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A new connected kernel version of the Chandler-Gibson equations is derived. Both the
new and the original versions of the Chandler-Gibson equations are then modified to incor-
porate identical particle symmetries. Both types of equations are written down in detail for
two different six-body models of alpha-deuteron scattering. Various features of these equa-
tions are thin compared.

NUCLEAR REACTIONS Connected kernel equations for distinguish-
able and identical particles; equations for alpha-deuteron scattering.

I. INTRODUCTION

It is typical of modern theories of nuclear reac-
tions which are of the integral equation type (cf.
Ref. l and references cited therein) that some iterate
of the kernel of the exact equation be compact in an
appropriate Banach space. For systems of very few
nucleons these equations can thus be solved directly
with Fredholm methods and standard numerical
technology (cf. Ref. 2 and references cited therein).
For systems with a larger number of particles the
complexity of the equations requires some type of
approximation.

The property that an iterate of the kernel is com-

pact is not shared by the dynamical equations re-

cently proposed by Chandler and Gibson. This
difficulty is circumvented by constructing a se-

quence of approximate transition operators which
converge to the exact transition operator. Each ap-
proximate transition operator is itself the solution
of an "approximate" dynamical equation that does
have a compact kernel. These approximate equa-
tions are obtained from the exact dynamical equa-
tion by approximating the asymptotic channel sub-
spaces (and possibly the asymptotic Hamiltonians)
in physically meaningful ways. Because these ap-
proximate equations have a compact kernel, the
same standard mathematical technology can be ap-
plied to them as is applied to more conventional

theories. This method of approximation is poten-
tially very powerful, but much experience must be
accumulated before it is known how to construct
good approximations in practice.

The purpose of this paper is to derive connected
(hence possibly compact) kernel equations within
the framework of the Chandler-Gibson (CG) theory
and to compare these equations with the CG equa-
tions. Such connected kernel equations would,
presumably, be less demanding of the particular
choice of approximations of the channel subspaces.

We review the important features of the CG
theory in Secs. II and III. We then use a
Weinberg-Van Winter-type coupling scheme in
Secs. IV and V to derive connected kernel equa-
tions. In Sec. VI we use the methods of Bencze and
Redish to modify these equations to incorporate
identical particle symmetries. In Sec. VII we use a
model of alpha-deuteron scattering as a concrete ex-
ample to exhibit our connected kernel equations and
the CG equations. Finally, in Sec. VIII we use the
example of Sec. VII to compare the various forms
of the equations.

II. N-BODY NOTATION

Our notation follows that of Refs. 5 and 6 except
that lower case Latin letters a, b, c,. . . (A, 8, C, . . .
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in Refs. 5 and 6} will denote partitions (clusterings)
of the N particles into n„nb, n„.. . clusters (frag-
ments}. The free partition will be denoted by 0
(no ——N), and the partition containing all N particles
in one cluster will be denoted by N. The symbol H'
denotes the set of all partitions of n particles while
H denotes the set

acts on the Hilbert space 4 N and has the form

HN Ho+ ~N ~ (2.5)

where H0 is the N-body kinetic energy operator,
and VN is the sum of all interparticle interactions.
For any partition a we may express the total Hamil-
tonian as

O':—
I a 6 9"':n & 1] . (2.1) HN ——(H~ ), +(Ky )'=H, + Vg, (2.6)

(Note that these meanings of 9' and 9" are the re-
verse of those in Refs. 10 and 11.)

Partitions are used in N-body theories to index
the connectivity of N body -operators. Roughly
speaking, an operator has connectivity a if and only
if it commutes with the unitary group of transla-
tions of the clusters of a and vanishes as any parti-
cles in the same cluster of a are asymptotically
separated. An operator is said to be a connected if
it has connectivity a and connected if it has connec-
tivity Ã (n~ ——1). A precise definition for bounded
operators is given in Ref. 10.

Most N-body operators A can be expressed in
terms of a cluster expansion of the form

A= g [A].=—g'[A]. ,
aEP' a

where [A], is the a-connected part of A. In this pa-
per unrestricted sums will be considered as sums
over H.

It is useful to single out the part of A with the
connections between the clusters of a turned off.
This is most effectively expressed using the lattice
structure on 8"'.' We say a C b if any two particles
in the same cluster of a are in the same cluster of b.
It is easy to show that C is a partial ordering on H'
and introduces a natural lattice structure on 9".
The operator (A), (A, in Refs. 10 and 11) which is
the part of A with the connections between the clus-
ters of a turned off, can be expressed in this nota-
tion as

(2.2}

(A}.= g [A].=— g' [A]b (2 3)
be&" b(Ca)
bCa

It is also useful to define the part of the operator A

which has the residual connections between the
clusters of a. We denote this operator by the sym-
bol (A) (A in Refs. 10 and 11}. It is defined in
terms of (A), by

(A)—:A —(A) = g' [A]b .
b( ga)

(2.4)

We see that it contains the terms in the cluster ex-
pansion of A that connects different clusters of a.

The total Hamiltonian HN of our N-body system

where H, is the part of H~ with the interactions be-
tween the clusters of a turned off and VN (V, in
Refs. 4—6) is the sum of all interactions between
particles in different clusters of a.

The dynamics of the N-body system is contained
in the resolvent of H~,

RN (z) = (z HN )— (2.7)

or in the dynamically equivalent (prior) transition
operators

U~(z) = VN+ VNRN(z) VN, (2.S)

where Imz+0. These can be related to proper sub-

system transition operators through the second
resolvent relations

with

RN(z) =R~(z)+R~ (z) V~R~(z), (2.9)

R, (z) =(z H,)— (2.10)

=PbRb '(z)R~(z) V~P, . (2.1 1)

It is only these projected operators that are physi-
cally relevant, and it is these that appear as the un-

knowns in the CG equations.

III. THE CHANDLER-GIBSON EQUATIONS

Define the operator JJ* by

JJ'—= QP, . (3.1)

Here J is the injection operator of the two-Hilbert
space formulation used in Refs. 4—7, and JJ has a
bounded inverse (Ref. 6, Theorem 7). The operators
Tb, (z) are the unique solution of the exact T equa-

For each a we let P, denote the orthogonal projec-
tion onto the invariant subspace P, of Mz corre-
sponding to free motion of the n, bound clusters of
a. We note that [P,],=P, . These operators will

carry the bound state input in the CG equations.
We also define the projected transition operators

Tb, (z) =Pb Ub, (z)P, —
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tions [Ref. 6, Eq. (3.68)]

Tb.(.) = Pb V„'P.+P, VN(JJ*)

X g R, (z)P, T„(z) . (3.2)

Equation (3.2) is derived in Ref. 6 using two-Hilbert
space methods. Since these methods are not used in
this paper, an alternative derivation is given in Ap-
pendix B.

One nice feature of these equations is that the
operators R, (z)P, can be constructed from the
masses, binding energies, and bound state wave
functions of the clusters of c as follows:

energy variable is left as continuous in the approxi-
mation. Assumption (iii) is known to be satisfied if
there is a dominant projector IId such that
II, IId ——II, for all partitions a or if II,Hb is a com-

pact operator for all o +6 (cf. Theorem 4.4 of Ref.
5).

If P~ is the orthogonal projection of M~ onto the
subspace A, then the formula

P =(JIIJ") 'JIIJ* (3.6)

is valid (cf. Proposition 4.3 of Ref. 5). The approxi-
mate total Hamiltonian H~ of the approximate
scattering system is given by

~
P(c)q')d q'(P(c) q'

~

z T, (q—')+E(c)

(3.3)

H~=I' H~I' (3.7)

and R (z)=(z —H ) '. The approximate transi-
tion operators

where q' is a 3(n, —1) dimensional vector describ-
ing the relative momentum of the clusters of a,

~
P(c) ) is the direct product of the bound cluster

wave functions, T, (q ') is the kinetic energy of rela-
tive motion of the clusters, and e(c) is the total
internal energy of the clusters. This leads to an im-

portant practical advantage. To reduce these for-
mal operator equations to integral equations one in-
serts a complete set of states between P, and T«.
In Eq. (3.2) this complete set can be truncated to the
physically relevant states in the range of' T„,while

other equations require the full set of intermediate
states. These other equations, therefore, include ad-

ditional amplitudes that do not have a simple physi-
cal interpretation.

The approximations of Refs. 4 and 5 involve re-

placements of the form

=IIbRb '(z)R (z}P VNII, (3.8)

are the unique solution of the approximate T equa-
tions [Ref. 5, Eq. (6.4)]

Tb, =I,',"+g Z,',"R,II, T.. . (39)

Ib '=IIbV~H (3.10)

Eb, '=IIb Vb (JIIJ*) 'II, . (3.11)

The operator (JIIJ') ' appears in Eq. (3.11) be-

cause the asymptotic channel spaces are not orthog-
onal. Its presence is a major practical complication. -

To eliminate it we define [cf. Ref. 5, Eq. (6.6)]

(3.4)

JIIJ'=—g 11. (3.5)

where II, is an approximation to I', satisfying As-

sumption (II) of Refs. 4 and 5. In particular, II, is
an orthogonal projection operator on A z satisfying
(i) II,P, =II„(ii) [II„H,]=0, and (iii) the opera-
tor

IIbRb '(z)(JII—J ) 'R (z)P V/II, .
Then Mb, (z) is related to Tb, (z) by

(3.12)

(3.13)

(3.14)

Tb, (z)= IIbRb '(z) Q R, (z)II,M„(z),

and satisfies the approximate M equations [Ref. 5,
Eq. (8.16)]

has a bounded inverse on M —=A'(JIIJ*), the clo-
sure of the range of (JIIJ*).

In practical cases II, =0 for several partitions a,
and the nonzero Ha operators should include a large
enough segment of the space to include all impor-
tant real and virtual cluster states. Assumption (i)
is equivalent to requiring the range of II, to be a
subspace of A, . Assumption (ii) requires that the

where

(3) (&)
Iba =Iba

and

—:IIb[v~ —6b,R, '(z}]II, .

(3.15)

(3.16)
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Here 5b, is equal to 1 if b+c and 0 if b =c.
For a certain class of II, 's and Vz's (cf. Sec. 14

of Ref. 4 for an example) the kernels Kb," and Kb, '

are connected and (at least for Imz+0) compact.
There are other interesting choices where they are
not compact. These choices include II, 's obtained
from I', 's by eliminating channels. They are typi-
cally characterized by the property II, =[II,],.
Even in this case the kernel is connected if all non-
vanishing II, 's have n, =2. If, however, the kernel
of Eq. (3.9) or (3.14) is not compact, then there are
two possible approaches: (1) Approximate the II, 's

by H, 's in such a way that the kernel becomes com-
pact; or (2) modify the equations in such a way that
the new equations have connected (and compact)
kernels.

The first alternative is equivalent to the approach
recently proposed by Chandler and Gibson. ' The
second approach is that developed in Secs. IV —VI
of this paper.

IV. CONNECTED KERNEL T EQUATIONS

In this section we derive a connected kernel ver-
sion of the approximate T equations [Eq. (3.9)]. In
the particular case when II, =P, for all partitions a
this gives the connected kernel version of the exact
T equations (3.2) previously announced by two of
us."

A distinctive feature of our method for connect-
ing these equations is that modifications of Eq. (3.9)
are minimal. In particular, for nb ——2 the new con-
nected kernel is identical to Kb,".

Let

satisfying both b Ua Da and b U a Db.
Let P, denote the orthogonal projection of 8 ~

onto the closure of the range of gb b,,bIIb (c&N).
Then P, Q =P, . Let

and

H, =P, ~P,
R, =R, (z)—= (z —H, )

(4.5)

(4.6)

V' =H —Hc „. (4.7)

The combinatorial results used in this paper are
given in Appendix A.

To obtain connected kernel equations for Tb, we
begin with the resolvent equations

P, + =P, +, +P, Q, V' R (4.8)

Since V' = V' I', we may substitute

P =(JIIJ*) 'gR, R, '!I,

after V' in Eq. (4.9) and use Eq. (3.8) to obtain

(4.10)

We multiply Eq. (4.8) on the left by C,b„Rbb 'IIb,
on the right by VNII„and sum the result over c
(c+N). Using IIbP, =IIb for b Lc, Theorem A2,
and Eq. (3.8), we obtain

Tb g C Rb HbR, VNH
c(Db)

C,Rb 'IIbR, V' R Vg IIg .
c(Db)

(4.9)

Then"

1 if cDb
0 if cgb ' (4.1)

In Eq. (4.10)

C,Rb 'IIbR, V~II,
c(Db)

(4.11)

nc nb

( —1) 'g ( —1) '(n„I)! if cDb, —

if crab'
(4.2)

and

Kb, = QCdRb II—bRd, ~V~' (JIIJ ) II~ .
d(Db)

(4.12)

where nb is the number of clusters of b in the ith
l

cluster of c. Also let

—1
Ca = ~Na~Na

Definition (4.1) implies that

~eh~ca ~c,bUa ~

(4.3)

(4.4)

where b Ua is the partition with the most clusters

The projection operator Hb has the property

IIb IIbPb = IIb [Pb]—b—.

The kernel Kb,
' is therefore connected by

Theorem A 5. For nb ——2 the only c satisfying c Db,
c+N, is c =b In this ca. se Eq. (4.10) reduces to
Eq. (3.9).

Equations (4.11) and (4.12) give a very concise
representation of the driving term and kernel. Un-



1882 %'. N. POLYZOU, A. G. GIBSON, AND C. CHANDLER 26

Lb Lb(——, II):f( db
—[Rb 'IIbRd ]dR p (4.13)

fortunately this representation involves delicate can-
cellations associated with the combinatorial coeffi-
cients C, . If VN is a sum of only two-body forces,
then we can construct more useful representations
for the kernel and driving term of Eq. (4.10), and
exhibit a hierarchy of equations to generate these
operators. Let

case P, =P =I~ for all c and the operator K&,
'

defined in Eq. (CS) of Appendix C is zero. Equa-
tion (4.10) then becomes

Tb, ——QLbRp V)vP,
d

+ g LbRp V+(JJ') 'ReT« . (4.21)
d, ng =2

and

dm=
Vc,'m: Hc, m H

Also let

(4.14)
Yce=,+—face ~ce ~e

e

(4.22)

The operator Z, „defined in Eq. (4.15) may be re-

placed by

(4.15)

Lb=Bb+ g KbR, L,',
e(Cc)

where

Bb = g 5cd~cf ~cd ~db A'ce

d, e,f,g

(4.16)

and suppose that Z, has closed range. It is proved
in Appendix C that Lb =Db+ g FbR,L,',

e( Cc),e+c

where

(4.23)

Db =g —t )Q,f&„UfUg
e,f,g

n =n +1

in this case andI~ ——F, 'F, may be inserted into
Eq. (C19) in place of P, . The analog of Eq. (4.16)
is then

XhcfkdgLfRP V, '~ReL, , (4.17) XLfRp VgY, 'R,Lf, (4.24)

and

+b = g ~cd~cd ~db~dgLPP Vc, e Zc,e.
d,g

and

Fb= g LfRpVgY,
g(, Cc),n =n +1

(4.25)

(4.18)

The sum over d in Eqs. (4.17) and (4.18) may be
evaluated in essentially the same way as the sum
over c was evaluated in Eqs. (C6) —(C13). We omit
the details.

Equation (4.16) is a linear c-connected kernel
equation for Lb that uses the Lb for d Cc, dQc, as
input. This gives a recursive scheme for evaluating
the Lb operators starting from Ld ——H~Ro ' and

Lp for n, =N —1 which, by Eq. (4.16), satisfies

Lp ——IIpV, ' +IIpV, ' Z, 'RpLp, (419)

where

When n, =E 1 and b =0,—Eq. (4.23) becomes

Lo = V, + V,RoLo (4.26)

which is the two-body Lippmann-Schwinger equa-
tions embedded in the E-body Hilbert space. It is
Eqs. (4.21)—(4.25) which were previously an-
nounced by two of us in Ref. 13. Using the
methods of Ref. 14 we have shown that these equa-
tions possibly admit spurious solutions.

Another example which has a dominant projector
will be given in Sec. VII [cf. Eqs. (7.13) and (7.14)].

IIp V, ' =IIp(H, P, HpIIp) . —(4.20)
V. CONNECTED KERNEL M EQUATIONS

Equations (4.10) and (4.16) simplify considerably
if Vz is a sum of only two body forces and
P, =P for all partitions c. This last assumption
is satisfied if there is a "dominant projector" d such
that II, IId ——II, for all partitions a.

For example, if II, =P, for all partitions a then
IIo is a dominant projector. In this exact theory

R (3) (~(3)) +(~(3))d (5.1)

In the notation of Secs. II and IV we find that

In this section we derive a connected kernel ver-
sion of the approximate M equations [Eqs.
(3.14)—(3.16)]. The first step is to express the ker-
nels Eb, of Eq. (3.16) as
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(Kbc )d ~dbIIb[~d 5bc c ]He~dc .

Using (5.1) rewrite Eq. (3.14) as

g(5bc (Kbc )»RcIIc)Mca

(5.2) The operators (Ub, )a
——( Ub, ) d(z) satisfy

( Ub )d (Kbc )dRc

+ g (Kb',")»R,(U,.)a . (5.7)

where

Iba = g Cd [5bc + ( Ubc }d1Ice
c,d

(5.5)

Kb = gc—a[5b +(Ub }al(K
d, e

(5.6)

(5 3)
A connected kernel equation for Mb, is obtained if
we formally invert the left side of (5.3), multiply by
Cd, and sum on d. The result is

(5.4)

The theorems of the Appendix guarantee that
(5.4) has a connected kernel, although (5.7) does not.
This is because (Ub, )a has no fully connected terms
in its cluster expansion. For this operator it is suf-
ficient to construct a d-connected kernel equation
because the nonessential degrees of freedom associ-
ated with the relative motion of the clusters harm-
lessly factor out. What remains is a connected ker-
nel equation on a smaller space with the nonessen-
tial degrees of freedom appearing as parameters.
Solutions for different values of the parameters are
related by known unitary transformations.

To construct a d-connected kernel equation we
utilize the following relation between the various
operators (Ub, )d

(Ub, )d
——g [5b, +(Ub, ),](K,', '}»R,+ g [5b, +(Ub, ), ](K'f')»Rf(Ufa)a . (5.8)

The derivation of this equation follows closely the derivation of (5.4) if we note that for e Cd

(5.9)

To obtain the desired equation multiply Eq. (5.8) by 5», bde
' and —sum over e. This gives

( Uba }d= g 5»a~de [5 +bc( Ubc }e](Kca}dRa g 5»e~de [5bc+( Ubc )e](Kcf )dRf( Ufa )d ~ (5.10)
c,e c,e,f

where we have used Theorem A3. The kernel of
this equation is d connected by Theorem A6. The
restriction 5», b,d,

' requires e Cd and e+d, so the

(Ub, ), appearing in the kernel and driving term of
Eq. (5.10) correspond to e's that are strict refine-
ments of d. Thus this equation can be used to re-
cursively construct (Ub, )» on decreasing numbers of
clusters of d beginning with nd ——X—1 for which
(Ub, )d =0

Equation (5.4) and the hierarchy (5.10) are the
fundamental connected kernel equations of this sec-
tion. Since these equations are derived from the ap-
proximate Chandler-Gibson M equations, the solu-
tions should have the same physical content. As
with the connected T equations, spurious solutions
of these equations cannot be ruled out. '

VI. EQUATIONS FOR IDENTICAL PARTICLES

When some particles are identical, their inter-
change is a symmetry of the system that should be
incorporated into the basic dynamical equations.
This is done in this section for the equations
developed in Secs. III—V, at least to the extent re-
quired by the example of the next section. We fol-
low the strategy of Bencze and Redish.

The permutations p of identical particles form a
finite group W~. For simplicity of notation the. un-

itary operators associated with the permutations are
also denoted by p. Operators

p=fpp ~

where f~ = —1 if p involves an odd number of fer-
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mion permutations and +1 otherwise, are defined.
The Young symmetrizer of P'& is given by

(6 2)

Mbooo (NboNoo) g YboPbobMbopooo Y
be [b']
aE[ao]

(6.10)

where
~
Ab

~

is the order of P'~.
For any partition a there is a subgroup P', of

permutations that leave the partition invariant. The
corresponding Young symmetrizer is given by

'XP
p EP'

(6.3)

@II,= IIp,p, (6.6)

where p is any member of P'~. Another example is
provided by the transition operators Tb, and Mb„
which are labeled by two partition indices. They
also have the property

pro =trpb, pap ~

A 77 77 A
PM' =Mph, paP,

(6.7)

(6.8)

where p is any member of P'~. Operators with the
properties of Eqs. (6.6)—(6.8) are called "label
transforming" by Bencze and Redish.

Because the operators Tb, and Mb, are label
transforming, their correctly symmetrized forms
are

7booo =(NboNoo) g YboPbob7bapooo Yoo
be[b ]
a G[a0]

(6.9}

where
~

P',
~

is the order of P', .
Since interchange of identical particles, even if

the partition is changed, does not change any physi-
cal properties of the system, quantities labeled by a
and a', with a'=pa for some p EP'N, are physically
equivalent. It is therefore useful to divide the set H
by partitions into equivalence classes

[a]—:[a'EH ~a'=pa for somepEP'b j . (6.4)

The number N, of elements of [a] is given by

'
~ (6.5)

These equivalence classes are to be treated as the
physical entities. To facilitate this a canonical
member a' is designated for each equivalence class
[a].

The various operators appearing in the dynamical
equations of the previous sections are labeled by
partitions. For example, the projection operators
II, are labeled by one partition index. We assume
that they are chosen to have the property

(6.15)

K,.=(N P', )' II,V/ (JIIJ') 'Y/II . , (6 16)

and

Kb,. IIb.(5,.Y . ——(Nb jV .)'~ Y~)—II Q .
(&)

+Ibogo

In Eq. (6.16) the operator JIIJ* can be replaced by

Y~JIIJ YN ——YN QN, II,Y~ . (6.18)

(6.17)

co

Similarly, the operators Ib, „Ib, „and Eb, , asso-(2) (&) w(2)

ciated with the connected kernel equations can be
simplified. The appropriate formulas are the fol-
lowing:

In Eqs. (6.9) and (6.10) the operators pb.b
and p

denote the operators p associated with the permuta-
tions that change b into b' and a' into a, respective-
ly.

The dynamical equations that the operators Tb,
and Mb, satisfy are of the general form studied by
Bencze and Redish. Both the inhomogeneous
terms and the kernel operators are label transform-
ing. It follows that the symmetrized forms of the
basic dynamical equations have the following form:

(6.11)
c0

for j=1,2; and

(6.12)
c0

for j=3,4. The operators I J', are given by9

&&[& ]

where the IbJ' are defined in Eqs. (3.1()}, (3.15),
(4.11), and (5.5). The operators K„~,are given by

K J.'.=(Nb. /N, )'~ g Kbj'p .Y. , (6.14)
a&[a0]

where K„'J' are defined in Eqs. (3.11), (3.16), (4.12),

and (5.6).
The machinery developed by Bencze and Redish

can be used to obtain simpler expressions for Ib, „
Ibo Kb ., and Kb,', than those of Eqs. (6.13) and

(6.14). The appropriate formulas are the following:
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and

i~'.).=(N,P .)'" g C,a„L,'g, r„V„'II . ,

c( ~bo)
d

I",",.=(N,~ .)'"g C,[S,,+(U,. ),]II,I „V~ 11 . ,
c,d

K„...=(N„jV,.)' g C,h,dL Qp V' (JIIJ') 'I')vII . .
c( Db0)

d

(6.19)

(6.20)

(6.21)

w(4)
The operator Eb, , does not seem to have any gen-

erally useful representation that is simpler than the
basic definition (6.14).

Equations (6.11) and (6.12) involve only correctly
symmetrized quantities and treat equivalence
classes (via canonical partitions} as single entities.
It would therefore appear that they represent a
complete solution to the problem of incorporating
the symmetry under interchange of identical parti-
cles. This is the case for the unconnected equations

(j =1,3).
It is not the case for the connected equations

(j=2,4). There are also the subsidiary equations
for the operators Lt", and (Ub, )d. Unfortunately, the
symmetry group of these operators is P'd, leading
to a complicated situation when different partitions
d appear in the same equation. For this reason we
have not pursued the symmetrization of the subsidi-
ary equations and have left it as a problem for fu-
ture research. Fortunately, for some systems the
symmetrization of the subsidiary equations is not
necessary. An example of such a system is dis-
cussed in the next section.

d =(12)(3456), N =(123456),

1 = (1)(23456), t =(123)(456),

2=(2)(13456), 0= (1)(2)(3)(4)(5)(6),

a =(1)(2)(3456) .

The Jacobi momenta and reduced masses are

(7.1)

pd ———,(k) —k2),
]

qd =—(2k(34s6) —4k) —4k2),

p) ———,(4k3 —k(3454) ),
] ~ ~ +

q) ——,(5k) —k3 —k(3456)), (7.2)

change effects are also included. For simplicity we
neglect the electromagnetic interaction and the nu-

cleon spin. A comparison of the two models of
alpha-deuteron scattering and the four forms of the
equations will be given in Sec. VIII.

We introduce the following notation. We label
the nucleons by integers and the various partitions
as follows:

VII. EXAMPLE: ALPHA-DEUTERON
SCATTERING

p2= 5 (k(3456) 4k)),
]

q3 ———,(5k2 —k, —k(3456) )

In this section we exhibit the four forms of the
approximate CG equations in the context of alpha-
deuteron scattering. We first give the connected
and unconnected T equations [Eqs. (3.9)—(3.11) and
(4.10)—(4.12}]for a simple model of the process. In
this model only the elastic and the deuteron-
breakup channels are included, and exchange effects
arising from the Pauli principle are ignored. We
then write out the connected and unconnected M
equations [Eqs. (3.14)—(3.16}and (5.4) —(5.6)] for a
more complicated model of the process. This more
complicated model includes the H- He channel in
addition to those channels of the simple model. Ex-

q, = —,(k()23) k(4s6))

1

pd= 2m~
4 3

(7.3)
4 5M = —,m, M) ——M2 ——

6 m,

where m is the mass of a single nucleon and k, is
the total momentum of the cluster a. We let e(a),
e(d), and e(t) denote the alpha, deuteron, and triton
binding energies measured from the breakup thresh-
old. The corresponding bound state vectors are

~
P(a)), P(d)), and

~
P(t)), respectively The vec-.

tors P(a) qd p~ ),
~
P(a)(t)(d) qd ), and
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I
P(t)P(t')q, ) are normalized as

(4«)q~P~ I
(('«)q~» & =@q~—qi +(P~ —Pi),

(4(a)y(d)qg
I
y(a)y(d)qg) =5(qg —qg),

(p(t)p(t')q,
I
P(t)P(r')q, ) =5(q, —q, ),

(7 4}

where P(t) and P(t') represent the three particle bound states consisting of particles (123) and (4S6), respective-

ly. In what follows we will also need the operators

H = o' qzpz dqadp~ o' q&p&

11,=f I
P(a)P(d) q~) d q~(P(a)P(d) q

II, =f I
(tt(t)P(t')q, )d q, (P(t)((}(t')q, I,

I
4(a) qd pd )d qdd pd (4(a) qd pd I

R~H~= 2 2z —
qg /2M' pg /2p—g+e(a)

I
y(a)P(d)qa)dqa(P(a)P(d)qq

I

RgHg ——

z q~ /2M—~+a(a)+e(d)

I
N(&)0(t')q ~dq (((}(&4(&')qt

I

z q, /2—M, +2@(t)

(7.5)

(7.6}

I'iv= $ I';,
r(j

~~= ~12+ Va

~1 ~23 + V24+ ~25 + ~26+ Va

~2 ~13+ ~14 + ~15 + ~16 + ~a

—~34+ ~35+ ~36+ ~45+ ~46+ ~56

~g V12+ ~13+ ~23 + ~45 + ~46+ ~56

d

~X =~a —~11

~X'= ~W —~2
(7.7)

Our simple model of alpha-deuteron scattering is
characterized by

model are

Tgg =Hg~&~g+~g~z
Hg =gg~H~+gggHy (7.8)

X(II , II~)(RgII~Tgg+—R—IIT ~),
In this approximation JHJ* =H +H~, and
(JIIJ ) 'P and P can be computed in the closed
forms

T g ——H V~Hg+II V~

X(II , II~}(R/II/T~g+—R—IIT 4), (7.11)

(JIIJ') 'P =II ——,Iig,

P =H

(7.9)

(7.10)

The connected form of the approximate T equa-
tions are Eqs. (4.10)—(4.12). If we use the notation

We assume that the initial change is fixed at d.
The approximate T equations (3.9)—(3.11) in this

r, =r, (z) =L'RoR
for a =d, 1, or 2, these equations are

(7.12)
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Tdd I—I—d VNIId+IId VNIId(II ,—II—d)(RdrldTdd+R II T d),

T d II——VNIId+(~d+~)+r2)R II VNIId

+(rdR II VN+r)R II VN'+r)R II VN )II (II ——,II )(R II T d+RdIIdTdd) .
(7.13)

Although the L', and hence ~„can be computed
from Eqs. (4.16)—(4.18), in this special case r, are
the solutions of the Lippman-Schwinger-type equa-
tions

(7.14)

a =d, 1, or 2. It is clear that the kernel of Eq.
(7.13) is connected, and the kernel of Eq. (7.14) is a
connected.

There is no advantage to using the M equations
when (JIIJ~) 'P can be computed exactly as in
this model. Therefore we do not write them down.

Next we consider a more realistic model of this
system. This model includes the effects of exchang-
ing one or both nucleons from the deuteron with the
nucleons in the alpha particle. It also includes the
H- He channel. In this case the nonvanishing II, 's

are IId, II, II„and all II, 's related to these by ex-
change of identical particles. To make a rigorous
connection with an approximate time dependent
theory one must show that the JIIJ* associated
with this approximation has closed range. Al-
though this has not been proved for this example,
we will assume that the range is closed.

In this model (JIIJ*) 'P does not have a simple
closed form. Therefore the T equations which re-
quire this inverse will not be written down. Instead,
we formulate this model with both the unconnected
and connected forms of the M equations. The sym-
metrized form of these equations is Eqs. (6.12)
—(6.14) with j=3 and 4, respectively. The result-
ing equations have the three coupled canonical
channels d, a, and t. (We dispense with the super-

I

I

scripts o.) We only consider the case where the in-

coming state is in the d channel.
In this model the operators I~, and Eb, of the(3) (3)

unconnected M equations (6.12) are

~dd —+dI d~N ~N~d &

(3) d

I d (NaN—d)' IIaYN VNild,

I,d' (N, N——d)' 'IIt YN VNIId

Kdd' NdII——dYN(VN Rd ')I—Id +YdR

Kd (NdN )' ——IId YN(VN —R ')II

Kd, (NdN, )'——IId YN(VN —R, ')II, ,

K d=(N Nd)' II YN(VN Rd ')IId- ,

K', =(NaNt)'~ IIaYN(VN R, ')ll, —,
K,d (N, Nd)' II——, YN( VN Rd ')IId-,
K, =(N,N )'~ II, Y (V —R ')II
M(3)K„=N,II, YN(VN —R, ')II, +Y,R, 'lI, .

(7.15)

The numerical factors are easily computed to be

N) ——N2 ——6,
Xd ——N~ =15,
%,=10 .

(7.16)

The operators Ib, and Kb, of the connected M(4) (4)

equations (6.12) are

Idd =Nd IId [IN + ( Udd )d + ( Uda )d l YN VN fId ~

Iad=(NaNd) IIa[IN+(Uaa)d+(Uaa)1+(Uaa)2+(Uad)d]YN VNHd,

Itd (NtNd ) Ht YN VN~d ~

(4) 1/2

Kdd' IId [IN+(Udd)d+—(Ud )d](VN+ g 5,dP, d YdRN ')YdIId,
a G[d]

Ed (Nd/N )' IId[I +(——Udd)d+(Ud )d](V + g 8,~, Y R ')Y II
ac[a]

Kdt (NdNt) Hd[IN+(Udd)d+(Uda)a]( NVN+t YNRt Ht) i

K."„'=(N.tNd)'~'II. {[I„+(U..),+(U.d)„][Vd y S. P. dY dR„d-']
a E[d]

—N [(U ))+(Ua )2]YNRN '] YdIId,

(7.17)
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Ran HaI [(Uaa)d+( Uad)d]( VN g 6aapaa aRN
a E[a]

+(U )i(Viv' g ~i.f. —g ~i.f" Y Rx ')
aF[a] a&[a]

+.(U )2(V~ g b,p,p, —g bp, p, Y' RN ')I Y II
«[a] «[a]

K~,'= (N~—N, )' H~[I~+(U~a)d+(U~a)1+(Uaa)2+(U~d)d]YivRN Ht,

&,d = (X,N—d)'~ II, Y~R~ 'IId,

X ~«&.tR~ Y~+N~ ~iv V~)Hi
aG[t]

The operators (U,s), =(U,b), (z) which are needed

as input to Eqs. (7.17) are the solutions of Eqs. (5.7).
For this particular model these equations are

(U ), =H V, R~H~+ H~V)R~H~(U~~)),

(U..),=H.V R~~.H.+H.V2~R.H.(U..), ,

(U .),=H [(I„Hd)VdR—.+Hd]H

+H.[(r~ H, ) Vd R.—+ Hd ]H.(U..)d

(7.18)

The remaining nonvanishing (U,b)d operators can
be computed from the operator (U )d by quadra-
ture

(U d)d= H[ln +(U—)dlHd

(Ud )g IIa(VdR ——Ix)[IJv+(U—)d]Hd,

(Udd)d = —IId(VdR I~)[I~+(U—)d]II IId .

(7.19)

To obtain transition operators with the appropri-
ate symmetry we use a symmetrized form of Eq.
(3.13)

Tb~ ——Hb Rb P~iVb
—1 1/2

X(N~ RdIIdMd, +N' R H M,
+N, R, II M„) .

(7.20)

VIII. DISCUSSION

In this paper we have considered the new dynam-
ical equation [Eq. (3.2)] for N-body scattering that
has recently been proposed by Chandler and Gib-
son. More precisely, we have studied approximate

versions [Eqs. (3.9)—(3.11) and (3.14)—(3.16)] of
this equation. As the kernel of these equations may
be noncompact so that standard numerical technol-
ogy may be inapplicable, we have derived connected
kernel versions [Eqs. (4.10)—(4.12) and (5.4) —(5.6)]
of these equations. These connected kernel equa-
tions preserve most of the important features of the
original equations (cf. Refs. 4 —6), but the kernels
are more complicated and the possibility of spuri-
ous solutions is raised [cf. the remark following Eq.
(4.26)]. The advantage of the connected kernel
equations is that standard compact kernel methods
can be used. We then went on to write down (in
Sec. VI) the properly symmetrized form of the
equations, both connected and unconnected, for sys-
tems containing identical particles.

Finally, in order to compare the connected and
the unconnected equations in a more concrete con-
text, we have formulated two models of alpha-
deuteron scattering in Sec. VII. Each model corre-
sponds to an approximate time-dependent system
governed by the Hamiltonian H~ defined in Eq.
(3.7). The projection operator P is determined by
specifying the nonzero projection operators H, .
These projection operators and the potentials given
in Eq. (7.7) therefore specify the dynamical content
of the model.

The first, and simpler, model of Sec. VII includes
only the d-o; and n-p-a channels. Exchange effects
and the H- He channel are ignored. This model is
one of the few in which (JHJ~) ' has a simple
closed form [cf. Eq. (7.9)]. Consequently, there is
no advantage in using the M equations and we have
exhibited only the T equations, unconnected [Eqs.
(7.11)]and connected [Eqs. (7.13)].

The input to Eqs. (7.11) involves only the alpha
and deuteron bound state wave functions (i.e., II
and Hq) and the nucleon-nucleon interactions (i.e.,
Vg and V~). This input involves exactly the quan-
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tities of interest in direct interaction theories. The
solution method of Chandler and Gibson"' for un-

connected equations requires the additional approxi-
mation of the operator II by an operator II which
will give a compact kernel of the resulting Eq.
(7.11). The solution of these equations is approx-
imate transition operators T,d, a =n and d.
Chandler and Gibson have proved theoretically
that this can be done in such a way that the T,d
operators converge to the T,d operators both on and
off shell as the II6 operators converge to the II,
operators. The practicality of this method has yet
to be established, however.

On the other hand, Eqs. (7.13) require as addi-
tional input the (unphysical) matrix elements of the
off-shell subsystem transition operators r, (z) which
are the solutions of the three Eqs. (7.14). In prac-
tice one calculates only approximations ~, to these
operators which are then put into the kernel of Eqs.
(7.13) to calculate approximations T,d to tlie opera-
tors T,d. Although we are unaware of any rigorous
proofs, experience with equations of the Faddeev-
type suggests that the T,d converge to the T,d as
the ~, converge to the v,

The second model in Sec. VII is more sophisticat-
ed in that exchange effects and the H- He channel
are included. The exchange terms are an important
ingredient of phenomenological models that is not
included in the first model. The H- He channel is
believed to be important because of certain resonat-
ing group calculations. '

In this second model the operator (JIIJ*) ' does
not have a simple closed form, considerably compli-
cating the T equations. We have therefore con-
sidered only the unconnected [Eqs. (6.12) and (7.15)]
and connected [Eqs. (6.12) and (7.17)] M equations
for this model. A close inspection of the operators
of either Eqs. (7.15) or (7.17) shows that the equa-
tions of this more realistic model are not substan-
tially more complicated than the corresponding
equations for the simpler model. The primary com-
plications involve the intricate coordinate transfor-
mations associated with the symmetrizers Y„and
the presence of the additional H- He channel with
its resulting increase in the number of kernel opera-
tors Eb, from four to nine.(j)

The input to the unconnected kernel equations
[Eqs. (6.12) and (7.15)] are the operators II, and the
potentials V~, a =d, a, and t. The kernel is not
connected and does not become so upon iteration.
The solution strategy ' therefore requires an initial
approximation II to II which will connect these
kernels.

The connected kernel equations [Eqs. (6.12) and
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APPENDIX A

In this appendix we give some of the main com-
binatorial results used in this paper.

Theorem 3l.

~ac ~cb g ~ac ~cb ~ab
c 6;J'

(Al)

Proof. The result follows directly from Eqs. (4.1)
and (4.2).

Theorem A2.

(A2)

(b) g C, = g C, b,b 5Nb . —— (A3)
6(3b) 6

Proof Equation (A3.) follows from Eq. (Al) and
Eq. (4.3). Equation (A2) is obtained from Eq. (A3)
by taking b=0.

Theorem A3.

(A4)

Proof.

X ~ah~ah g (~ab )~ab ~bO

=1-&.o =&.o (A5)

(7.17)] require as additional input the set of six off-
shell operators (U,b), (z) which are to be obtained
(approximately) from Eqs. (7.18) and (7.19).

In both models, therefore, the input of the con-
nected kernel equations is considerably more com-
plicated than that of the unconnected kernel equa-
tions. In addition, the structure of the kernel itself
is more complicated. The advantage of these equa-
tions is that they can be solved by well-established
techniques. If future work shows that the initial
approximations II, of II, can be made in a compu-
tationally practical way, then the simpler structure
of the unconnected CG equations may well shift the
advantage to them.
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Theorem A4. The operator

g C, (A), (B)'
a

is connected.
Proof. This is Theorem 7 of Ref. 10.
Theorem A5. The operator

C, [D]b(A ),(B)'
a(Db)

b, c,d E 2'
~.b '~b.~.d(1 —~bd }[A].[B]d

X ~.d(&...U» f—.,}[A].[Bl»
c,d& 9"

ad a, c Ud 6ae )[[A].[B]d]a

and the last expression in (A7) is a connected.

(A7}

is connected.
Proof. Since

([D]b(A), ), =b,b [D]b(A }, , (A6)

APPENDIX 8

In this appendix we derive equation (3.2). Equa-
tions (2.8) and (2.11) imply that

the result follows from Theorem A4.
Theorem A6. The operator

C—= —g 5 bh b (A)b(B}

is a connected.
Proof

Tb, (z) =Pb V~P, +Pb V&R~(z)Vg P, .

%e insert

I = g P, ' g P»R»(z}P»R» '(z)
c d

between Vz and Rz(z) in Eq. (81) to obtain

(81)

(82)

Tb, (z) =Pb Vg P, +Pb Viv g P, ' g P»R»(z)(P»R» '(z)R~(z) VNP, ) .
C

(83)

Equation (3.2) now follows immediately by substi-
tuting Eqs. (2.11) and (3.1) into Eq. (83).

APPENDIX C

Kb,
' gc,h,——»LbRo V' (JIIJ*) 'II, .

c(3b)
d

(C4)

In this appendix we derive Eqs. (4.16)—(4.18).
Since for b Cd Cc,

IIbR, =H/Rd + IIbRd

X(H, Hd )R, Q, —

lb''= g LbRo Vi'vll. . (C5)

The operator Kb, ' in Eq. (C4) may be written as

Using Theorem A2 we may evaluate the sum over c
in Eq. (C3) to obtain

and II, —Hd has connectivity outside of d, we
reach the conclusion that

[Rb 'IIbR» ]»=[Rb 'IIbR, ]d .

Using Eqs. (2.3) and (4.13) we may then write

Rb IIbRc, ~= g [Rb 'IIbRc,.l»
(b C )d ( Cc)

(2) 1 (2) 2 (2)
+ba +ba + +ba

where

'K,'."—= g C,a,„a„L,'R, V„'(JIIJ*) 'II. -
c&d

(C6)

(C7)

= g Lb»Ro
d(Cc)

(C2)

Substituting Eq. (CZ) into Eqs. (4.11) and (4.12)
gives

and

2Kb'."=yc, ~,d~,bLb»R-oH,
c,d

X(P —P, )(JIIJ ) 'Il, . (Cg}

Jb"'= g c.~,»Lb»RoCII.
c( Db)

d

(C3)
Using the cluster expansions

Vb = g(1—~-)[Vx].
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H, = g b,,f[H~]f,
f

P P,—= g(1—b„)[P ]

(C10)

(Cl I)

Pd +,„=Pd Qd ~+Pd Qd „V,'~R, „, (C17)

where d Cc, c+N, and V, ' is defined by Eq. (4.14).
We multiply Eq. (C17) on the left by

~cd~cd ~dbRb ~b ~

we may evaluate the sum over c in Eqs. (C7) and
(C8). In particular, using Eq. (44) and Theorem

A2, we obtain

Kba y ~Nd UeLbRO[ ale(JHJ ) Ha
d, 8

(C12)

on the right by Ro ', and sum the result over
d, b Cd Dc. By Theorem A3 this gives for bQc

Rb IIbRc,+o
~cd ~cd Rb IlbRdAP,

d(3b)

Rb IIbRd
d( Db)

2 (2)
Kba g ~NdUfUgoNdUf

dfe

XLbRo[H~]f[P ] (JIIJ*) 'II, . Since

XV, R.,~o (C18)

(C13)

If Vz is a sum of only two-body forces then

[V~ ],+0 only for n, =X —1. The condition
d Ue=X in Eq. (C12) then requires nd=2. Thus

for two-body forces Eq. (C12) may be further sim-

plified to

Rb 'IIbRd =(Rb 'IIbRd )d,

the second term on the right side of Eq. (C18) is c
connected by Theorem A6. Bemuse the first term
on the right side of Eq. (C18) has no c connected
pieces for b Cd Cc, dQc, it necessarily cancels the
terms on the left side of Eq. (C18) with connectivi-
ties d Cc, d+c. What remains is

Kb~ = g LbRP Vg(JIIJ*) 'II, . (C14)
Lb g ~ d~ d Rb IIbRd, V, R,Ao

d(2b)

(C19)

IIdRd ~=RdIId+RdIId(Pd ~dPd ~ Hd)—

=RdHd .

The operators Ld thus are given by

(C15)

We assume that Z, defined in Eq. (4.15) has
closed range. Then [cf. Eq. (3.6)]

(C20)

Since V, ' = V,
' P, , we may write Eq. (C19) as

Lb= —g 5 dh d Rb IIbRd, V, ,
'

d( Db)
e(t c)

L,d ——IIdEO
d —1 (C16)

&& Z, 'R, R, 'II,R, +0
The remaining operators Lbd, b@d, can be con-

structed recursively on the number of clusters of d
decreasing from nd ——N —1. To obtain these recur-
sive equations we begin with the resolvent equations

(C21)

Now we substitute the cluster expansion (C2) into
Eq. (C21) to obtain Eqs. (4.16)—(4.18).
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