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Phase shift behavior at degenerate continuum bound states
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A special case of a nonlocal potential which has a degenerate continuum bound state is

studied using the Bolsterli criterion for defining the phase shift, and is found to be con-

sistent with Levinson's theorem and the Wigner inequality.

NUCLEAR REACTIONS Phase shift behavior for nonlocal potentials,
degenerate continuum bound states, Levinson's theorem.

5(0)—5( Oo ) =m (N+M),

where N is the number of negative energy bound
states and M the number of positive energy bound
states (this is the option exercised by Gourdin and
Martin }; (b} alternatively, insist that the phase
shift is continuous everywhere except at the energy
of each CBS where it jumps discontinuously by ~;
hence, clearly

5(0}—5( oo ) =Nn. . (2)

The advantage of the latter choice is that the phase
shift is then the phase of a meromorphic function
in the complex plane (with a cut extending from
E=0 to E= oo along the real axis) as the axis is ap-
proached from above. In such cases the CBS is a
simple pole on the real E axis. If a small perturba-
tion causes this pole to move down onto the second
sheet of the Riemann surface, the CBS disappears

It has long been known that nonlocal potentials
can give rise to continuum bound states (CBS's)
which require a change of viewpoint with respect to
the generalization of Levinson's theorem, ' originally
proved for local potentials. The statement of the
theorem is meaningful in this generalized context
only if one makes an appropriate choice of the
phase shift at each energy since direct scattering in-

formation only fixes the phase shift modulo m In.
the case of local potentials, this prescription con-
sists simply in requiring continuity of the phase
shift for all energies E & 0 and

5(0)= lim 5(E),
E~O

provided there is no zero-energy bound state. In the
presence of (nondegenerate) continuum bound

states, one has two equivalent options: (a) to con-
tinue to insist on the continuity of 5(E}whence the
theorem becomes

and a scattering resonance at a nearby energy re-

places it. The phase shift then increases continu-

ously but rapidly in this region by approximately m.

Thus one gains not only the analytic properties, but
a "stability" of the phase shift with respect to at
least certain small perturbations. The relationship
of the two choices has been carefully reviewed by
Dreyfuss.

Arguments in favor of (2) were raised again more
recently by Foldy and Lock in response to a sug-

gestion in the literature that the phase shift be de-

fined such that it has a discontinuity of vr at w—hat
has come to be called a spurious state. Foldy and
Lock argued that (a) since such a spurious state
gave no obvious "signature" of its presence, and (b)

if the discontinuity could be smoothed out by some
perturbation, one would encounter a violation of
Wigner's phase shift theorem; little advantage, if
any, could be secured by this last convention.
Hence they opted in favor of the stability considera-
tions favoring the Bosterli choice (2). Unfortunate-

ly this is not sufficient for all purposes since we do
not know that we get the same results independent
of the nature of "allowed" perturbations.

However, the results of this earlier paper left the
present author uncomfortable on one score. It was
shown in the Appendix of Ref. 6 that one could
construct a potential which had a doubly degenerate
CBS and here there is the possibility that such a
question of uniqueness could arise. Thus one could
impose a perturbation such that the original degen-
erate CBS is split into two slightly separate nonde-

generate CBS's whence the application of the results
of that paper would predict a jump by m. of the
phase shift at each giving rise in the limit as the
perturbation is removed to a jump of 2m at the de-

generate CBS. On the other hand, if the scattering
amplitude had a simple pole at the position of a de-

generate CBS, the jump in the phase shift would be
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only n T. o satisfy the requirements of the desired
theorems the first of these results would have to
hold. As might be expected the former was found
to be the case, the latter failing because the singu-
larity is not a simple pole but a dipole singularity
on the real axis.

The question was resolved by examining the po-
tential given by Eq. (A15) of Ref. 6, hereafter re-
ferred to as I, which we write with a slight nota-
tional change as

(r
~

V
~

r') = AIhp '(r)bp '(r')

+Alba '(r)b, II '(r'),
where

1 a&r&b
0 otherwise .

L

%e shall particularly be concerned with the special
case where A, I

——A,z
——A, and R2 2R, R I

————R (though
one other case is also examined). Under these cir-
cumstances the condition for a doubly degenerate
eigenvalue in the continuum located at
E=A k /2m with k =2Irn /R, n = 1,2, . . . , is

R =(2n.n)

The linearly independent and orthogonal CBS

eigenfunctions are then

Al(1 —coskr) 0&r &RQ)= '

0 otherwise,

A2(1 co—skr) R &r &2R
Q2= '

0 otherwise .

The calculation of the phase shift as a function of k
can be readily accomplished by the method em-
ployed in the Appendix of I but the resultant for-
mula is too complicated to allow its behavior to be
simply explored analytically. Numerical calculation
has therefore been employed using the following re-
lations which are valid for the more general case
where the two A, 's are different and Rl and Rz are
unrelated; we use the abbreviations x

&

——kR ~,
x2 ——kR2, o I

——A, IR I, o2 ——A2(R2 —R I ):3

5(mod17 )= —xp+ tan '( U, /V, ),
UI ——Ul+A(sinx2 —sinxl )

+B(cosx2 coax 1 ) i

+2 =Acosx2 —B smx2 .

Here A and B are to be determined from Ul and Vl
by solution of the equations

0'2(COSX2COSX I ) 0'2(slllX2 —SlllX I )
smx )— A+ cosx&+ 3

B=Ui,
(XI—xl) —og(X2 —xl) (X2 —S I ) —0 I(X2 —X I )

[cosx, ]A —[sinx, ]B= Vl,

while U~ and V& are given by

o l(1 —coax i )
U&

— +sinx ~,
X I

—ITI(x I
—SIIlx I )

ITI(1 —COSX I )SlllX I
V) —— +cosx )x I' —o.l(1 —sinx I )

Even numerical computation using these formulas
is difficult because of the rapid variation of the
phase shift with energy in the regions where reso-
nances produced by perturbations lie. The sharp-
ness of these resonances with A,

~
——kz ——A, and

R I R I——R——when cr AR differs —from the critical
value of 4m for a degenerate CBS by as much as 15
can be seen in Fig. 1, where the phase shift has been
plotted as a function of x =—kR varying from 0 to 10
for 0.=55. However, a clear answer to our question
emerges immediately: The phase shift jumps by 2m.

as the energy increases through the region of the de-

I

generate CBS. The perturbation of Ir from 4m2

causes the singularity in the scattering amplitude on
the positive real axis associated with the CBS to
move down from the axis onto the lower unphysical
sheet, generally splitting into two simple poles, but
possibly as a dipole. The motion of these poles is
difficult to determine quantitatively. In Fig. 1 we
have also indicated the phase shift variation if the
perturbation is introduced by choosing o.

~

——25 and
02——55 while the condition R ~

——R2 ——R is retained.
In this case the phase shift shows two successive ra-
pid increases by m as x increases through 2m, but
hovers around —m in the intervening interval.

In summary, results for a particular nonlocal po-
tential, but one representative of many (if not all)
others, tempt one to conclude that:

(a) Levinson's theorem in either of its forms is sa-
tisfied for nonlocal potentials possessing degenerate
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bound states at the energy, while N should presum-

ably be the number of linearly independent negative

energy bound states in either instance, to include

possible degeneracies of negative energy eigenvalues.

(b) Presumably Bolsterli's analyticity properties
continue to hold but with higher order poles in

place of simple poles at degenerate CBS energies on

the positive real axis.
(c) The limiting form of Wigner s inequality then

also continues to hold.
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FIG. 1. Phase shift 5(k) as a function of kR for the
nonlocal potential given in Eq. (3). The dashed curve
represents the case for a doubly degenerate continuum
bound state occurring for the condition o =0~——o.2

——4m'.
The two solid curves labeled o.=25 and 0.=55 represent
the effect of perturbations which transform the continu-
um bound state into closely spaced pairs of resonances.
The dashed-dotted curve corresponds to another pertur-
bation corresponding to values of the parameters O.

l ——25,
o.2 ——55, in which case the resonances are more widely
separated. All curves show the increase of the phase
shift by 2~ as kR increases through the region of the res-
onance. (The label on the abcissa should be kR rather
than kr. ) The remarkable sharpness of the resonances as
measured by the steepness with which the phase shifts in-
crease through —m /2 and —3m /2 should be noted.

continuum bound states (and degenerate negative
energy bound states (see the Appendix) for any par-
tial wave phase shift, with the understanding that
M in (1) is the number of linearly independent con-
tinuum bound states, and in the case of (2), the
jump in 5 at the energy of a CBS is mn, where m is
the number of linearly independent continuum

APPENDIX

The possibility of degenerate negative energy
bound states with nonlocal potentials is demonstrat-
ed by an example for such a bound s state. The ra-
dial wave function multiplied by r satisfies the
Schrodinger equation (units: 2m/A' =1):

d u/dr au =— V(r, r')u(r')dr',
0

a = ( E}'~, (—Al }

with

—g2(r )g2(r')/(g2, L2),

(g;,Lz)= I g;(r)LJ(r)dr,

LJ(r ) = I K(r, r')gj(r')dr',

and K is the Green's function:

K(r, r') = —[e 'sinhar & ]/2a .

Then if (g&,L2)=(g2,L&)=0, which can easily be
arranged, Eq. (Al) is clearly satisfied for any con-
stants C~ and C2 by

u =C)L, (r )+C2L2(r ) .

N. Levinson, K. Dan. Vidensk. Selsk. Mat. -Fys. Medd.
25, No. 9 (1949).

2M. Gourdin and A. Martin, Nuovo Cimento 7, 607
(1958); A. Martin, ibid. 6, 757 (1957). See also R. L.
Mills and J. F. Reading, J. Math. Phys. 10, 321 (1969).

3M. Bosterli, Phys. Rev. 182, 1095 (1969).
4See Ref. 3. See also P. Beregi, Nucl. Phys. A206, 217

(1973);M. W. Kermode, J. Phys. A 9, L47 (1976).

5T. Dreyfuss, J. Phys. A 9, L187 (1976).
L. L. Foldy and J. A. Lock, Phys. Rev. C 20, 418 (1979).

7B. Mulligan, L. G. Arnold, B.Bagchi, and T. O. Krause,
Phys. Rev. C 13, 2131 (1976);B. Bagchi, T. O. Krause,
and B.Mulligan, ibid. 15, 1623 (1977).

sA. Bohm, Quantum Mechanics (Springer, New York,
1979); M. L. Goldberger and K. M. Watson, Collision
Theory (Wiley, New York, 1964).


