
PHYSICAL REVIE% C VOLUME 26, NUMBER 5 NOVEMBER 1982

Proton scattering on A =92—116 nuclei with extended optical models
and the interacting boson approximation

E. Cereda, M. Pignanelli, and S. Micheletti
Istituto di Fisica dell'Universita di Milano, Milano, Italy

and Istituto Nazionale di Fisica Nucleare, Sezione dh' Milano, Milano, Italy

H. V. von Geramb
Universitat Hamburg, D-2000 Hamburg 50, West Germany

M. N. Harakeh
Kernfysiseh Versneller Instituut, Rjiksuniuersiteit Groningen, The Netherlands

R. De Leo, G. D'Erasmo, and A. Pantaleo
Istituto di Fisi'ca dell'Universita di Bari, Bari, Italy

and Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Bari, Italy
(Received 21 July 1982)

Differential cross sections for proton elastic and inelastic scattering have been measured
at Ep =22.3 MeV for 14 nuclei with 92 &A (116. The energy dependence has been studied

between 10 and 35 MeV, considering also reaction cross sections at lower incident energies.
The long standing sub-Coulomb optical model anomalies are thereby eliminated. Nuclear
structure effects found in the analysis of elastic scattering are identified with strong cou-

plings between ground and one-phonon states. These couplings are satisfactorily described

by traditional collective models, using deformation parameters in agreement with those de-

duced from electromagnetic. data. The transitions to weakly excited states require a more
accurate spectroscopic description. Spectroscopic amplitudes taken from the interacting
boson model are used. The radial dependence of transition densities is derived from optical
model potentials.

NUCLEAR REACTIONS proton scattering on 2' ' ' 'ooMo, ' Ru,
io4, lo6, los, »oPd and 106, 110,112,116Cd E =22 3 MeV' on o4Pd

P ~

Ep ——10.25, 12.1, 15.0, 17.3, 22.3, 30.2, and 35.4 MeV. Measured o.(0 j;
enriched targets. Optical model and coupled channels analyses. Collec-
tive vibrational model, coupling parameters. Interacting boson s

approximation, form factors.

I. INTRODUCTION

The properties of the low-lying excited states of
even-even nuclei in the A=90—120 mass region
have been extensively studied for more than a de-
cade with Coulomb excitation and electron or nu-
cleon scattering. In the present measurements new
and more complete data on the energy and mass
dependence of proton scattering in the region of
mass-100 nuclei have been taken. These are used to
obtain a better understanding of some aspects of
this nuclear mass region which have been of interest
for some time, but are still not completely under-

stood.
The first concerns the behavior of the optical

model (OM) potentials. The anomalous increase of
the absorptive part of the OM potentials found by
Johnson et al. ' at sub-Coulomb incident energies
for the region of A, =100—110 is puzzling. In fact,
systematic studies of OM parameters, as well as of
microscopic OM potentials, show generally only
small variations due to shell effects and a smooth
behavior in energy and mass.

A second problem is connected with coupled
channels (CC) calculations based on the vibrational
model of the nucleus. It has been known for
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some time that agreement with the experimental
differential cross sections can be reached only using
various methods, i.e., alterations in the values of
OM parameters or of coupling strengths, but these
methods do not always lead to reliable results. For
instance, most of the CC analyses of (p,p') experi-
ments on Pd al.d Cd isotopes gave coupling
strengths, for certain transitions, systematically in
disagreement with 8(E2) values. A recent solu-
tion of this second problem was offered by the in-

teracting boson approximation (IBA). ' Of par-
ticular interest for the present study is the recent
use of the IBA model to extract transition form fac-
tors from electron scattering data. %e apply the
ISA model to describe inelastic proton scattering
from several Mo, Pd, and Cd isotopes, using de-

formed optical potentials in CC calculations which
include the relevant spectroscopic amplitudes ob-
tained from the IBA. The proton scattering data
are therefore analyzed with a minimum number of
adjustable parameters, so as to reduce the uncertain-
ties notoriously associated with many-parameter
searches.

In the next section the salient features of the ex-

periment are described. The mass dependence of
proton scattering has been studied at 22.3 MeV,
using the nuclei ' ' Mo, ' Ru
104, 106, 108, 110Pd d 106, 110,112,116Cd

dependence has been studied between 10 and 35
MeV for ' Pd. Section III describes the analysis of
the energy dependence and in particular of the sub-

Coulomb data. In Sec. IV we present the analysis
of elastic and inelastic scatterings performed with
CC calculations, based on the vibrational model. '

This traditional picture of the nucleus has been used
to clarify the correlations between OM parameters
and coupling schemes. Finally, Sec. V contains the
results of CC calculations based on IBA spectro-
scopic amplitudes.

104pd Ep (MeV)

used, allows precise relative measurements and
avoids the effects resulting from the nonuniformity
of thc foils. Thc estimated Unccrtalnty ln target
thickness is of the order of 5 —7% and of the abso-
lute cross sections of less than 10%%uo. These values
must be considered as conservative estimates. In
fact, the factors needed to normalize the theoretical
predictions, obtained with average QM parameters,
to the measured elastic scattering cross sections,
differ from unity by no more than 2 —3 %.

Three surface barrier silicon detectors, 3000 pm
thick, were used to observe the scattered protons.
Telescopes made by 2000 and 5000 pm detectors

II. EXPERIMENTAL METHOD

The protons, accelerated by the AVF Milan cy-
clotron, were momentum analyzed by a 120'-
bending magnet and focused to a spot of 3—4 mm
in diameter at the center of a 60-cm diameter
scattering chamber.

The isotopic enrichment of the target nuclei was
generally between 96 and 98% except for ' Cd
(90.8%) and '" Pd (75.5%). The areal density of
the targets was estimated by weighing and measur-
ing the energy loss of alpha particles emitted by an

'Am source. The latter method, when properly

0.1

120 180
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FIG. 1. Differential cross sections for proton elastic
scattering on ' Pd at different incident energies. The
solid curves are the results of coupled channels calcula-
tions with the coupling scheme (Oo+-2&+-3& ) and the
parameters of Table I.
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were used for incident energies higher than 23 MeV.
The overall energy resolution of the present experi-
ment was of the order of 40 keV.

The proton angular distributions were measured
in steps of 3.3' from 13.3' to 170' laboratory angles.
The transition to the ground state and the 2&+ and
3~ states were measured for all targets and incident
energies; data have been also collected for the triplet
of states 0+, 2+, and 4+ (the second 0+ and 2+ and
the first 4+ excited states). The quality of the latter
data is more affected by the limited energy resolu-
tion and by scattering from carbon and oxygen con-
taminants in the targets.

10

III. ENERGY DEPENDENCE, RESULTS,
AND ANALYSIS

A. ' Pd data

The isotope ' Pd has been chosen for this study
of the energy dependence of proton scattering be-
cause of its position at the center of the A region in
which large anomalies in the OM parameters had
been deduced. ' Figures 1 —3 show the experimental
differential cross sections, measured at seven dif-
ferent incident energies between 10.25 and 35.4
MeV.

Both OM and CC analyses were performed with
the automatic search code EcIs. The OM poten-
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FIG. 2. Differential cross sections for proton inelas-
tic scattering to the 2&+ state of ' Pd; see Fig. 1 caption.

FIG. 3. Differential cross sections for proton inelas-
tic scattering to the 3~ state of '~Pd; see Fig. 1 caption.
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TABLE I. Least-square values of the optical model parameters for '0Pd from coupled
channels calculations assuming a first-order vibrational model and the (00+-20+-31 ) coupling
scheme. The other parameters were fixed at the following energy-independent values:

r0 ——1.165, a0 ——0.781, r =1.276, a =0.698, V„=6, r„=1.01, a„=0.75, and rc ——1.2. The
well depths are in MeV and the geometrical parameters in fm. RR'2 and RR'3 give, respec-

tively, the ratio of the volume integral of the 21 and 31 imaginary potentials to that for the
elastic channel.

E' V0 W 8 (g.s.) O'D(2+ ) 8'g) ( 3 )

(MeV) (MeV) (MeV) (MeV) (MeV) (MeV) R 8'2 R 8'3

10.2
12.1
15.0
17.3
22.3
30.2
35.4

58.0
57.9
56.4
56.1

54.0
51.1
48.2

0.50
3.43
S.36

7.15
7.77
7.43
8.18
7.87
5.20
3.42

7.15
7.88

10.18
9.44

11.61
6.03
4.38

7.56
7.12
8.86
8.06
4.96
4.10

1.00
1.01
1.37
1.16
1.45
1.11
1.13

0.1751
0.97 0.2055 0.1802
0.96 0.2248 0.1756
1.08 0.2000 0.1813
1.03 0.2342 0.1706
0.97 0.2064 0.1561
1.09 0.2187 0.1760

tial used was of the form

U(r) = Vc(r) Vof (r,Ro, a—o) i 8'f (r,—R»a~)

+4iaw Wg) f(r,R~,a~ )
d
dr

where

+(R/M c) f (r,R„,a„)o'L,
r dr

f(rR;, a; ) = I 1+exp[(r —R;)la;])

R;=r~A'r, and Vc(r) is the Coulomb term. Initial-

ly all the parameters were searched on in a best-fit
procedure, considering only the elastic scattering
data. After this preliminary search the spin-orbit
and geometrical parameters of the real central term
were fixed at energy-independent values. The in-

elastic angular distributions were then taken into
account in CC calculations assuming collective vi-

brations, and considering only first-order coupling
terms. The well depths for the central terms (real
and imaginary) and the deformation parameters P2
and p3 were searched on, with a different absorp-

tion allowed for each channel. The values of 8'D
for the 3 state were practically equal to those for
the elastic channel, as shown by the ratios RS'3 in
Table I. Larger 8'D values were instead required by
the 2&+ channel for incident energies higher than 15
MeV. The values of Pi fluctuate around the elec-
tromagnetic values, ' which are given in Table II
also for the other nuclei concerned. No evidence
for any anomaly or special feature has been found
except that a larger WD value is required for the 2i+

channel. Data at lower incident energies, such as
those for 6 MeV proton scattering from Pd isotopes
by Antropov et al. , can be reproduced using the
geometries given in Table I and standard well
depths. As it had already been shown by the above
authors, data taken at an incident energy slightly
below the Coulomb barrier can therefore be repro-
duced by standard OM parameters.

B. Sub-Coulomb data

In a recent study of the (p, n) reaction on
89&3 (130 nuclei, Johnson, Galonsky, and Ker-

TABLE II. Values of quadrupole and octupole deformation parameters from electromag-
netic data (Refs. 15—22) assuming a uniform charge-density distribution with a radius
R =1.2 A'

Nucleus

"Mo
'4Mo
"Mo
"Mo
'~Mo
'"Ru
104p

0.1085
0.1522
0.1716
0.1740
0.2298
0.2460
0.2090

0.158
0.153
0.182
0.220
0.210
0.149
0.170

Nucleus

106Pd

108Pd

110pd

106Cd

110Cd

112Cd

0.2290
0.2430
0.2580
0.1709
0.1737
0.1814
0.1860

0.170
0.149
0.140
0.170
0.147
0.147
0.131



26 PROTON SCATTERING ON A =92—116NUCLEI WITH. . . 1945

nell' obtained evidence for a strong A dependence of
OM potentials at sub-Coulomb proton energies. At
these energies the (p, n) channel represents a large
fraction of the total reaction cross section oui and
should therefore be very significant in determining
the imaginary part of the OM potential. The
anomalously large values of the imaginary well
depth, which these authors found around 3=105,
are the most striking aspect of this A dependence.

The OM analysis of Johnson et al. ' is certainly a
very simple parametrization of a large amount of
data. The excitation functions for 19 nuclei are in
fact reproduced by OM potentials with most of the
parameters practically fixed at standard values.
Only WD was really used as a free parameter and
was varied with A, between 5 MeV ( Y) and 97
MeV (' Rh), but not with incident energy. At very
low incident energies the cross sections are deter-
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mined mainly by the transmission factors and by
their sensitivity to the geometries of the potentials.
For this reason the neglect of even a small variation
in a well radius, required by the structure of the nu-
cleus, cannot be compensated for by a small adjust-
ment of O'D. Electric charge data indicate that
shell effects can account for variations of the rms
radii of the order of a few percent. Figure 4
shows the dependence of oIt on 8'D for ' 'Rh, ob-
tained by using the OM potential of Ref. 1 (full
lines) and that (dashed lines) calculated with small
and acceptable variations of some parameters: Vp,
from (62.7—0.32E) to (64—0.55E) MeV, ra, from
1.2 to 1.17 fm, and aiI, from 0.39 to 0.5 fm. The
energy dependence of V0 at very low incident ener-
gies is not well known, but it is commonly accepted
that it could be larger than at higher incident ener-
gies. As is also shown in Ref. 1 [Fig. 19(c)], a
strong dependence in the real well depth can im-
prove the agreement with the experimental excita-
tion functions. With these variations a standard
imaginary well of about 8 MeV gives oui in reason-
able agreement with the experiment. From the
same figure it is also evident that the use of a very
deep imaginary potential gives rise to a saturation
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FIG. 4. Calculated total reaction cross sections for
proton scattering on ' Rh, plotted against the imaginary
well depth, at three incident energies. The solid curves
are from the OM potentials of Ref. 1. The dashed
curves were obtained with small adjustments in some
parameters (see text). The points give the 8'D values
with which the calculations reproduce the experimental
cross sections (arrows).

FIG. 5. Optical model calculations for 5 MeV proton
scattering on ' 'Rh. On the left side: absolute values of
the s (dashed curves) and p wave functions (solid curves)
obtained with three different potentials (see text), which
a11 reproduce the experimental total reaction cross sec-
tion. The vertical arrows mark the location of the max-
imum of the three imaginary wells. The right side
shows the corresponding distribution of the absorption
probability.
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in 0~ which makes it no longer 8'z dependent. It
is then easier to fit the data over the full energy
range with a constant 8'D value. On the other
hand, considering the effects of the Pauli principle,
the use of an energy-independent imaginary poten-
tial can hardly be justified. The energy dependence
of Wz(r) should therefore be considered. However,
the crucial point is certainly that of the role of a di-
mension resonance for the 3p wave. ' At incident
energies of about 5 MeV, using the OM parameters
of Ref. 1 with a "normal" WD (&12 MeV), one
finds that, for A —100, the contribution coming
from the p wave becomes larger than that of the s
wave [Fig. 5(a)]. A large p wave contribution is not

E~=22.3MeV

required by the experiment up to A —112. Since the
absorption, and therefore o~, are proportional to

~

u(r)
~

WD(r), it is possible' to damp out this
unwanted resonance by reducing the amplitude of
the wave function u (r) by using a very large WD

[Fig. 5(b)]. An equivalent result [Fig. 5(c)] can also
be obtained with the same small adjustments of
some OM parameters used for the dashed curves of
Fig. 4.

Finally, one should note that the anomaly in the
A dependence found for 8'D is, in a certain sense,
only apparent. To show this, we can consider the
WD(r) wells, which had been used' for Nb, ' Rh,
and "Pd. These wells have an integrated volume
of 49, 695, and 117 MeVfm, respectively. But the
incoming proton is not sensitive to the same extent
to the inner part of the WD(r) well, as can be shown

Ep=22.3MeV

0.1—

60 120 0.1—

FIG. 6. Differential cross sections for proton elastic
scattering at 22.3 MeV on even-even nuclei 92 &A & 104.
The curves are from optical model calculations per-
formed with the parameters of Table III.

120

.m.

180

FIG. 7. Same as in Fig. 6, for 106&3 & 116.
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TABLE III. Optical model parameters used in the analysis of 22.3 MeV elastic scattering
data. The parameters not reported in the table have been taken for all the nuclei as 8'=0.5,
V„=6 MeV; r =1.276, r„1.01, r, =1.2, a„=0.75 fm. The g values, given in the last
column, are per point and have been calculated assuming a constant experimental error of
10%%uo.

Nucleus

Mo
"Mo
"Mo
"Mo
'00Mo
102R

104pd

106pd

108pd

110pd

106Cd

110Cd

112Cd

116Cd

V0

(MeV)

52.5
51.9
52.4
S2.7
53.4
52.6
52.8
52.8
54.1

52.3
53.2
S2.5
54.3
53.1

r0
(fm)

1.165
1.169
1.182

1.173
1.165
1.165
1.170
1.165
1.143
1.149
1.182
1.174
1.145
1.166

a0
(fm)

0.810
0.780
0.685

0.755
0.810
0.792
0.738
0.811
0.783
0.760
0.797
0.816
0.827
0.700

8'D

(MeV)

8.32
9.11
9.63

10.9
12.0
10.7
10.3
11.1
10.1
9.51

11.0
11.0
10.9
8.50

aw

(fm)

0.694
0.687
0.666
0.67
0.640
0.685
0.692
0.649
0.771
0.848
0.600
0.630
0.702
0.890

1.37
1.00
0.23

0.32
0.42
0.52
0.42
0.44
0.60
0.69
0.58
0.65
0.95
0.67

vibrational phonons. If average geometrical param-
eters are used instead of the best-fit values of Table
III, the quality of the fits of the 2&+ data is greatly
improved at the cost of a very limited worsening of
those to the elastic scattering. The well depths and
deformabilities deduced with average geometries are
listed in Table V. The calculated curves for the 2&

transitions oscillate more than the experimental
data in the angular region between 70' and 130
(dashed curves in Figs. 10 and 11).

These oscillations can be smeared out by intro-
ducing second-order terms. The solid curves given
in Figs. 10 and 11 are the results of a second-order
vibrator calculation, carried out to explore the ef-
fect of the inclusion of the triplet of two-

quadrupole-phonon states, that is to say assuming
the scheme (00+-2,+-Oq+-2&+-4q+). It must be noted
that, using this notation for phonon numbers, the
first 4+ state is indicated as 4&+ in the hypothesis of
a dominant two-phonon structure. In this calcula-
tion the levels of the triplet are simply considered as
pure two-phonon states, without requiring good fits.
The agreement with 2&+ differential cross sections
and with electromagnetic quadrupole parameters is
good, and the deduced OM parameters (Table VI)
are free from relevant nuclear structure effects.
These satisfactory results indicate that in spite of
the naive picture used for the structure of the Oz+,

2&+, and 4&+ states, most of the collective couplings
required by the 2~ channel are taken into account.
In contrast the same calculation causes a worsening
(by a factor of 2 in the X ) of the fits to the elastic

scattering. This is due to a too large effect of the
second-order terms. The same is probably true also
for the 2~+ transitions. In this case, however, they
can be overestimated if the reorientation terms
(transitions between magnetic substates of the same
state in a deformed nucleus) are not taken into ac-
count, as in the vibrational model. In the case of
the nuclei studied here, the relatively large values of
the intrinsic quadrupole moments Q + of the 2&+

states' ' indicate that these reorientation terms
should be included.

The fits of the 3& data, shown in the Figs. 12 and

13, are less satisfactory and cannot be easily im-

proved. The second-order terms are not in fact very
helpful and the possible couplings with other states
cannot be introduced owing to the lack of relevant
information. The ratios of deformation parameters
p~~ from the present analysis, to their electromag-
netic values P', deduced from 8(E2) values as-
suming, as usually, a uniform charge density distri-
bution with a radius Rc ——1.2 A' (see Table II),
are given as Rp2 and Rp3 in Table IV. In the same
table the quantities RS'2 and RS'3 give, respec-
tively, the average ratios of the volume integral of
the imaginary potential 8'D needed by the 2~+ and
3& channels to that of the elastic channel. R8'0 is
the ratio of the imaginary potentials used in CC and
OM calculations. The values of RWO show that the
reduction in 8'D is mainly determined by the cou-
pling with the 2& channel and is of the order of
15%. This reduction is less marked than that
found in the case of rotational nuclei. The ima-
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ginary term for the 2~+ channel (see the RW2
values) is approximately equal to that for the
ground state when the two-phonon states are con-
sidered in a second-order calculation; when these
are neglected it is larger by 15% and up to 40% in
a first-order calculation. An increase of this order
had already been found at lower incident energies, '

and is similar to or larger than those found for the

c.m.
FIG. 10. Differential cross sections for the excitation

of the first 2+ state of the 92&3 &104 nuclei. The
dashed curve for ' Mo is given as an example of a
first-order calculations. The solid curves are from cou-
pled channels calculations in the framework of a
second-order vibrational model with the (Oo+-2~+-02+-22+-

42+) coupling scheme.
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TABLE V. Parameters used in coupled channels calculations (first-order vibrational model) in fitting elastic, 21+ and
31 data at 22.3 MeV. The other parameters (depths in MeV and geometries in fm) were r0 ——1.165, a0=0.781, 8 =0.5,
r =1.276, a =0.6+ 0.85(X —Z)/A, V„=6,r„=1.01, a =0.75, rc ——1.2.

Nucleus

MQ
'4Mo
"Mo

Mo
100M

102Ru

"4pd
106pd

108pd

110pd

106Cd

'"Cd
112Cd

116Cd

V0

{MeV)

53.3
53.1
54.1

54.0
54.1

54.1

54.0
53.9
53.9
54.2
52.2
53.8
53.8
54.4

8'D(g.s.)
(MeV)

8.52
8.30
7.56
8.18
7.84
8.18
7.87
7.73
8.41
8.95
7.62
7.93
8.35
9.51

O'D(2+ )

{Mev)

4.21
10.72
11.30
13.36
10.70
11.56
11.61
10.S6
11.13
11.20
11.45
11.03
11.52
11.46

WD(3 )

(MeV)

6.79
7.47
7.81

10.15
10.13
8.72
8.06
8.08
8.18
9.49
8.51
7.24
8.81
9.20

0.0645
0.1555
0.1987
0.2080
0.2338
0.2654
0.2342
0.2539
0.2685
0.2736
0.1944
0.1921
0.2006
0.2051

0.1294
0.1496
0.1758
0.2186
0.2118
0.1691
0.1706
0.1639
0.1487
0.1336
0.1705
0.1386
0.1506
0.1288

2
70+

1.58
0.93
1.60
0.78
0.87
0.75
0.52
0.42
0.54
0.56
0.75
0.52
0.40
1.04

2
X2+

1.37
1.27
1.14
1.48
1.34
1.06
1.11
0.71
1.06
1.53
1.54
1.01
0.8S
1.65

2X3-

1.11
1.50
1.20
1.09
1.76
2.27
1.30
1.96
2.56
3.60
2.99
1.52
1.16
5.00

levels of rotational bands.
Such effects are not found for the transitions to

the 3& states. In this case the couplings with ~ulti-
phonon states seem therefore to play a less impor-
tant role. The p~q~ obtained are in very good agree-
ment with p3 . A different situation is found for
the quadrupole parameters p~q~, which are strongly
dependent both on the coupling scheme and on the
choice of WD (2~+ ). If the coupling with two-

phonon states is not considered and the absorption
in the elastic and the 2~+ channel is fixed in the best
fitting procedure, the p~z~ values obtained are larger

than p2 by about 10%. On the other hand, if the
constraint WD(2~+) = WD (g.s.) is imposed, the p2
obtained are smaller than p2 by about 10% and
the fits to the 2&+ differential cross sections
deteriorate significantly. Recently the differences
between deformation parameters for the 2&+ state
extracted from electromagnetic excitation and from
hadron scattering have been extensively dis-
cussed. ' To evaluate these differences Madsen
et al. have given a prescription based on the iso-
spin dependence of the effective nucleon-nucleon in-
teraction. It has been usual to discuss the transition

TABLE VI. Parameters used in coupled-channel calculations (second-order vibrational
model) in fitting elastic and 21+ data with the coupling scheme (00+-21+-02+-22+-42+). The same
imaginary potential has been assumed for all the channels. The other parameters are the
same as in Table V.

Nucleus
V0

(MeV)

O'D

(MeV)

Mo
'4Mo
"Mo
"Mo
'00Mo
102R

104pd

106pd

108pd

110pd

106Cd

110Cd

112Cd

116Cd

52.9
52.5
53.0
52.9
53.0
52.9
S3.0
53.1

53.1

53.3
54.2
53.1

53.0
53.4

8.11
8.55
8.03
8.8
8.09
8.10
8.10
7.70
7.91
8.09
8.31
8.28
8.45
9.00

0.0899
0.1424
0.1742
0.1732
0.2211
0.2423
0.2099
0.2268
0.2511
0.2649
0.1714
0.1748
0.1856
0.1884

1.67
0.90
2.23
0.79
2.00
1.44
1.14
1.31
1.60
1.14
1.14
1.10
1.12
1.06

5.50
1.23
1.20
0.80
1.06
0.61
0.80
0.84
0.80
0.57
1.25
0.86
0.73
1.52
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FIG. 11. Same as in Fig. 10, for 106(A & 116 nuclei.

strengths in terms of deformation lengths 5=PA,
where R is an effective mean OM radius. For pro-
ton scattering at low-incident energies, the contribu-
tions of the imaginary, spin-orbit, and Coulomb
couplings are relatively small so that the form-
factor radius can be identified with that of the real
term. Moreover, different P values have been used
in the present analysis for the different potential
terms in order to keep the deformation lengths con-
stant. More recently transition strengths have been
compared in terms of multipole moments. For
proper comparisons electromagnetic moments
M(EA.)', deduced from B(EA, ) values, are com-
pared with multipole moments from inelastic pro-

C.N.
FIG. 12. Differential cross sections for the excitation

of the first 3 state. The solid lines are first-order vi-

brational model calculations in the coupling scheme
(Op+-2i+-3i ).

ton scattering defined as

M(EA)rr' =Z f V(r)r Yqo(r)d rl f V(r)d r,
where Z is the atomic number of the target and
V( r ) is the real part of the deformed OM potential.
To stress the dependence of coupling strengths on
the assumed couplings, the results. obtained from
DWBA and CC calculations with (00 -2~ -3~ ) and
(Oo+-2&+-02+-2q+-42 ) schemes are shown in Fig. 14.
In these calculations, as in previous similar stud-

ies, ' the imaginary potential has been fixed at the
same value for all the channels considered. Dif-
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FIG. 14. Ratios of the quadrupole deformation
parameters from the present (p,p') experiment to those
obtained from Coulomb excitation experiments (left-
hand scale). The P~2~ values have been obtained from
0%HA analyses (empty points) and from coupled-
channel calculations with the coupling scheme (00+-2&+-

3~ ) (crosses) and with the coupling scheme (00+-2~+-02+-

22+-42+) (full points). The right-hand scale gives the ra-
tios of the quadrupole moments.
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FIG. 13. Same as in Fig. 12.

ferent coupling schemes can account for differences
in P~2~ values of the order of 10%. Very similar
P~2~ and P2 values are found using the second
scheme, in agreement with the findings of the re-
cent survey by Matoba. The corresponding
M (E2)II' /M (E2)' ratio is larger than one since
the rms radii of the OM potentials are larger than
those of electric charge distributions. A better
agreement in the quadrupole moments is obtained
when both 2& and 3& channels are taken into ac-
count as shown in Fig. 14 for the (00+-2t+-3~ ) cou-
pling. Similar results are obtained with the (Oo-
2,+-3, -0,+-2,+-4,+) coupltng (see Table IV). The re-
latively small Rp2 value found in the case of Mo

can be compared with the predictions of the
schematic model of Madsen et al. for single
closed shell nuclei (see the next section).

Finally it should be noted (Fig. 8) that the
discrepancy in the asymmetry dependence of Vo,
found in OM calculations, is strongly reduced with
the (0& -2&+-02~-22+-42+) scheme and completely ab-
sent with the (Oo+-2I+-3I ) scheme.

The main conclusion of the comparisons
described in this section (which is in fact rather ob-
vious, but surprisingly often overlooked) is that in
an extended GM calculation the crucial point lays
in the choice of the collective couplings between
channels. The elastic channel can be described by
completely standard OM parameters if the cou-
plings with the relevant one-phonon states are prop-
erly considered. Similarly the differential cross sec-
tions for the 2~ channel are we11 described, with
transition strengths in agreement with the elec-
tromagnetic values and with standard OM parame-
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ters, if the couplings with two-phonon states are
consider ed.

B. Mo data analysis

The analysis of the Mo data must be discussed
separately from the other isotopes because of their
distinctive features. The average angular slope of
the differential cross sections for the 2~+ state is less
steep than that for the other nuclei and the oscilla-
tions in the median angular region are more pro-
nounced. Similar features are present, although less
evident, for the transition to the 3~ state. Because
of these features no coupling of the 2j+ with other

I I D I

60 120 180
C.lll.

FIG. 15. Experimental differential cross sections and
coupled channels calculations: (1) 'Mo(2+&), best fits
with O'D(g. s.)= 8'D(2~+ ) (dashed curve) and with O'D(g. s.)
and O'D(2&+) fixed independently (solid curve); (2)

Mo(2q+), one-phonon excitation with pop = —0.036
(dashed curve), one- plus two-phonon excitation with

Poq ———0.033 and Pqq ———0.07 (solid curve); (3) 'Mo(4|+)
one-phonon excitation with P04=0.05; (4) Mo(4~+), one-

phonon excitation with po4 ——0.092 (dashed curve), one-

plus two-phonon excitation with P~=0.07 and

Pq4 ———0.207 (solid curve). For the meaning of P's sym-
bols see Fig. 16.

FIG. 16. Schematic representation of the coupling
strengths in the vibrational model. First-order terms
arising from quadrupole-phonon excitations are shown
in the upper part, terms representing the relevant
second-order transitions in the lower part.

channels is required and the p~z~ and WD(2&+)

found are much smaller than Pq and WD (g.s.),
respectively; the obtained ratio Rp2 of 0.6 is lower
than that for the other nuclei considered here. The
reliability of this result is, however, limited by the
very low value used for WD(2& ) (about half of that
for the g.s.) and by the well-known ambiguity be-
tween p~q~ and WD(2&+) values. The dashed curve
shown in Fig. 15 for the 2~+ transition has been ob-
tained with WD(2& ) = WD (g.s.); its average angular
dependence is too steep, while the ratio of pz values
is 0.64, when calculations are normalized at forward
angles, and 0.83 with the best-fit normalization
shown in the figure. These values of the ratio Rp2
are in reasonable agreement with the model of Mad-
sen which predicts for a proton transition in Mo
a ratio of 0.65. The structure of the low-lying states
of this nucleus should be in fact mainly due to the
excitation of the two protons outside of the doubly
magic core of Zr. The differential cross sections
for the other inelastic transitions in Mo can be
described, at least approximately, as simple one-
phonon excitations, while already for Mo, as
shown in Fig. 15 in the case of the transition to the
first 4+ excited state, the need for more complex
couplings is evident.
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FIG. 17. Typical results for 22+ cross sections obtained
in the framework of harmonic and anharmonic vibration-
al models. Upper part: contribution of the two-step
(00-2~+-2z+) term alone with Pzz ——Pz (dashed curve),
second-order contribution with Poz ——P, Pzz

——Pz' (dot-

ted curve); the solid curve is the sum of these two contri-
butions. Lower part: anharmonic vibrator model with

pure one-phonon excitation and poz= 0.07 (dashed curve),
with one- plus two-phonon excitation and poz=0.066,
Pzz=Pz, Poz

——aPz where a=[1—(Poz/Pz) ] ' (dotted
curve) and with Poz

——0.033, Pzz ——0.151, and Poz ——0, i.e.,
without second-order terms (solid curve).

C. Taro-quadrupole-phonon states
and the anharmonic vibrator model

The coupling scheme currently used for the
analysis of the transitions leading to the second 0+
and 2+ states and to the first 4+ excited state in the
Mo-Ru-Pd-Cd region is displayed in Fig. 16. In an
ideal harmonic vibrator model, these states should
be located at the same excitation energy, which
should be twice as large as that of the 2i+ state. In
the same model the reduced matrix elements to be
used in CC calculations can be evaluated' from a
single Pz value since Pzi is assumed equal to Pz. In
second-Dl del calculations the tfansitlons~ such as
(Oo -2i+-00+, L =0), (2 i+ —+00+~2i+, L=0,2,4),
(00 ~2i+ —+I&, L =I), etc., are also considered.
The strengths of all these transitions are quadratic
in pz, the last one, p01, is taken equal to pz pzr

and is therefore also proportional to pz . The tran-
sition densities of the first- and second-order cou-

plings are taken, respectively, as the first and
second derivatives of the OM form factors.

This coupling scheme has been used in a prelimi-
nary analysis and does not imply that the 02+, 22+,

and 42+ states can be treated as pure two-
quadrupole-phonon states. In all cases the transi-
tions to the 22+ and 42+ states are in fact better
described by adding significant single-phonon com-
ponents with coupling strengths Pti'i to the ground
state. However, this kind of analysis gives values of
p in definite disagreement with Coulomb-excitation
data (CE). As was shown by Robinson et a/. , for
several Pd and Cd isotopes, one finds

(P02 ) /(Po'z ) =2, (Pzi ) /(PzI ) =0.4—0.8,
and therefore a smaller second-order amplitude

Poi, since these last coupling strengths are propor-
tional to Pz Pzr. These results can be understood

by looking at the various contributions to the exci-
tation of the triplet states. In Fig. 17 the results for
the 2z+ state of "Pd are shown. The contribution
coming from the two-step term of the coupling
(Oo+-2i -2z ) gives a calculated angular distribution
with a diffraction pattern which is in phase with
the experiment, while the second-order term (Oo+-

2i+-2z+) is completely out of phase. When this last
term is coherently summed with the first term an

angular distribution is obtained which is still in
marked disagreement with the experiment. To
reduce the disagreement, the amplitude of this
second-order contribution, i.e., the value of Poz and
therefore that of Pzz was reduced by a factor 2,
while the amplitude Po'z of the first-order one-

phonon coupling between the 22+ and ground state
was increased. In the lower part of Fig. 17 it is
shown that by neglecting the Poz amplitude (as in
first-order calculations) it is possible to obtain more
satisfactory fits with a value of po'z which is lower
and in better agreement with the results of
Coulomb-excitation experiments.

The failures of earlier analyses of two-phonon
transitions may therefore be connected with the as-
sumptions made for the second-order terms. Simi-
lar results were also obtained in the case of 4+
states. Relatively few experiments and analyses
have been reported for Oz+ states; consequently, for
these transitions, definite conclusions are not possi-
ble. Considering these difficulties it is quite evident
why new CC calculations based on a different ap-
proach are of some importance for the understand-
ing of the excitation mechanism of these two-
phonon states.
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V. IBA MODEL AND CC CALCULATIONS

The Mo, Ru, Pd, and Cd isotopes span a transi-
tion region from nuclei exhibiting single-particle
properties ( Mo) to nuclei with vibrator properties
and more or less pronounced anharmonicity. More-
over, the features of some of their excited states are
connected to permanent deformations. A theoreti-
cal approach appropriate for describing transitional

regions is provided by the IBA model. In this
model nucleon pairs are represented in terms of N
bosons outside closed shells. Descriptions have
been given " ' in which the bosons are al-

lowed to occupy two levels: the ground-state level

with angular momentum L =0 (s boson) and an ex-
cited one with L=2 (d boson). The model space
can be expanded to include other pairs, such as f
bosons (L=3) and g bosons (L=4). It is possible to
calculate within the chosen space several nuclear
properties by specifying the appropriate operators
and wave functions. A description of the general
form of these transition operators is given in Refs. 9
and 10. With the calculated pairs limited to s and d
bosons, one obtains the following transition densi-

ties:

o: pa+ 0+(r)=[p„„+ao(r)X]5J+Po(r)B;,' ',

E2: po+ 2+(r) =e '[a~(r)A, J '+132(r)BJ '],
E4: p 4

{r}=e(~P4{r

These transition densities describe the coupling of
the pairs to the external electromagnetic or nuclear
fields. The weighting factors e' ' must be connect-
ed to some effective interaction. In electron scatter-
ing they are replaced by effective charges. In pro-
ton scattering we use simply the strengths of the
different OM potential terms. The matrix elements

8,'J ' are given, respectively, by

B' '=(0+~~(dtd)( '~[0+),

A,~J~' ——(2J+. [)(d s+s d}[(0,+),
B~(~P) (2~+

~

[(dtd)(2)~ ~0+ )
B~((( (4+

f
J(dtd)(4)[ (0+ )

and were calculated using the IBA-2 Hamiltoni-
an. ' In analyses considering only static proper-
ties, the coupling factors aq(r) and P~(r} were taken
as numbers. In studying scattering processes these
numbers must be replaced by form factors describ-
ing the spatial dependence of the coupling. This
dependence is connected to the single-particle densi-
ties and, in principle, can be obtained from a shell
model calculation. In a less ambitious approach the

above form factors are deduced empirically from
the analysis of scattering experiments. The quadru-
pole densities a2(r) and P2(r) have been extracted
from the analysis of electron scattering on some
medium-heavy nuclei (' Nd and samarium iso-
topes' "). The form factor az(r) is surface peaked
and sufficiently well reproduced by the first deriva-
tive of a Woods-Saxon distribution, while Pz(r)
displays a node at a radial distance somewhat small-
er than the nuclear radius and can be approximated
by a second derivative of a Woods-Saxon potential
with a radius reduced with respect to that used for
aq(r) by a factor varying from 0.87 (' Nd) to 0.6
(Sm isotopes). Here one could mention that these
form factors have been obtained for a region of de-
formed nuclei and that slight differences might
arise in the Pd region. No reliable information has
been obtained for Po(r) and P4(r).

The spectroscopic amplitudes B,J, used in the
present (pp') calculations, already include appropri-
ate weighting factors (X, and X~ of Refs. 31—33).
At least for the quadrupole transitions, these should
ensure the correct phase and amplitude, as needed

by B(E2) data, for the (dtd)( ' contributions. The
ratio of the quadrupole moments

JP2(r)r d rl Ja2(r)r d r

(which was taken equal to —1.5 in the analysis of
Ref. 11}should therefore be equal to 1.

In our case the diagonal term [p«„+ao(r)N] is
replaced by the OM potential and the aq(r) form
factor is obtained from the first derivative of the
same potential. This last sample prescription gives
generally satisfactory results.

Less straightforward is the choice of the Pz(r) ra-
dial dependence, also because these form factors are
connected with the (d d)' ' transition amplitudes,
which are generally smaller than the (dts+std)( '

amplitudes. However, for the P2(r) form factor
some information has been obtained from the
analysis of 22+ data. The (d d)' ' amplitude is in
fact relatively large in the coupling (00+-22+) and is
also present in the coupling (2(+-2&+). No attempts
have been made to differentiate between the P2(r)
form factors to be used for these and the other
quadrupole couplings. The best fits to the 2z+ angu-
lar distributions have been obtained assuming a
second derivative of the OM potential and by ad-
justing the form factor radius. To reduce the ambi-
guities of the best-fitting procedure, the variation in
the radii of the different potential terms (real, ima-

ginary, spin-orbit, and Coulomb) is constrained to
keep the relative values unchanged. Moreover the
potential strengths are renormalized so as to keep
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the above ratio of radial quadrupole moments equal
to one. The best-fit radius is slightly reduced in
comparison to the OM potential radius. The reduc-
tion required by the different nuclei varies between
2 —3% (' Mo ' Pd) and about 15%%u (' Pd"Cd). Since this is the only parameter searched on
in the fits to the 2q+ data, any shortcoming of the

FIG. 18. Differential cross sections for transitions

leading to 22+ states and CC predictions obtained with

spectroscopic amplitudes derived from the ISA model

(in the case of ' Pd to the 22+ and 02+ states, which were

not resolved). The solid curves have been obtained using
a form factor pz(r) (see text) given by a second deriva-

tive of the OM potential with a radius reduced by fac-
tors of 0.91 ( Mo), 0.92, ( Mo), 0.97 (' Mo), 0.85,
(' Pd), 0.98 (' Pd) 095 (" Pd), and 0.85 (" Cd).
Dashed curves are the results obtained without reduc-
tion of the radius (lmMo and 1&2Cd) or using a first
derivative (' "Pd).

I I [ l

0 5 10
r(fm)

FIG. 19. Real part of the transition form factors
used in CC calculations with ISA spectroscopic ampli-
tudes. Upper part: Po(r) monopole form factor from
surface oscillations used in "Cd(02+) calculations. In
the lower part the solid and dashed curves give, respec-
tively, the quadrupole Pz(r) form factor used to obtain
the solid and dashed curves of Fig. 18 for ' Pd(22+)

data.

IBA model or of the CC calculations can affect the
best-fit value and makes it difficult to connect these
differences to nuclear structure properties, however,
the presence of a node slightly inside the nuclear
surface in the p~(r) form factor is well established.

For the purpose of comparison, the cross sections
obtained without a reduction of the radius of the
P2(r) form factor are shown in Fig. 18 for 'OOMo

and "Cd. Also less satisfactory, but still accept-
able (dashed curves on ' Pd and " Pd) are the fits
obtained using a first derivative with a radius
slightly larger than the OM radius. This result can
be understood considering the similarity of the two
form factors in the surface region, as shown by the
graphs of Fig. 19. This means that the proton
scattering is less affected by the inner part of the
transition form factor.
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FIG. 2Q. Comparisons between experimental cross
sections and CC calculations with IBA amplitudes (solid

curves). The dashed curve for the 02+ transition on" Cd shows the effect of changing the sign of the /3q(r)

transition density.

In the cases of Mo and Mo the curves of Fig.
18 are normalized by factors of 16 and 1.5, respec-
tively. A large failure of the ISA calculations has
been found also in the comparison with the B(E2)
values. This discrepancy is probably due to the
small number of nucleons outside the Zr core.
However, even in this case, the calculation predicts
correct B(E2) ratios and, in our case, a correct
mixture of the different contributions to the excita-
tion of the Zq+ state. This is supported by the good
agreement in the shape of the angular distributions.
The 22+ transitions in ' Mo, ' ' *"Pd, and" Cd
are reproduced also in magnitude.

The IBA calculations give correct predictions
(Fig. 20) also for ' Pd and " Cd, where the states

C.f7l.
FIG. 21. The same as in Fig. 18 for transitions to 4+

states. The different curves have been obtained with
different prescriptions for the P4(r) form factors: (a) us-

ing the second derivative (solid curves); (b) using the
first derivative (dotted curves on ' Mo and ' Pd data);
(c) using the second derivative and the opposite phase
(dashed curves).

of the triplet (02+-22+-42+) are not resolved. In the
same figure are also shown the differential cross
sections for the excitation of the 02+ state in ' Mo,"Cd, and "Cd. The agreement between experi-
mental and calculated angular distributions, ob-
tained without any normalization, can be considered
very satisfactory in view of the difficulties usually
found in fitting monopole transitions. The compar-
ison with the experiment could give some indication
on the Po(r) form factor. It should, however, be
noted that the monopole (0~+-Oq+) contribution to
the 02 cross section is predominant only at forward
angles, while the two-step (Oo -2&+-02+) contribution
is dominant over the rest of the angular range.

As a first trial one can assume for /3o(r) a second
derivative as for P4(r). However, also leaving the
radius free to vary, no satisfactory results have been
obtained. Following Ref. 10 Po(r) should be given

by a linear combination of terms expressed by first
and second derivatives. The resulting sum is very
similar to the form factor predicted for a vibration
in the surface thickness (radius and diffuseness os-
cillations ). This last form factor can be given as
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P0(r) = KZ—R [(1+Z)/Z r—/R],dU(r)
Gff

where U(r) is the optical model potential, R the po-
tential radius, Z =(3+y )/2y (with y =rra /R) for
a volume Woods-Saxon term, and 2/(1+y ) for a
surface term given by the first derivative of a
Woods-Saxon. The normalization constant E re-

sulting from the best fit of the 02+ angular distribu-
tions is 1.2+0.2. The solid curves on ' Mo, "Cd,
and "Cd data in Fig. 20 have been deduced with
this latter form factor. The same prescription has
been used for all the other L=O couplings, which
are present in recoupling transitions (J;—+J;) and in
the transition (2I+ . 22+ ).

Our data for 4+ transitions are shown in Fig. 21.
The ISA calculations reproduce the cross-section
magnitudes and the shape of the angular distribu-
tions over the full angular range. The most satis-
factory fits have been obtained taking the radial
dependence of P4(r) as the second derivative of the
OM potential:

KR d U(r)r
2 dr2

where the potential radius was generally reduced by
a very small amount (2 —3%%uo). The tests of P4(r)
geometries have been performed keeping a constant
value for the hexadecapole radial moment

M(E4)rr' =fp~(r)r d r .

The normalization constant K obtained for these
transitions is equal to about 0.5 for all nuclei. This
normalization together with a reduction of 2.5% of
the radius gives a radial moment of the same value

as that obtained using a first derivative form factor,
that is,

P4(r) =—R dU(r)
dr

To show the infiuence on L =4 transitions of the ra-
dial dependence of P4(r), the results obtained using
the first derivative are also shown in Fig. 21 (dotted
curves for ' Mo and ' Pd).

The calculated cross sections for 02+ and 42+ tran-
sitions are strongly affected by the phase of the
transition density, as shown in Figs. 20 and 21. As
a general rule, for the nuclei considered here, the
transition densities for (0,+-I2+), where I2+ stands
for 02+, 22+, or 42+, should have the same sign as that
of the product of the densities for the transitions
(00+-2I+) and (2I+-I2+ ). This is obtained for all the

nuclei considered here taking E as positive in the
above formulae.

VI. CONCLUSIONS

The OM parameters obtained in the present
analysis of proton elastic scattering differential
cross sections on mass-100 nuclei evidence two dis-
tinct nuclear structure effects: an anomalous iso-
spin dependence of the real well depth for Pd and
Cd isotopes and imaginary terms for Pd, Cd, and
the heavier Mo isotopes which are 20%%uo larger than
those of average phenomenological optical poten-
tials. Both effects can be explained in terms of
collective couplings with the low-lying one-phonon
states. Structure effects concerning the magnitude
of the imaginary terms were already revealed, in the
case of lighter nuclei, in the correlation existing
between the total reaction cross sections, the ima-

ginary terms in the OM potentials, and the defor-
mation parameters for the ground-state rotational
or vibrational bands.

Arguments and numerical evaluations are given
in Sec. III to show that the anomalously large
values of the imaginary terms found in OM analy-
ses at sub-Coulomb energies can be practically elim-
inated if these are performed with more fiexibility
in the choice of the geometrical parameters. No
evidence has been found in any case of similar
anomalies at higher incident energies.

The 2~+ and 3~ one-phonon channels are satisfac-
torily reproduced by collective vibrational model
calculations with transition moments in agreement,
within a few percent, with those deduced from
Coulomb excitation experiments. This result, in the
case of the 2I+ channel, is, however, obtained only
when other couplings, and in particular that to the
first octupole state, are taken into account. The dif-
ferential cross sections for the transitions leading to
two-quadrupole-phonon states are less satisfactorily
reproduced by collective macroscopic models. In
this study we show that these transitions can in-
stead be accounted for by coupled channels
calculations using spectroscopic amplitudes ob-
tained from the interacting boson approximation.
The form factors are derived with simple prescrip-
tions from OM potentials. The usual first deriva-
tive gives the form factor for (s d+d s)' ' transi-
tions and gives also acceptable form factors for the
(d d)' ' transitions. The quadrupole (dtd)' ' transi-
tions are, however, better reproduced by a second
derivative with a radius reduced, in comparison to
the OM potential radius, by a factor of 0.85 —0.97.
This result is similar to that deduced from the
analysis of electron scattering experiments. The
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best-fit reduced radii are the result of a search in
which the radial moment

M(E2)tt' =f 132(r)r d r

was kept constant by adjusting the potential
strength. A variation of this moment, which corre-
sponds to the B(E2) value, is in fact equivalent to a
modification of the IBA spectroscopic amplitudes.

The Oz+ transitions are satisfactorily reproduced
taking a monopole form factor with the radial
dependence predicted for surface oscillations. Fur-
ther work is in our opinion necessary to determine
more precisely the hexadecapole form factor, also
because the 4+ transitions might be affected by the
inclusion of the g boson.
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