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We prove here that by taking the zero range limit of conventional nonrelativistic three-

particle theories and restricting the two-particle amplitude in this limit to have no singular-

ities at negative energy other than bound state poles, we can derive unitary three-particle
equations depending only on two-particle physical observables. Phenomenological exten-

sions of this theory suitable for data analysis of systems with three-particle final states and
two- and three-cluster reaction theories are briefly discussed. The extension of the theory
to four-particle systems is sketched. Nonrelativistic and relativistic applications will be dis-

cussed in subsequent papers in this series.

NUCLEAR REACTIONS 3, 4 particle equations, generalized to X.
Restricted to 2 particle observable input, no left hand cuts. Faddeev-

Yakubovsky combinatorics.

I. INTRODUCTION

The research program reported in this series of
papers had its origin in the obvious proposition that
we can learn more about the dynamics of three-
particle systems if we can "subtract" from the
three-particle system the consequences of the
scatterings and bound states of the two-particle sub-

systems in a way that preserves asymptotic proba-
bility flux and can be uniquely and unambiguously
computed using only the probabilities that can be
unambiguously determined (in the sense of the law
of large numbers) from the statistics of two-particle
scattering experiments. In this paper we assume in
addition that all "particles" and "bound states"
considered can be characterized by unique finite
mass values, or failing that in the limit of small
mass differences, by parameters which are unambi-

guously assigned by the "detectors" implied in the
reference to asymptotic states.

Once launched, it became clear that this program,
if successful, would also find application in elemen-

tary particle theory. Thanks to Faddeev it was al-
ready clear that the simplest route to asymptotic
flux conservation ("unitarity" in the context of a
nonrelativistic Hamiltonian theory) requires in the
three-particle system the (unobservable for three
free-particle states) separation of the wave function
into "channels" referring to an "interacting pair"
and a "spectator" —an "overcomplete" description.

Once this is done using the Faddeev prescription a
vertex which opens between two subsystems cannot
again close until some novel component of the sys-
tem has intervened. Hence the "self-energy dia-
grams" which are a major source of infinities in the
quantum field theory approach to elementary parti-
cle physics cannot occur if one follows Faddeev's
prescription. Further, if the theory is consistently
formulated in terms of "free particle" asymptotic
states of specified finite mass, one has immediately
available a covariant relativistic description of the
observables simply by using covariant kinematics,
and does not have to enter the vexed question of
how the "interaction energy" transforms from one
coordinate system to another or of how that quanti-

ty is to be "localized" in the laboratory in a manner
consistent with the presupposed quantum theory. '
The success of Lindesay in constructing a minimal
relativistic three-particle dynamical theory has
proved that these hopes were not illusory; conse-
quences will be discussed in subsequent papers in
this series.

Despite the simplicity of the physical ideas that
launched the program, it ran into technical difficul-
ties, some of which are explored in this paper. In
the nonrelativistic context the naive approach is
simply to replace the "fully off-shell" scattering
amplitude t(q, q;z —p ) of the two-body subsys-
tems, which contains the dynamical content of the
Faddeev equations, by the "on-shell" (or zero range;
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see Sec. II) amplitude t(z —p ). However, conven-
tional two-particle on-shell scattering amplitudes
generated by an exponentially bounded "potential"
or extracted by some prescription from a nonrela-
tivistic limit of an elementary particle theory based
on the Wick -Yukawa model of finite mass had-
ronic quanta usually require singularities ("left-
hand cuts" in the language of dispersion theory)
when the energy argument q of the on-shell two-
particle amplitude r(q +i 0+) is analytically con-
tinued to negative real values. Since the Faddeev
formalism requires the spectator particle energy p
to range over all positive values, the Faddeev equa-
tions become ambiguous in the zero range limit in
the presence of left-hand cuts in the model used for
the on-shell amplitude.

The naive answer to this technical difficulty is to
confine our zero range theory to models that have
no left hand cuts. The simplest such model, the
scattering length model, has a long history, starting
with the proof by Thomas that such a model in the
case of attractive interactions would give infinite
binding to the triton. Although subsequent work
has shown that it is possible to define "zero range"
limits in this problem in such a way as to achieve
finite results, our approach here differs. As has
been shown by Brayshaw, ' if one uses relativistic
kinematics and argues from the requirement that
the spectator in a three particle problem should not
affect the scattering of the pair, and hence, must be
represented by all momenta between zero and infini-
ty when the pair are in their own zero momentum
system, then simply transforming these limits to the
three particle zero momentum system one finds that
the spectator momentum hes between zero and
(M —m )/2M, where M is the invariant four
momentum and m the mass of the spectator. Thus
by using relativistic kinematics the scattering length
model becomes mell defined without additional ar-
gument, and as Lindesay has shown, yields precise
quantitative results. Indeed as the scattering length
goes to infinity he shows that the nonrelativistic
Efimov accumulation of a logarithmically infinite
spectrum of three particle bound states is obtained,
in quantitative agreement in the appropriate region
with nonrelativistic calculations based on separable
potentials. For work in the nonrelativistic region, it
suffices to simply use a fixed momentum cutoff by
taking M =3m (for equal masses) and use nonrela-
tivistic kinematics. Calculations in this approxima-
tion for the three nucleon problem made by Or-
lowski will be presented in the third paper in this
series. " But the objective of this theory was not to

give a new method of meeting the scattering length
problem but rather to find a general on-shell theory
that could use only empirical input.

For the general case, the "no left hand cut" as-
sumption forces us to part company both with po-
tential theory and with the usual ideas about how
particle exchanges are reflected in the analytic
structure of on-shell two-particle amplitudes. One
reason that this program has taken so long to reach
definitive publication was that the author was ex-
tremely reluctant to take this step. However, once
taken, the theory is at least well defined, and leads
to interesting results in both the nonrelativistic"
and relativistic ' applications already made. We
therefore beg the skeptical reader to reserve judg-
ment on the usefulness of this step until he has seen
the reasoning that has forced us to it.

Our first step in what follows is to define the zero
range limit in both configuration and momentum
space, and explicate why well understood physical
principles force us to a restricted class of models
when we take that limit, which is done in Sec. II.
In Sec, III we derive three-particle equations by im-
posing a finite range boundary condition on the
asymptotic form of the three-particle wave function
in each Faddeev channel and taking the zero range
limit. The resulting equations are identical to the
on shell limit of either the Faddeev or the
Karlsson-Zeiger equations under our model as-
sumption. In Sec. IV we show that the three-
particle scattering amplitudes calculated from these
equations satisfy three-particle unitarity on-shell
(i.e., satisfy the physical requirements of asymptotic
fiux conservation and detailed balance). In Sec. V
we show how to introduce "reduced widths" and
zero range "three-body forces" into the theory with
an eye to data analysis. We sketch a three-cluster
multichannel reaction theory. In particular, we also
show that if the two-particle subsystems contain
only bound states and no scattering states, we can
calculate asymptotically unitary "three-particle"
amplitudes describing the elastic and rearrangement
scattering of a particle and a two-particle cluster
which never lead to breakup at any energy. This
has obvious application to nuclear reaction theory
using cluster models, and in the relativistic version
of the theory to be developed subsequently, to fully
covariant "constituent" models. Thus we have
found a practical way to implement the proposal of
Fermi and Yang' that the pion be considered to be
a "bound state" of a nucleon and an antinucleon.
In Sec. VI we show that the same approach leads to
well-defined four-particle equations. Assuming that
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the covariant 4,5, . . . particle equations follow as
easily from the nonrelativistic combinatorics as do
the three-particle equations, this will open up the
exploration of phenomenological covariant consti-
tuent quark models, that is, asymptotic quantum
chromodynamics (QCD) without gluons, and also,
we hope, with confined gluons.

II. THE ZERO RANGE LIMIT

As mentioned in the Introduction, we restrict
ourselves here to particles and "bound states" of
finite mass. Although our focus in this paper is
"nonrelativistic, "our aim is to extend our treatment
to all hadrons in a covariant way. Hence we will
use freely general ideas that come from the broader
context of the relativistic quantum mechanics of
particles of finite mass. The basic mechanism for
scattering is therefore taken from Wick's discus-
sion of Yukawa's meson theory of nuclear forces.
If two systems are brought together within some
distance r where they can interact coherently during
the time 5t when they are so localized, special rela-

tivity requires that r &c5t. By Heisenberg's uncer-
tainty principle 5t=fi/5E. Assume that the in-

teraction is in some sense due to the presence of
some particle of mass p and (from special relativity
again) rest energy pc . This can only happen if the
uncertainty in energy 5E &pc . Hence

cA cA fi
r &c5t= E pc 2 pc

(2.l)

Following Newton we assume that the total
momentum of the system must be conserved, but
this does not define the relative momentum between
the two systems before and after they enter the re-

gion of dimension r; we conclude that they will
"scatter" in some manner that will be connected to
the way they share momentum with p during the
time interval 5t Further, .if the energy is high
enough, the "hadronic quantum" of mass p will ap-
pear, sometimes, in the final state. Our nonrela-
tivistic restriction precludes this possibility in the
discussion of this paper, and hence, requires us to
define the scattering process in such a way that the
"range" r, and the corresponding degrees of free-
dom of the mass p, never enter our equations. This
is the physics behind the zero range limit which we
now define in the nonrelativistic context.

One consequence of our approach is that we will,
at least until the relativistic version of the theory is
developed, always be able to restrict ourselves to a
finite number of angular momentum states; we also

ignore Coulomb effects. Since we end up with a re-
sult identical to the on-shell limit of the Faddeev or
Karlsson-Zeiger' equations, where the conse-
quences of angular momentum conservation have
been worked out in complete detail, we will restrict
ourselves throughout this paper to the state of zero
total angular momentum for three spinless particles
scattering only in states with relative angular
momentum zero, and with only one bound state in
each two-particle channel; the generalization is im-
mediate, and uninteresting except for specific appli-
cation. Hence the two-particle radial scattering
wave function outside the Wick-Yukawa range r
will be

i5
u~(y)=e 'sin(qy+5~) /q,

and satisfies the boundary condition

u~ (r)/u~(r) =q cot(qr +5~) .

Our zero range limit then consists simply of assum-

ing that we can take the limit r =0 in this equation,
or that

uq (r)
lim =q cot5q .

p+ u~(r)
(2.2)

where f,(k) is real and r(q +i 0+) is the on-shell

two-particle scattering amplitude normalized to

+(q )=r(q +-iO+)-
+i5—ie ~ sin5

vrp( q+i 0+)'— (2.4)

Here p is the reduced mass m~m2/(m&+mq) and

For finite r this would be the boundary condition
model first proposed by Breit and Bouricius~ and
explored in detail by Feshbach and Lomon' and
Brayshaw. ' Our approach differs for reasons dis-
cussed below.

Conventional models require the wave function to
depart from the asymptotic form inside the range r,
and hence, in momentum space, introduce an "off-
shell" momentum parameter k in addition to the
asymptotic momentum q. It is easy to show' that
the momentum space wave function then has the
form

5( k) r(q + i0)[ 1+( k—q )f 2(k)]
~b (k)=-

g k —q —i 0+

(2.3)
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(2 5)

We note that in this momentum space formalism
our zero range limit is simply to take f 2(k) =0.

q

According to the dispersion theory of two-
particle scatterings generated by the exchange of
particles of mass greater than or equal to m„, the
on-shell amplitude can always be represented by

+ -2 " k'
~

'r(k')
~

'dk
k' q'+i 0—+

+ —.
'

17jll(q +E+l0 )

+ p(o )do
m '~4 cr +q +iQ+

(2.6)

where e is the binding energy of the (single) two-
particle bound state. In this dispersion relation the

q =2pq . Hence the "half off-shell" amplitude is'

r(k;q +i 0+)= r(q +iO+)

&& [1+(k'—q')f,(k)] .

left-hand cut specified by p(o ) must be consistent
with the "two-particle unitarity" relation

r+(q ) r—(q )= —2( q —iO—+)'
harp, ~r(q )

~

(2.7)

The conventional Faddeev treatment requires us
to know instead the "fully off-shell" amplitude
t(q, q;z —p ) from which the half off-shell ampli-
tude

t I q (2i (z p')1'—"z p'I—
and the on-shell amplitude r(z —p ) can be ob-
tained. In order that the three particle amplitudes
calculated from this driving term satisfy three-
particle on-shell unitarity, t must satisfy full off-
shell unitarity, and in order that they satisfy time
reversal invariance (detailed balance),

t(q, q;z p)=t—(q, q;z —p ) .

We have shown' that these requirements can be
met knowing only the half on-shell amplitude by in-

voking the completeness relation or I.ow equation

k t+(q;k )t (q, k )

p +k —z p —6—z
(2.8)

The bound state wave functions can be represented in terms of the on-shell normalization and real half off-
shell functions f,(q), and easily retained, but we omit them below for simplicity in presenting the algebra.
The unknown function B(q,q), which must equal B(q,q) in order to satisfy time reversal invariance, can be
eliminated by putting either q or q on shell in Eq. (2.8) and subtracting the two equations to obtain a con-
straint which must be satisfied if we are to preserve time reversal invariance. After some algebra, this con-
straint is, in our current notation,

p(o )do " p(cr )do " p(o )do.f (q. —. . f q)—-gag„-2 -2 -2 -2 q ~ 2 O2+q2 q ~„-2+—2

f„2(q)—f 2(q) ft, 2(q) f—2(q)= J k ir(k )
~

dk + +f&&(q)fk, (q) . (2.9)
k —q k —q

The constraint so obtained represents the same
physics as is discussed by Baranger, Giraud, Mu-
khopadhyay, and Sauer, ' but because we have ex-
plicitly introduced the dispersion relation (2.6), we
obtain a single, nonsingular condition. As such, we
hope it may prove of use in the construction of
"phase equivalent potentials, " but this application
will not be pursued here. What is important to us is
that if we take the zero range limit in this equation

(f =0), we are left with the requirement that an in-
tegral over the left-hand cut weight function vanish,
which cannot be met unless p=O. Thus we are led
back to the naive requirement that the w(z —p )
which we obtain in the zero range limit of the Fad-
deev equations have no singularities for negative ar-
guments other than bound state poles. The physics
behind this is that since we are using asymptotic
states with the spectator momentum p referring to a
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free particle, the on-shell requirement q = 8' —p,
where 8' is the three-particle energy in the center of
mass (c.m. ) system normalized to zero at three-
particle breakup threshold, forces the energy q of
the scattering pair to negative values. Consequently
our boundary condition (2.2) becomes ambiguous if
r(z —p ) has singularities in this region. One might
think that by using the Karlsson-Zeiger equations, '

which refer only to on-shell phase shifts 5», with

q & 0 in the zero range limit, this difficulty might
be avoided. That this is not the case will be demon-
strated in the next section.

Further insight into the problem is provided by
noting that if we accept the restriction p=0, and
have satisfied the constraint on f given by the van-

ishing of the right-hand side of Eq. (2.9), we can
then construct the interaction term 8(q, q) which
occurs in the Low equation. But then it is easy to
see that 8=0 in the zero range limit. In other
words we are restricted to solutions of the Low
equation which persist in the absence of interac-
tions, a class of Castillejo-Dalitz-Dyson solutions. '

These are of course a useful representation of ele-

mentary particle scattering amplitudes, which tells
us that by sticking to the particulate degrees of free-
dom which occur asymptotically, we are dealing
with a nonrelativistic limit of some elementary par-
ticle phenomenology. Thus we accept this restric-
tion as consistent with our overall approach.

At first sight we might invoke the well known
boundary condition model' ' to avoid the left-
hand cut in r(z —p ). Unfortunately, the left-hand
cut for such amplitudes is replaced by an essential
singularity at infinity. As was pointed out to the
author by Orlowski, this prevents representation of
the amplitude by the usual dispersion-theoretic for-
mula [Eq. (2.6)] with p=0, which is required in our
treatment below. This creates a serious difficulty in

applying our theory to nuclear force problems since
the effective range formula and similar simple
descriptions of the nucleon-nucleon S wave ampli-
tudes predict an "interaction pole" at about —20

MeV. To avoid this catastrophe we can use" the
modified effective range formula

qcot5= [a+Pq + eq'][1 —q /q0 ]

(2.10)

where q0 is chosen to reproduce the zero in the S
phases at around 250 MeV. The results will be dis-
cussed in the third paper in this series. "

III. DERIVATION OF THE THREE PARTICLE
ZERO RANGE EQUATIONS

We have shown elsewhere that if we accept free
particle wave functions and make the postulate that
there are no hidden variables, we can derive the
conventional Goldberger-Watson form of the n
particle scattering wave functions with the impor-
tant generalization that the scattering amplitudes so
defined can describe any conceivable scattering pro-
cess with Nq free, massive particles in and Nrr free,
massive particles out. That is, we have supplied a
kinematics for this part of the S-matrix theory
which is independent of the dynamics. Since the
amplitudes so defined are not the "matrix elements
of an interaction, "

any dynamics used to compute
them must be proven to satisfy the physical require-
ments of flux conservation and detailed balance.
We derive the dynamical equations for our special
case in this section and prove that they predict uni-
tary three-particle amplitudes in the next section.

We start from an initial state of three free parti-
cles scattering only in s waves and-project out the
J=0 wave function. We will see below that this
approach will allow us to calculate the equations for
elastic scattering, rearrangement, breakup, and
coalescence as well as 3-3 scattering without addi-
tional effort. The resulting radial wave function,
expressed in terms of the coordinate x, of the spec-
tator relative to the c.m. of the scattering pair
whose relative coordinate is y„ is (with
5„=1 —5„)

sin '' (o).srnpa xa sinqa ya m
2

~
2 Mab(pa, pb ~z)sinpaxa sinq, y,U(x ya ) a(o) (0~ 5ab

o pa dpa 0 'qa qa 2 2 . +pa qa (p, +q, —8' iO+)p, q—,
(0).

2 M,b(p„pb ',z), & sinp„(g)x, sinq„(g)y,
Qg J pg pg
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where the on-shell condition

~0)2 ~0)2
pa +qa

nate space.
If we now replace the dependence on x, by a

dependence on p, by defining
(0)2

p, =(m, +mb+m, )
~0)2 Pa

2m, (mb+m, )
(3.2) SlnPaXa

U~ (y, )=— dx, U(x„y, )
p

(3.5)

Pca =— m a
pc+ qc,' C =a+,

m, +m, —

is implied, and our restriction to the asymptotic
form is expressed by requiring the amplitudes M to
depend only on the spectator momenta p and not on
the internal momenta of the scattering pairs q.

The integral over g' arises from the projection
onto the J=0 state and the kinematic channel rela-
tions'

using

sinp, x, sinp, ' 'x, 5(p, —p,' ')
dXa (0)

PaPa PaPa

(3.6)

our two-particle boundary condition Eq. (2.1) in the
three-particle space becomes

m, Mp,
(m, +m, -)(ma +m, +)

UiI (y, )
hm =ka cot(kaya+5k ),+ U, (y. )

(3.7)

ma+qck pc'q

(ma++ma —) pcqc
(3.3) where, because of our asymptotic condition, k, is

the on-shell value of q, defined by

M =m ~+m2+m3,

and the convenient identity

pc Xca(Xaya )+ qc yca(Xa~ya }

= pea{ pc qc)'Xa+ qca {pc qc } ya

which defines the corresponding relations in coordi-

k, =[2',(W+i0+ —p, )]'~

Using, in addition, the fact that for y, &0

dqaqa Sinqapa ik y
=mPae ' ',

p 2+q 2 P ~0+pa +qa—
we find in this way that

(3.8)

(3.9)

k, cot(k, r +5k )
'

ipse
5,b mp M ab(—pa„pb ',z)e

p pb
' ' k,

M,b(p„pb ',z), i 5{p,—p«(g)} sinq«(g)r

(0)5{pa Pb ) . ip) ik r
5,b cosk, r ik, rr&Mab (pa,p—b,'z)e

papb

2 2 Mb(P„Pb,z}, i 5{p,—pca(g) }

.=a+ ' ' p +q —~—&0 Papca&5

which, by solving for M,b and taking the r =0 limit, gives us immediately that

(0)

ipse,

5{pa Pb-
Mab{pa~pb ~ } ra{ pa }5ab (pi

Papb

(3.10)

M.b(p. pb"» 5{p. p,.(k})—= —r(z —p, ) g f p, dp f q, dq,
' '

—, f dg
c=a+ pc +qc —z ' PaPca
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This is precisely the zero range li~it of the Faddeev
equations in the usual theory, as can be seen by per-
forming the integral over the 6 function and com-
paring with Bolle and Osborn (BO), Eq. (3.7) for the
J=O=l =0=A, case. Hence we have derived our
basic equation directly from free particle wave
functions and the usual scattering boundary condi-
tion by simply imposing the two-particle boundary
condition at y, =0+. %e emphasize that nowhere
in the theory have we used the concept of interac-
tion, having replaced it by the two-particle on-shell
scattering amplitude as observed, appropriately ex-
tended to negative energies.

If we had applied the boundary condition on yb
rather than y„we would have found a different
equation for M,b proportional to rb rather than r, .
To show that these define the same function, it is
convenient to define a more symmetric amplitude
Z.b(P. Pb,z)»

&V. Pb—)
M.b(P. P'b'z) &.(z—P'»—.b

Pa5'b

=r, (z p)z—,b(p, ~pb&z)rb(z pb )—

(3.12)

and iterate the equations once to obtain

Zsb(ParPbiz)+Gab(PatPb&z) X Jo Pc dPcG«(Pu~Pciz) 1q(z Pe )Zcb(Pc&Pb~z)

= —y JP. "P.Z-(P. P. 'z) &.(z P. )G.—b(P. Pb'z) (3.13)

&ab
ln

—0
Gab(A Pb'z) =

&5'aA

2 2
Pa A Pa&+ +
2Pb 2Pg i9Zq

2 2
Pa A .PQA+ —z
ZPb 2Pg APE~

(3.14)

Using the symmetry thus established it is easy to prove by iteration that these two equations do indeed define
the same function, establishing at this level the consistency of our boundary condition approach at zero range.
The existence of these two forms is critical for our proof of the unitarity of M,b They obv.iously immediately
establish the time reversal invariance.

It is instructive at this point to ask what would have happened if we had not gone to the zero range limit,
but applied the boundary condition at finite r. As we might expect, the driving term is unaltered, but the ker-
nel acquires the additional factor

cosq«r sin(k, r +5) k, sinq«r cso( kr +6)1+—— ———1 ——
sin6 sin5 (3.15)

where we have grouped the terms to make the r =0
limit transparent. Thus the equation remains well
defined, but the added term removes the symmetry
we needed above to prove the time-reversal invari-
ance of the amplitude. Hence, additional work is
needed before we can make a consistent finite range
boundary condition model out of this approach.
That such a program works has been amply demon-
strated by Brayshaw using a different approach in
both the nonrelativistic' and the relativistic cases,
so we do not pursue this question further in this pa-
per.

The factorization of the on-shell amplitude M,b
occurs naturally in the Karlsson-Zeiger equation,
thanks to Eq. (2.4), even in the conventional theory
for the off-shell amplitudes since they start from
the half-off shell t matrices, with the trivial differ-
ence that we have factored out r(q ) while they fac-
tor out the Jost function. From the fact" that the
amplitudes they define are identical to the Faddeev
amplitudes for all physically observable (i.e., three-
particle on-shell) three-particle processes, it follows
immediately that even the conventional theory can
always rigorously be cast into the form of Eq. (3.12)
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no matter what theory is used to compute

~ah(Pa &'ga &Pb&qb&Z) &

although of course Z,b will have another signifi-
cance and will not be given by Eq. (3.13). As has
been pointed out previously this fact could have
considerable importance for data analysis, since the
rapid variation of the two-particle amplitudes (e.g. ,
resonances) has been factored out leaving only the
more smoothly varying function Zab to be deter-
mined from theory or phenomenological fits to the
data. This has ari advantage over "isobar models"
for three-particle final states in that the interference
terms between overlapping resonances have an
unambiguously defined phase relation, and hence,
can yield information difficult to obtain from
simpler models. We intend to exploit this fact in
subsequent papers in this series.

Having reached this point it should be obvious
why we did not have to include the bound state
terms in our treatment explicitly. These terms are
contained, so far as the primary singularities go,
simply by noting that if r(z —p ) contains the
correct bound state poles, these primary singulari-
ties are correctly given by Eq. (3.11), and for any
explicit representation for ~, the elastic scattering,
rearrangement, breakup, and coalescence ampli-
tudes can be read out of this equation immediately
simply by specifying the appropriate arguments in

Zab.
The route by which Eq (3..13) for Z,b was origi-

nally derived was to take the zero range limit of the
Karlsson-Zeiger equations. At first sight this
gives a very different result since the Z,b so defined
turns out to be

0
Zab (Pa &Pb & ) +Gab (Pa &Pb &Z)

= —g ~aa2
c=a+

—X 5--,' f,e f,"p.'dp. f,"e.'da
c =a+

f', 'Z.b(p, pb z)
d~~ d

r, (4 )g 2(rlaa )Zab(pa pa;z)+ 2 — {2)

pc +Vc —~
(3.16)

where

5(q —k)
k2

r+(k )-
q —k +I', 0+

(2.6) retaining the left-hand cut and perform a se-

quence of not completely transparent, though sim-

ple, algebraic steps, we find that the t, (z —p, ) in

Eq. (3.12) becomes replaced by

+is„5(k—q)=e " cos6~--
kq

2%»»s+
q —k

(3.17)

~z 2 (2) p k ~r(k )
~

dk
z Pa '&qaa = ——

fo z
P +K —Z

(2)2 2
9'ac =Pa +

ma +ma-+

'2

2PaPa++
ma+may

(3.18)

This is puzzling, since we are presumably dealing
with the same theory as before, yet the kernel now
depends exclusively on binding energies, reduced
widths, and two-particle phase shifts in the region
where they are physically observed or observable.
Hence, once this form is adopted we mould seem to
have avoided the problem posed by the left-hand
cuts in the Faddeev form

However, if we use the dispersion relation Eq.

+fp(o )do.

~ 2' -2 -(2)2~ +qac
(3.19)

which indeed has no singularities and leaves the re-
sulting equation well defined for p+0. However, as
was pointed out by Karlsson, if we use the equa-
'on in the second form ~,', ' b~~omes replaced by

q,'b' and the two different forms of the equation no
longer define the same function, thus once again
destroying the time reversal invariance of the
theory. The models with no left hand cut are time
reversal invariant thanks to the fact' that

2 ~2)2 2 ~ l)2
Pa +qac =Pb +Qcb

P /2Ilb+pb IZIlo+P pb(lm, .

At first glance this approach gets us little more
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than the bald restriction that we found necessary in
Sec. II, namely that the theory is consistent only if
r(z —p ) has no left-hand cut. But if we think a lit-
tle about Eq. (3.15), and realize that the kernel does
indeed depend only on the phase shifts in the physi-
cal region, regardless of how they are computed, we
see that we have, in a practical sense, reached our
goal. As already remarked, if our theory depends in
a critical way on the behavior of the phase shifts at
relativistic energies, neither our approach nor the
conventional approach makes any sense in the first
place. So all we need ensure is that our fitting pro-
cedure in using Eqs. (2.9) and (2.10) gives just as
good a ftt to the phase shifts in the physical region
as any conventional model with a left-hand cut, and
our zero-range equations will be just as good. a rep-
resentation of the zero-range dynamics of the con-
ventional model as for our own choice of amplitude.
Of course it would be more satisfactory from a
mathematical point of view if we could define our
zero range limit in the presence of a left-hand cut
and then compute the off-shell effects as a perturba-
tion. It was hoped that the so-called Kowalski-
Noyes representation would provide such a theory,
but this suffers from the left-hand cut problem once
the nonseparable term is dropped even before the
zero-range limit is taken, as has been pointed out by
Oryu. Nevertheless, we claim that this would be
more of a mathematical nicety than a practical
matter, and that either Eqs. (3.10), (3.12), or (3.15)
can be used for our zero-range theory provided only
that some reasonable fit in the region of interest can
be made by using Eqs. (2.9) and (2.10). Of course
for the rigorous proof of unitarity in the next sec-
tion, we will have to rely on Eq. (3.10). That, quan-
titatively, this model is not a good first approxima-
tion for the three-nucleon system has interesting
implications, as will be discussed in our third paper
in this series. "

IV. UNITARITY OF THE THREE-PARTICLE
ZERO-RANGE EQUATIONS

As was discussed at the beginning of the last sec-
tion, any theory such as ours which has no "interac-
tions" but relies instead on observed asymptotic two
particle scattering amplitudes with appropriate ana-
lytic continuations in the three particle space re-
quires a separate proof of unitarity based explicitly
on the dynamical equations used to compute the
three-particle amplitudes. Fortunately, as was
shown by Freedman, Lovelace, and Namyslowski
and discovered independently by Kowalski, if the
Faddeev equations hold in both orders, the algebraic
form of the equations guarantees three-particle on-
shell unitarity provided only the two-particle ampli-
tudes themselves are unitary. As was pointed out
some time ago, ' the energy conserving 5 function
in the three-particle unitarity relation ensures that
for the on-shell Faddeev equations only the two
particle unitarity in the physical region is required
for the proof. In the reference given ' the "on-shell
Faddeev equations" used t (q ) rather than
t(z —p ), and do not even define three-particle
bound states properly, as was pointed out at the
time by Kok. As we now know, this criticism was
correct, and as can be seen from the discussion in
the last two sections, the arbitrary prescription used
in Ref. 31 does not even guarantee time-reversal in-
variance. However, the formal algebraic proof of
unitarity given there is still valid for Eq. (3.11) and
its time-reversed partner. Since this statement has
been questioned, in particular by Alt, we provide
here an explicit version of the Freedman, Lovelace,
and Namyslowski (FLN) proof using the integral
equations rather than a symbolic representation of
them.

Since the wave functions we consider are of the

stnp;x smk;y ~ ~ T(p,p;;z) sinpy sinqy

pi i ' ' p +q —W —ig
(4.1)

where k is the on-shell value of q given by Eq. (3.8), orthogonality of the wave functions, or flux conservation,
requires that

&(pi —p2) @qi —q2)f dx f dy U&(x,y)Uz(x, y)—
0 0 p jp2 9'r9'2

T*(p2,p),'8') T(p2,p„W') m w T(p2,p;8')T*(p,p;;8')
p, '+I, '- W -iq (p +q 8') +rt—
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Hence our three particle unitarity condition is

T(pp, p), W) —T~(p2,p»W)= —f p dp f q dq T(p~,p)

1 1
X

p +q —$V —ig p +q +8'+ig
(4.3)

In evaluating this expression we must take care to remember that, according to our general on-shell expression
Eq. (3.12), T has poles at

p, =[2n, (W~e, )]; n, = Pl~ ( 1Bb +Pl q )

Pl +mb +Pl
(4.4)

which will contribute terms in addition to those coming from the physical three particle states given by

Zmi5(p +q W)=—2iri/[(p +q W) —+ri ],
when ri —+0+. Defining

lim (p, E, ——W) T(p„pb, W) =T '(pb, W)
&a &ea

(4.5)

we find that we must evaluate

[(p' & W)'+ri—'1 [—(p'+q' W)'+ri'—] ' (q'+&)' ~p&
(4.6)

Hence our final finite condition is

+2nW 2T(pz pi'W) T'(p»p—i'W)= »~u ' f— p'[2V(W —p')1'"
I

T '(p
~ )T '(p~)

X T(p&,p2, W)T'(p&, p&, W) ~m. g 2p6'

(4.7)

from which the unitarity conditions for elastic scattering, rearrangement, breakup, and coalescence can easily

be extracted by using Eq. (4.5).
The key to including the bound states in the FLN unitarity proof is to note that the bound state poles in r,
I', /np(p—, e, —W i—0+), wh—en multiplied by the spectator wave function 5(p& —p2)/p2pq, satisfy the

three-body unitary condition Eq. (4.3) thanks to Eq. (4.6) provided only that

I, =2(2p, e, )'~ (4 8)

which is indeed the correct normalization of our zero-range bound state wave function, provided it is inter-

preted to represent exactly two particles. Consequently, when we replace 2impk
~

r
~

by r —r~ in the diago--

nal term given below, the correct bound state terms appearing in Eq. (4.7) are indeed preserved. In Eq. (4.3),
taking proper account of the Faddeev channels, we therefore have that
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—g f p, dp, f q, dq, M„(p„p,;W)

&(p, —p„(g))
pcpc'c

1 1

p, +q, —W —iq p, +q, —8'+iq

=y f p, 'dp, f q, 'dq, S.,"'
y—f"p,,'dp, , f"q, , dp, ,

c PaPc c' Pe' +qe' —8' —i q

f d~q
Pc Pc c

q, q, ,

5(p, +q, —W)

k,

&(P, —Pb)
X [r,(k, ')—r,'(k, ')] 5,b

pc&

—g 5„p,- dp, - q, dq, -—, dg"
tt pcpc"e

M,'b(pc" pb'W)
X

pc-'+ec-' —~+&g

—g&„ f p, dp, f q, dq, M„(p„p„W)
CC

1 1

p, +q, —8' —ig p, +q, —5'+ig

Q(pc pc'c )
X —, dg Mc b(p,pb,

' W),
pope'e

(4.9)

where we have invoked the channel independence of
p +q and have used the two forms of Eq. (3.11) in

appropriate order in the replacement on the right-
hand side. It is now simply a matter of algebra to
see that the 5„and 5,b give us simply [with a
second invocation of Eq. (3.11)]

M,b (p„pb, W) M,*b (p„pb,' W)—

and that the rest of the terms cancel identically,
completing the proof. We trust that the channel
form of Eq. (4.7), which follows immediately from
the left-hand side of Eq. (4.9) by the same steps as
before, need not be written out explicitly. Further,
since the angular momentum kinematics for any
finite number of states is identical to that in the
conventional Faddeev theory, we claim that this
generalization is immediate, and that specific for-
mulas are best left to subsequent papers which ap-
ply this theory to specific problems.

V. EXTENSION TO CONSTITUENT MODELS
AND THREE-PARTICLE FORCES

Since the theory as so far developed completely
ignores the effects to be expected from the short-
range degrees of freedom predicted by the Wick-
Yukawa mechanism, except insofar as they are re-
flected in the asymptotic two-particle scattering
states, we cannot anticipate the equations of the last
two sections to be in agreement with experiment.
However they do provide, we claim, an unambigu-
ous description of these asymptotic effects in the
low energy region. What we must now provide is a
practical, and hopefully reasonably unambiguous,
way to supplement these equations with parameters
that will not destroy the unitarity we have finally
achieved, and which can be fitted to experiment.
This simply cannot be done in terms of current non-
relativistic theories. As is well known, there is an



ZERO RANGE SCATTERING THEORY. I. . . .

infinite number of nonrelativistic (nonlocal) "poten-
tial models" which will give identical fits, even in a
mathematical sense, to the two-particle scattering
data. One of the hopes in the early days of the

study of the three-body problem was that this ambi-

guity could be removed, or at least diminished, by
comparing different two-particle models with

three-particle experiments. However, as was point-
ed out in 1972, and indeed was a major motivation
for this program, in the three particle system the
same Wick- Yukawa mechanism which is supposed
to generate the two-particle scatterings will neces-

sarily give rise to three-particle forces in the three-

particle systems which are, phenom enologically

speaking, unpredictable. Hence two-body off-shell
effects can be traded off against three-body forces
while preserving a fit to three-body experiments and

the ambiguity remains, a fact demonstrated in

specific contexts by Brayshaw. ' If instead one tries

to compute the interaction to be used in the nonre-

lativistic Hamiltonian theory ordinarily employed
in nuclear physics from elementary particle theory,
there was no consensus as of 1960 as to how this is

to be done. In this author's opinion that situation
has not basically changed, and in fact has been fur-
ther compounded in recent times by the controversy
over "big quark bags" and "little quark bags. " So
we must find our own route.

One way to introduce fitting parameters into the
theory with a well-defined significance is to define

2

r, (z —p )= — +r, (z —p ) .
rrp, (p, e, ——z)

(5 1)

This allows us, thanks to Eq. (3.12), to explicitly
separate out the primary singularities, and hence the
physical amplitudes, following the detailed treat-
ment of Osborn and Bolle. Calling their ampli-

tudes Mab~ +ab and Rob~ &ay~ Gab~ and &Ob» our
zero-range limit we then find by comparing our

Eqs. (3.12) and (5.1) with the OB Eqs. (4.7) and (4.8)

that Kab XaZab+b ~ Gab +a ZaQXQ, and that the
physical breakup amplitude is given by [see OB Eq.
(1.2)]

&ob(Po~Va~Ps;z)=g r, (f, )Z,b(P„Ps ',z)
X, Z,grab

9'a +&a
(5.2)

From this identification we can immediately take

over their formulas for differentia1 and total cross

sections. Provided

N, =I', =2(2p, e, )'i

we see that the "bound-state wave function" in con-

figuration space is

I, exp( —(2p, e, )'~ y ) /y

and indeed has the correct normalization for a
bound state with precisely two particles in a zero-

range theory.
However, we claim that we have the freedom to

replace I, by a parameter E, to be fitted to experi-
ment. Why can we do this? In a conventional

theory where the bound state has short-range struc-

ture, whether due to a potential or to some more
complicated degrees of freedom which are not excit-
ed asymptotically in the reaction under considera-

tion, N~ is indeed different from I „and has to be
determined either from some microscopic theory,
or, for example, by extrapolating physically ob-

served cross sections to the bound-state pole; in that
context X, is called the "reduced width. " It is

I

then a task for both theory and data analysis to
prove that N, so determined is indeed a unique

constant independent of the particular reaction

channels used to make the determination. Thus, by
introducing this freedom into our own theory, we

are not departing from standard practice.
When it comes to physical interpretation, we can

say that (1—f, ) =(1 N, /I", ) is th—e fraction of
the bound state which, at the level of analysis under

consideration, can be thought of as "elementary"

and f, as the fraction of the bound state which is

indeed composite and can contribute to the reaction.

This idea was discussed long ago by Weinberg and

has been exploited in discussions of n-d scattering

both by Aaron, Amado, and Yam using Amado's

"nonrelativistic field theory" and by Barton and

Phillips in a dispersion theoretic approach. A
more satisfactory way of looking at the situation

has been suggested by Lindesay. Consider an "ele-

mentary" state e, which is simply a particle of mass

(m, +mb —e, )/c that never comes apart and a
"composite" zero-range state of the same mass and

quantum numbers called e„with the

I, =2(2e,p, )'~
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normalization. These two sectors of the theory
refer to different particle number and as pure states
are separately unitary. However, for detectors that
respond only to the mass and quantum numbers,
they cannot be experimentally distinguished. If we
now form physical states as an incoherent mixture
of the two pure states with weights (1 f, ) —for e,
and f, for e, and multiply them by the appropriate
spectator wave function, the consequences will be
the same as for our ad hoc replacement of I', by
Na.

Our next step is to consider the effect of a
"three-body force" of zero range, which adds a
direct 3-3 scattering channel, which we label by "0"
in addition to the channels a,b,cE1,2, 3 already
considered. For this channel we express the wave
function in terms of the hyper-radius R =x +y
and require that

U'(R)/U(R) = W' cot5g

as 8~0. The conjugate momentum" is

(-2+ -2)1/2 II/1/2

When there is a single three-particle bound state
at 8'= —eo, we can guarantee fitting this binding
with our model simply by taking

rp ———Xp /(8'+eo) .

Solving the homogeneous equation then allows us to
compute the "reduced widths" of the breakup of the
bound state into the 2+1 channels. An analysis of
low-energy n-d scattering using this approach is in
progress in collaboration with Orlowski. We antici-
pate good results, since Barton and Phillips have
already shown that the on-shell terms in a model
similar to ours already give reasonable predictions
once the sensitive doublet scattering length is fitted;
our freedom in the choice of Xo will accomplish
this.

To extend our approach to general data fitting of
systems with three-particle final states, this zero-
range three-body force will probably not be suffi-
cient, since it only provides a single parameter, 5~,
at each energy in each total angular momentum
state of the three-particle system. Returning to Eq.
(3.13) and introducing a matrix notation, since

on shell, and unitarity is preserved by taking r( W)
proportional to

e stn511 /8'

( 1+Gpt)Z = —Gp =Z( 1 + tGp)

(1+Zt)(1+G,t)Z =Z

=Z(1+tG, )(1+tZ),

(5A)

3

1 —g Mp, Gp rp,
a=1

3

Mp, ———ro Q G11M„,
a=1

3.o= —y M-Gonzo
c=l

3

M.,=r. s.b G,M„yS.,—GoM,b—
c=l

3

~ b+ g (GprpGp —5 Gp)M b
c=l

3

& b+ y M (GorpGp —GQ6 b) 1b
c=1

(5 3)

The Faddeev equations are unchanged in form if we

allow the sums to run over all four channels, but it
is more convenient to eliminate the fourth channel
and obtain modified equations for M,b in terms of
the original three channels. Explicitly,

3

Mpp ——ro 1 —g GpM, p

(1+tGo)M =t =M(1+G,t),
(1—

MGo )(1+ tGo )M =M
(5.5)

we take

=M ( 1+Go t)(1—611M),

(1+tG, )M'= t +tXM,

t +MXt =M'(1+ G,t),
M'=M +MXM =M',

(5.6)

with X arbitrary. The form of the driving term has
been chosen asymmetrically in the two equations to

we see that (1+Zt) is the left inverse operator for
the first form of the equation and (1+tZ) is the
right inverse operator for the second form. Thus,
once we have solved the equation for Z, we have the
inverse operators, without further effort, directly
expressed in terms of Z. Further, since [Eq. (3.12)]
M =t+tzt, we also can invert the Faddeev equa-
tions directly. Hence we can define a new ampli-
tude M' by adding a driving term to the original
equation and obtain the solution to the modified
equation by quadrature. Explicitly, since
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M'=M'*= —M(GO —60 )M'*,

MXM —M*X*M*= —MXM (60—G o )M*
(5.7)

—M(GO —60 )M~X*M~

—MXM (Go —60 )M~X~M*

guarantee that both define the same M' and hence
ensure time reversal invariance. But X must also be
chosen so as to guarantee unitarity

"pure state" of that mass when acting as a specta-
tor. The residual system will have N, =N —N,

l

neutrons and Z, =Z —Z, protons. This in turn
S S

can be decomposed into states bj. ~(a;, l;) containing

Nb neutrons and Zb protons connected to states
J 1

cl, ~(bj ) containing

Nc& =Na. Nb.

= MX(M —M*)+(M —M*}X*M* neutrons and

or

+ MX(M —M')X'M',
Zg Zg Zb

M(X —X~}M*=MX(M —M~}X*M* . (5.8)

Since M has been shown above to be invertible, our
unitarity condition on X thus reduces to

X —X*=X(M —M*)X* . (5.9)

We can therefore always construct an appropriate
parametrization for X.

We have now reached our goal of providing a
general method for analyzing three-particle states
which explicitly takes account of the known two-
particle scattering phase shifts and bound states in
the two-particle subsystems. From those we com-
pute, once and for all, Z and hence M. %'e then in-
troduce in X parameters for those amplitudes not
well-fitted by the zero-range model consistent with
Eq. (5.9). This allows us to compute M' by quadra-
ture, and by computing observables from M' fit
those parameters to experimental three particle ob-
servables by a conventional least squares search. In
this way we will find an explicit description of
whatever in the three-particle system goes beyond
the physics already contained in the two-particle
scatterings. Applications of this approach will
form part of subsequent papers in this series.

To extend our theory to a model for the scatter-
ing of more complicated composite structures re-
stricted to initial and final states containing no
more than three clusters, we must extend our nota-
tion as follows. For concreteness we can take the
case of a system with A nucleons, Z protons, and
N =A —Z neutrons, but the approach itself is more
general. Consider first a state a; containing Z,

l

protons and N, neutrons. In general this system
l

will have several levels, so we immediately extend
the notation to states to a;, l; each of which has a
mass m (a;,I;). Each of these is considered to be a

(5, ~) (2,2)

r r"a Pa

r sr

r
'ila, q

zr, Sr

a La

r2

rc: l, 2, 3,4
r; =r —I+4 i

tv 5,6,7

rl = f' —5+g I

FIG. 1. Geometrical definition of the four particle
coordinates used in this study for the (3,1) and {2,2) con-
figurations. Algebraic details are given in Table I.

protons. Out of this complicated description we
now select those clusters which we consider signifi-
cant in any particular physical process we wish to
study and write the zero-range equations for each
partition of three clusters considered in isolation us-
ing Eq. (5.1) with N, =I', as the driving term,
and a r, which satisfies two-particle on-shell unitar-
ity in this restricted environment. As we have al-
ready shown, each such system satisfies unitarity in
the two- and three-cluster space so generated and
can be considered a pure state. Our last step is then
to form incoherent mixtures of these pure states to
construct the physical states of the reaction theory.

Clearly the articulation of this program raises
formidable combinatorial problems, whose solution
will not be attempted in this paper. As is well
known, the inclusion of spin and the exclusion
principle in dynamical equations of the Faddeev-
Yakubovsky type is an unsolved problem which
must also be faced in order to convert this sugges-
tion into a practical approach to nuclear reaction
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TABLE I. Four particle coordinates. If the four particle c.m. energy normalized to zero at
-2 -2 -2

four particle breakup threshold is called E, then the on shell condition E =p +q +s is con-

figuration and channel invariant. The on shell momentum for the distinguished pair is de-

fined as k;=[2@,"(E—p, —s, )]'~ . The spacial coordinates corresponding to p„q„and s,
are x„y„and z„respectively. In order to express the four particle wave function in terms

of a single set of coordinates we will need to know the geometrical connections

p, (p,",q,",s, )—:p„,x, x,', y,', z, )=x, etc. which are readily obtained from Fig. 1. If we

take out the dependence on the orientation of the configurations in space, which can be done

by an appropriate application of rotation matrices analogous to that done with care for the
three particle case in OB, these transformations will depend on the three direction cosines

(p, q, ), (p, -sr ), (q, s, ) which we symbolize collectively by Q. The reduction of the plane wave

basis expi(p x+q y+ s z) to the scalar form used in the text is greatly facilitated by the
~r ~rr' ~r. rr' ~ ~ r'r ~r ~r'r ~r ~ —+

identity p a'X aa' + q a'3 aa' + S r'Zrr' =p a'a'Xa + q a'a'p a + S r'r'Zr ~

r C1,2, 3,4

ri =r —1+4l

M, n,"=m, (m, +m, );
3 1 2

M, nb ——m, (mr +m, );

1 2 3

4

M=gm;=pm,
i=] i=1

2 —2
Sr =2VrSr

a, b, cCr; p,'=m„m„ /(m, +m, )

(q,') =2@,'(q, )2

a —(r] r2) b —(r2 r3) t =(r3 r] )

(p,')'=2n,'(p, )'

{pb) =2nb(pb)

{p,r)2=2n,'(p, )2

r C5, 6,7
M- =(m, +-', )(m, +m. )

r; =r —5+3i

a =(r3 r4); b ={r],r4);

r=(r2, r4)

theory. But we thought it worthwhile to point out
the possibility at this early stage in the hope that
others may be attracted by the challenge. The com-
binatorics are no more difficult than in convention-
al approaches, and the dynamics are considerably
simpler. In particular, if we close the three-cluster
channels by taking ~=0, we obtain a dynamical
theory for two-cluster multichannel problems in

which only the binding energies and reduced widths
of the composite systems enter, the dynamics aris-
ing solely from cluster exchanges. By using rela-
tivistic kinematics and an appropriate definition of
mesons as massive quanta, we can include the
mesons on an equal footing with the nucleons, and
construct a theory that correctly describes meson as
well as nucleon exchange in the dynamics. This
theory becomes considerably more powerful and
more fundamental (e.g., when applied to the triton)
when we make the extension to four-particle sys-
tems sketched in the next section.

VI. FOUR PARTICLE EQUATIONS

We have seen in Sec. III that zero range three
particle equations can be derived simply by impos-

ing the zero range boundary condition on each pair
starting from the asymptotic form of the three par-
ticle wave function. Our approach here is similar
and again requires no references to interaction.

In order to extend our treatment to the four par-
ticle case we define the (3,1) configurations with
r = 1, 2, 3, 4 and the (2,2) configurations with r =5,
6, 7 geometrically in Fig. 1 and algebraically in
Table I. We see that, analogous to the treatment by
Yakubovsky, ' we must consider 18 initial and 18
final configurations and construct our theory in
terms of the amplitudes F,"s where the symbols are
only defined when a Cr and b Ct. Starting from a
state of four free particles, we project out the state
in which all angular momenta are zero and obtain
the radial wave function
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Pa Qa Sr

ce

Pa' +Pa' Va' dna' Sr' dSr
r'=1 a'C r' Pa +ga +Sr —E —l 0+

sinp,",'(Q)x," sinq,","(Q)y," sins„„(Q}a„
dQ

~ ~

p,",,"(Q) q,",,"(Q) s„„(Q) (6.1)

In order to apply our zero range boundary condition to this wave function, we must first reduce the spatial
dependence to the coordinate y,

" of the distinguished pair, which can be done by Fourier transformation yield-

1ng

(0) (o) (0) 5ab5rf ~prF««b(pa«ka sr&~)e
Va PaPa ~r~~

7—y y 5, f p,"'dp,"' f q.".'dq." fs'.„.'ds.
p +g +s —E

sinq,","(Q)y," 5(p,"—p,
"„"(Q)) 5(s„—s„„(Q))

dA
qa'a(Q) papa'&«(Q)

(6.2)

' where we have kept only the asymptotic form of the amplitude corresponding to the distinguished pair, con-

sistent with our zero range assumption, and used the on shell value for q,
" defined in Table I. Applying our

zero range boundary condition U'/U =k,"cot5, in the limit y,
"—+0 we find that

7

F b=r, (E p, s„}—55——g g 5„f R„F,"b
r'= j a'Cr'

(6.3)

Since this equation still contains disconnected scattering processes when r =r, we move these to the left hand

side of the equation and obtain

5„5+5„r,f R,", F,'b r, 5„,5,——b55 —g5„„+5„f R",,F,"t,
C r' a'Cr'

(6.4)

By examination of this equation on the left for the (3,1) configurations, we find that this is simply the zero

range Faddeev equation M = t (1—fRM) clothed with the momentum conserving

5( (o)
) y (0)

of the four particle spectator and with the energy W replaced by F. —s, . But, as proved above, this equation
also holds in the time reversed form M =(1—fMR )i obtained by applying the boundary condition to the

first scattering rather than the last. Hence

1 — MR 1+t R M=M

providing an inversion of the operator on the left in Eq. (6.4) which when applied makes the driving term in

the equation for I',"b into

M."b(Z —s„')5(s,—s„"')Is„s,"' .

For the (2,2) configurations, the only terms which couple are F,", and F,"„establishing immediately that

The coupled terms appear to present a problem since neither component of either pair scatters from the other,
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the spectator momentum factors out, and we anticipate a factored form. The factored solution is immediate
in the Schrodinger equation in configuration space, but in the integral equation we get contributions in the
iterations to any finite order in the multiple scattering series. Blankenbecler has pointed out to the author
that the same problem occurs in the conventional theory; it is mentioned by Mitra, Gillespie, Sugar, and Pan-
chapankesan. However, if we iterate the two pair equation once we find that

~2 —(0)2)r (+ -r2 -(0)2)

—(0)2 ~0)2 — RM, r C 5,6,7 .
Pa +P b +Sr —E

(6.5)

Here we have used the fact that in this configura-
tion pb ——q,', as can be seen immediately from Fig.
1. But

-r (0)2 —r (0)2 -(0)2E=pa +pb +&r

showing that there is an on shell singularity in the
first iterate. Hence we can multiply Eq. (6.5)
through by this singularity and remove the unwant-
ed multiple scattering term RM. In con igura-
tion space this singularity does lead to the factored
orm

k y~ ikb&bt, the e

as expected. Further, we see that for these configu-
rations we also have Eq. (3.12) with

Thus we have the Faddeev form for the equations
l

I

and the algebraic inversion proceeds just as in the
(3,1) case.

In the three particle equation we can see explicit-
ly that the factorization of t allows the reduction of
the equation to one variable with a geometrical ker-
nel involving an integration over the angle cos
between p, and q, . All that happens for higher an-
gular momentum states is that we acquire addition-
al rotation matrices as functions of this angle and
additional indices which are given explicitly in BO.
The reduction occurs because of the 5 function for
the spectator which puts the two body scatterings in
the three particle space. In the four body case we
have an extra integration in momentum, which
makes the factored form of the three particle equa-
tions into a convolution in the four particle case.
Hence we obtain by inverting the left-hand side of
Eq. (6.4) the two variable equations for the zero
range four particle problem

( )Mab(pa, s„;p&,ss,E) ()Mab(pa, pb,'E— sr )5«—5(sa s)—/s„s,
00

()
Pa-' aa-(Pa)Pa-) r) dpo" '—'&a"-a (po")pa )E) Ma I'(pa )ps)E) )

a"Cr r' a'Cr'

where

(6.6)

=5 5„-fdQf dq,
"

0
~r 2 +~r 2 +~2 E ~ p+

Xpa p,
"

q,
" s„5(p,' p,",'(Q))5(s„—s„—,(Q))/p, 'p,","(Q)s,s„„(Q) (6.7)

and we have replaced the I","b which refer explicitly
to the four particle case by ' 'M,'~ with an eye to
generalization to the X particle case. Just as in the
three particle case, we could obtain an alternative
equation by applying our boundary condition to the
first scattering rather than the last; that is, we also
have the equation

We also have the generalization of Eq. (2), namely

(6.8)

Hence by one iteration of Eq. (6.6) we can obtain an
integral equation for the smooth function ' 'Z in
which the primary singularities have been factored
out. Thus knowing Z we can immediately recover
all the physical four particle cross sections in a
manner strictly analogous to the three particle case
discussed in OB. Vanzani showed that the form
of our four particle equations is identical to the
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form of one set of such equations he has developed
in the conventional theory, except that the off-
shell behavior in his equations requires a convolu-
tion over ' 'M which prevents the factorization we

have found in the zero range theory.
Since our theory does not rest on a Hamiltonian

model for the interactions, we are required' ' to
prove that the resulting equations are unitary. In
the three particle case the unitarity condition

M,b M~—b ———g M„(RP—R () )Mdb
cd

follows immediately from the form of the Faddeev
equations and the two particle on shell unitarity
condition

as has been proved in detail in Sec. IV.
We claim that the generalization to the N-particle

case is now transparent. We write our X-particle
equation in configuration space using the full
Faddeev- Yakubovsky combinatorial decomposition
and reduce this to a X—2 variable equation in the
distinguished coordinate. Applying our zero range
boundary condition as before, the two particle am-

plitude factors out. Transferring the appropriate
configurations to the left hand side we obtain spec-
tator problems in reduced spaces which can be in-

verted in the same way that we demonstrated expli-
citly for the (3,1) and (2,2) configurations above.
The driving term on the right now has N —2 5
functions rather than 2 before the inversion, and
one 5 function after the inversion. Hence, just as
before, we can obtain X—2 variable equations
driven by the appropriate analytic continuation of
the N —1 particle amplitudes. The integral equa-
tions that provide these continuations have no
singularities other than bound state poles provided
only the two particle amplitudes themselves have no
such singularities, as already required. Time rever-
sal invariance follows from two forms of the equa-
tions as before. Unitarity is immediate from an ob-

vious generalization of the FLN proof. The reduc-
tion of the kernel to N —2 variables follows from
standard applications of angular momentum tech-
niques, which of course become increasingly tedious
as the number of particles increases, but which have

to be faced in any exact N-particle theory. We
therefore claim to have proved that the N-particle
zero range equations are always E—2 variable

equations of the form

(N) g~C(N)C'(N) (N —1)~C(N)
lvL C(N ] ) ~ ~ ~ C(N ] ) ~ ~ ~

5C(N)C'(N) . g ()CC"
C(N") C"(N —1)( C"

(N) CC '
(N) ~~C"C'

Pi C"(N —1) ~ ~ cvfC"( N —1)

and in reverse order. Finally, the essential singular-

ities can always be factored out by an obvious gen-

eralization of Eq. (13).
The physics lying behind the simple result we

have obtained is that by sticking to two-particle
on-shell scatterings of the pairs as the driving
mechanism and making the angular momentum

reduction, the only variable content left on which

these amplitudes can depend, thanks to momentum

conservation, is the appropriate analytic continua-
tion to negative energies required by the uncertainty
principle. The factorization is quite general for
short range interactions as was proved long ago. '

The simplification was conjectured a decade ago,
but could not be proved because of the reluctance of
this author to abandon "left hand cuts" in the two
particle input, which turns out to be the key to suc-
cess. In the relativistic generalization of this ap-

proach, which we claim to be immediate and which
has been shown to work in the three particle case, '

this assumption turns out to be analogous to the

1

"locality" assumption of quantum field theory.
Our theory differs in that it can be kept consistently
to sectors in which only a finite number of particles
enter by using particle functions rather than field
functions as the basis. The basic trick in the rela-

tivistic generalization ' is simply to assume that
"particle" and "quantum" bind to make a state
which the same mass and quantum numbers as the
particle. As in the nonrelativistic theory presented
in this paper, unitarity and time reversal invariance
are immediate. "Crossing" and relativistic spin are
under investigation.

Vn. CONCI. USIONS

We claim to have shown in this paper that by as-

suming that the two particle on-shell amplitude
contains only the physical two-particle on-shell uni-

tarity cut and bound state poles we can derive three
and four particle equations which predict physical
three and four particle on-shell amplitudes which
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are rigorously unitary, and are uniquely defined in
terms of physical observables, subject to any
parametrization that agrees with experiment over a
finite energy range and is compatible with our basic
restriction. We also show that these equations al-
low phenomenological extension capable of facing
the problems of data analysis for systems with three
particles in the final state and of three cluster nu-

clear reaction theory. The approach used here im-

plies a relativistic generalization which already has
produced a covariant model for the two particle,
one quantum and particle, antiparticle, and quan-
tum sectors of elementary particle theory describing
both elastic scattering and single quantum produc-
tion firmly grounded in the experimental results ob-
tainable at low energy.
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