d0 Yp(0, 0)V(R,O) . (32)

These components are evaluated on a computer us-
ing 8 Gauss points per quadrant.

To investigate various aspects of the deformed
proximity potential we have chosen a case for
which data exist and for which a coupled-channels
analysis has been performed: 72 MeV ' 0+' Sm.
Geometrically, this is a typical case, a light heavy-
ion projectile on a more massive deformed target.

Figure 7 shows a comparison of optical com-
ponents generated by the folding model and by the
one-term and two-term proximity potentials. The
two-term proximity potential is practically indistin-

FIG. 6. Coordinate system for folding spherical and
deformed nuclei using a zero-range potential.

Coordinates are shown in Fig. 6. The small effect
of the a dependent density falling off radially rather
than perpendicularly to the surface will be ignored
in the folding calculations.

For comparison we will calculate the angular
momentum components of the angle dependent op-
tical potentials for both folded and proximity po-
tentials

guishable from the folding model both in radial
shape of all the components and in absolute magni-
tude. The one-term proximity potential is slightly
lower in magnitude for all components.

Since the Vp component is ultimately fit to elastic
data, the ratio of computed components to the l =0
component must be reliably calculated for reliable
extraction of multipole moments. Figure 8 shows

. these ratios indicating that the one-term proximity
potential is as good or better than the two-term
proximity when renormalized. We will thus only
use the one-term proximity potential in the follow-

ing calculations.
The crucial point of this whole development is

how the proximity model treatment differs from the
center-line prescription when higher multipole corn-
ponents are extracted. We have plotted in Fig. 9 the
ratios of angular momentum components to the real
monopole potential using the center-line prescrip-
tion and the Woods-Saxon proximity potential of
Eq. (19). Assuming the Woods-Saxon proximity
potential has the more correct relative geometry for
the given deformation lengths (p2RN ——1.65,
P4R& ——0.29), we find that V4/Vp and Vs/Vp are
significantly overpredicted in the center-line
prescription for the p4R~ value of 0.29, implying a
true value somewhat larger. En fact there is a
discrepancy between this value obtained in Kim's
heavy-ion analysis and the values of p4R =0.52
and 0.53 from electron scattering and Coulomb ex-
citation, respectively. If we keep p2RN at 1.65 and
set p4R to 0.52 then we obtain the ratios seen in

Fig. 10 for the Woods-Saxon proximity model
which are very close to the ratios of the center-line
prescription in Fig. 9 probed by Kim s analysis.

To test these observations further, coupled-
channels calculations have been performed for this
case using the coupled-channels code @Ulcc. In
Fig. 11 the solid line is a repetition of Kim s origi-
nal calculation, using the center-line prescription
and PqR& 1.65, P4RN 0.2——9, which fits ——the
data. The dotted line is a Woods-Saxon proximity
potential calculation with the same parameters ex-
cept that the real and imaginary potential strengths
are reduced by 6% to fit the elastic scattering. The
dashed line is a Woods-Saxon proximity potential
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FIG. 7. Comparison of optical model components generated in the folding model and in the one- and two-term prox-

imity models. Vo and po have been set to unity, while the ro and a for the densities are the same as the optical model

parameters of Ref. 7.

calculation with p4R& ——0.52 and all other param-
eters the same as the previous. Clearly the proximi-

ty potential calculation with P4R~ ——0.52 corre-
sponds better to the center-line calculation of

P4R~ ——0.29 and thus to the data. Using the more
correct proximity prescription has caused the
discrepancy with the electron scattering and
Coulomb excitation results to disappear.

IV. PROXIMITY POTENTIAL FOR THE INTERACTION
BETWEEN TWO AXIALLY SYMMETRIC DEFORMED NUCLEI

We consider only the orientation degrees of freedom of the colliding nuclei. Let n ~
and n2 be unit vectors

along the symmetry axes of the two nuclei, with polar coordinates 8~$& and 82/2. The relative vector R,
from the mass center of nucleus l to the mass center of nucleus 2, has polar coordinates 8$R. The total wave
function can be written in the form

%(8&$1,82/2', 8$R)= g Ul, l,sv(R)I[Y '(8igi)Y (8202)]'Y'(80)lo. (33)

A single term in (33) corresponds to a state in which the nuclei have angular momenta I& and Iz, channel spin
S, relative orbital angular momentum I, and the system has total angular momentum J. The Schrodinger
equation can be expressed as a set of coupled ordinary differential equations for the radial functions
Uz I ziJ(R). The coupling matrix elements in this set of equations are

I I

~(R)=
& I [Y '(8idt) Y '(8202)]'Y'(80) Io I

~(8&4»8242~80R)
I I [Y '(8tdi) Y '(8202)] Y (80) lo)

(34)
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FIG. 8. Ratios of L =2,4, 6 components to the L =0
component of the various calculations in Fig. 7.

0.0 I
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I
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I
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I
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r

FIG. 9. Comparison of ratios of L =2,4, 6 com-
ponents of the %oods-Saxon potential of Ref. 7 to the
L =0 component using the center-line prescription and
the one-term proximity prescription.

Here Vis the interaction between the nuclei and the integrations are over 8i,gi, 8z, ~~&, 8,~~ for fixed0 ~~ f r fixed'.
M(R) in (34) depends upon nine quantum numbers Ii,I2,S,l,Ii,Iz,S', I', and J. Straightforward angular

momentum recoupling allows us to express it in terms of simpler functions ml I I (R):
1/2

(2l + 1)(2l'+ 1)(2Ii +1)(2Ii + 1)(2I2+ 1)(2I2 + i )

(4 )'(2L+1)(2L, +1)(2L,+1}L )L2L

&& [(SI4(SI )z I
(SS'4 (I~')I. ]o[(IiI2)s(IiI2 )s'

I
(IiI i )I. (I2I2 4,, ]I.

x (ll'00
~

L 0)(Ii I'i 00
I
L i 0)(I2I200

~

Lq0) mL, ,r.,l (R), (35a)

mL, I L, (R)=—f sin8d8dp sin8id8idgi sin8zd82dg2V(8igi, 82/2, 8$R)
1 2

X {[1' '(8,P )& '(8,P )]'&'(8$)I,'. (35b)

Here L1, L2, and L play the roles of "angular momentum transfers" to nuclei 1, 2, and the relative motion,
respectively. We expect V in (35b) to be unchanged if the directions of n i, n2, and R are all reversed, and this
has the consequence that mL, I I (R) vanishes unless L i+L2 L is even. If V is—unchanged when ni is re-

laced by n i, then (3—5b) vanishes unless L i is even, and similarly for n2 and L2.
We can use the rotational invariance of V to reduce the six-dimensional integral of (35b) to a three-

dimensional integral. Every configuration (ni, n&, R ) can be obtained by applying a rigid-body rotation to a
"reference" configuration (n', , n2, Z) in which R points along the z axis and n'i lies in the x-z plane with
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FIG. 10. As in Fig. 9 with P4R4=0. 52.

(& )„)0 (see Fi . 12). The polar coordinates in this reference configuration are (8'~, 0;8

&pal,

OOR). Let (tippy)
bethe Euler angles of the rotation from (nI, nz, z) to (n&, n2, R). Then we can use the six angles
(&,p, ,H't, 82, tIIq) as our six integration variables instead of (Htp&, 82/q', 8$). The advantage of this choice is
that the spherically symmetric integrand of (35b) is independent of (a/3y), so that the (aPy) integration can be

2.done immediately and simply yields a factor of Sn:.
L) , L2

mL, L (R)=8m f sinH'&dH'~ sinHzdHzdgzV(8'&0;82&&, OOR)I[F '(8'i, O)F '(Hefts)] F (00)loI 2

=( i) f—stnH&dH't stn82d82dgzV(8&0;Hzg2, 00R)[F '(8', 0)F '(82/2)]p

[m( 2L, +1)( 2L, +I)]'"g( LL,m —m ~LO) f "KdK s 82d82d~, p(8&)d '~o(8, )

X f dPze 'V(8&0;Hz$200R) .

(35c)

The reduced rotation matrices used in (35c) are defined by

' 2L+m —2n

p(8)= ( —1)" ' ' ' cos—L![(L—m)!(L +m)!]'~ 8
n!(L +m n)!(L n—)!(n —m—)! 2

8
sm

2

'2n —m

=(—1) d, p(8) (36a)

and are related to the spherical harmonies by
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Pp

Xp

Rz
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FIG. 12. The nuclei in a "reference configuration. " R
I

lies along the z axis and n~ is in the x-z plane with
(n', )„&O.

' 1/2

& (8 $)=t d (8)e' ~
7T

FIG. 13. The two nuclei, shown in the special case in
which P~ ——0. P~ and P~ are at opposite ends of the shor-
test line connecting the two surfaces.

(36b)

Because the nuclei are axially symmetric, Vis an even function of Pz. The fact that L t+L2 L is even then—
allows us to rewrite (35c) as

.L)+L2—L (L )Lpm —m
~

L 0)
mL, I (R)=i ' ' [16m(2Lt+1)(2L2+1)]' g ( —1)

]+5m,o

1T I.
l J2

&& sin8td8~ sin8zd8zd~ o(8&)d o(8z)

X I diaz cosm$2 V(8,0;82$& , OOR) . ' (37)

Note that we have dropped the primes on the integration variables in (37).
To evaluate the proximity potential V in the integrand of (37), we must be able to determine the points P~

and P2 on the surfaces of the two nuclei at opposite ends of the shortest line connecting the surfaces. Figure
13 shows the geometry of the problem, in the special case in which P2

——0. Note that the line connecting P~
and P2 is perpendicular to both surfaces and, because of the axial symmetry, passes through both axes n

&
and

n2. P& and P2 must be found by an iterative process. %e have found that the following scheme converges
rapidly:
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(1) Choose a value for a 1 and calculate sl and yl using the formulas

S) =
r~ cosa~ —r~ sina&

dr ]
r) =

da&
(38a)

r( sina )
y& ——arctan

ri cosa' —si
(38b)

This determines a cone whose axis is n 1 and whose generators all pierce surface 1 at a right angle.
(2) Find the generator that intersects nz, the axis of surface 2. Its azimuthal angle, in the body-fixed coordi-

nate system of nucleus 1, is given by

5& ——arctan
uu +u (u'+U' —w')'"
uw+U(u +U —w )'

where

u—:(s I
—R cos81) sin82 sin/2,

v: [R sin8—2 cospz+s I (sin8I cos8z —cos81 sin82 cospz)],

w =R sin81 sin8z sin/2 cotyl .

The distance between the axes along this generator is

$1 SII181 Sin/2

siny1 (sin51 cosgz —cos81 cos51 sin/2) —cosyl sin81 sin/2

and the intersection with n2 occurs at a distance

sing& sin6&
S2 —— . . t

sin8z sin/2

from the center of nucleus 2, at an angle yz given by

yz ——arccos((cos81 sinyl cos51+sin81 cosy& ) sin82 Cospz+Sinyl sin51 sin8z sin/2

+( —sin8, sinyl cos51+cos8, cosy&) cos8z ) .

(39a)

(39b)

(3) If the original choice for a I was correct, then sz and yz calculated in (39) would be related parametrical-
ly to an angle az by a set of equations corresponding to (37), since the generator constructed perpendicular to
surface 1 would also be perpendicular to surface 2. If the sz and yz given by (39) are not related in this way, a
new choice of a I is made and steps 1 and 2 are repeated. After two passes through this procedure, interpola-
tion can be used to guide further choices of a l.

Once we have determined a I and az (equivalently PI and Pz of Fig. 13), we can calculate the four-principal
radii of curvature at these points (Ref. 27)

[r 2+ (r & )2]3/2

II 2 2r; r; —2(r; ) r;— (40a)

(i =1,2)

r; sina;[r; +(r ) ]'~
r

r; cosa; —r; sana;
(40b)

Then the product of the principal radii of curvatures of the gap between the surfaces is given by

8 ))R (2R2)822
R)Rp ——

(R I I +Rzl )(R Iz+Rzz)+sin 11 (R 1 1
—R Iz)(R21 —Rzz)

(41a)
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Here g is the angle between the planes defined by the line P&Pz and the two symmetry axes n ~, nz. It is given

by

P =arccos
cos0& cos8z+sin8& sinHz cosf+cosp) cospz

siny& siny2
(41b)

Finally, the distance between I'& and P2 is

sina
&

d =t —rj —.
slnp )

sinai—rp
Sin/2

This determines all the information needed to evaluate the proximity potential V for the configuration

(0&0;Ozgz, OOR). We can then perform the integration (37) and use (35a) to calculate the coupling matrix ele-

ment M(R).

V. RELATION TO PREVIOUS %ORK
AND CONCLUSIONS

' 1/2
2G(a) = f g(u) cos(uu)du, (Al)

We have mentioned three previous improved
treatments of the interaction of a spherical projec-
tile on a deformed target. The approach of Moffa
et al. ' was a full folding of a spherical density with

a deformed density, but the deformation of the den-

sity was only taken to first order as was appropriate
for the vibrational nuclei which they considered.
Hendrie's work considered the nuclei as touching,
for his correction to the multipole moments gen-

erated by an angular shift relative to the center-line

prescription. However he did not include effects of
the angular change in the force due to the changing
radius of curvature. Randrup and Vaagen' showed

the importance of the local radius of curvature as
well as the effective angular shift, but considered
the effect for only the Pz deformation and for only

one separation of the two nuclei. Furthermore,
their approximations for the radii of curvature,
while qualitatively instructive, are not quantitative-

ly useful for extracting multipole moments. For ex-

ample, at 0=0, these author's first-order approxi-
mation for the local radius of curvature R &(0 =0)
yidds 0.62168 for their parameters while our exact
value is 0.8050R for the same parameters.

In conclusion we feel that we have presented a
quantitatively adequate treatment of the deformed

optical potential for extraction of multipole mo-

ments from heavy-ion induced inelastic scattering
on deformed nuclei.

APPENDIX A

' 1/2
2

g(X)= f G(a) cos(aX)da . (A2)

We wish to solve

C exp(x/a) C z x
W W sec

aVO po [I+exp(x/a)t 4aVo po

=f f(u)f (x —u)du .

(A3)

If we define the convolution of g with itself as

00

g (u)g (x —u)du,v'2~ (A4!

T tg*g I =(Ttg I
)' (A5)

If we write Eq. (A3)

C 2 x
W Wv 2' 4aVO po

then the following convolution theorem holds for
the Fourier transforms

We define the following normalization for the
Fourier cosine transformations: then we have

f f (u)f (x —u)du, (A6)
2K ~&
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(T{fI}2=T ~ ~ sech
2n 4aVO po

2 ~ 1 C
m' o V 2n 4pP'o po

)& sech
2a

cos(yx)dx

1 C oo

sech
yW IY 0

x dxicos 2ay
2a 2a

(A7)

FIG. 14. {a) A surface of revolution whose symmetry

axis is the z axis. A line is drawn normal to the surface

at P. {b) The surface has been rotated about the x axis
until the normal line is vertical.

' 1/2
1

2773

C
yW W

o Po

v'm. ay (csch(array) )'~2,

(TIf I) = ~ ~may csch(may),
1 C

yW W

'1/4 .

(AS)

(A9)

and (A2) implies
' 1/2

2f(x)=
1/4 i ~ 1/2

J &n ya {csch(m. ay) }'~2cos(xy)dy,
2m Vo po

(A10)

1/4 .

f(x)= -1 2

am

1/2

I ~u(csch(u) }' cos
VW W

XQ

Ka
(Al 1)

APPENDIX B

Figure 14(a) shows a surface of revolution whose
shape is specified by

z=f [(x'+y'}'"1

A plane tangent to the surface at P' is horizontal.
The equation of the rotated surface is

z costa —y sin~

=f[[x +(ycosco+zsinco) ]' I . (84)

=f(y) in the x =0 plane . (81)
It is now straightforward to calculate the partial
derivatives of z with respect to x and y at P':

Point P has Cartesian coordinates (O,y~,z~). The
angle co between the z axis and the normal to the
surface at P is given by

co =arctan{ f'(y, )) . —

Now rotate the surface counterclockwise about the
x axis through angle co. This will carry P into a
new point P' [see Fig. 14(b)] whose coordinates are

az az

By

8 z f'(yi}

yi I I+ [f'(yi }]'J'"

zi —yif'(yi }
cosco +y1 sinco =—

[ I+ [f'(yi }]'I'"
y i+zif'(y i }

y1 costs —z1 sin~ =
[1+[f'(yi }]']'" (83)

a'z f {yi)
ay', , (1+[f'{y,)]'}'" '

from which we calculate the two principal radii of
curvature at P' to be
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Ri ——

a2Z

2
pl

I l+ [f'(yi)]'l'"
f"(yi }

If we express the shape of the surface in Fig. 14(a}
in polar coordinates, we find that

r' cosa —r sinaJ &/»=
r sina+r cosa

R2 ——

a2Z

BX p~
2

yt I I+[f'(yi }l'l'"
f'(y))

(B5}

r"r —2(r') —r
[r'sina+r cosa]

If these expressions are substituted into (B5},we get

R~(a ) and Rz(a ) of (27).
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