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Density fluctuations in infinite Fermi systems
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Within the framework of many-body theory, a generalized Hartree-Fock equation is derived

assuming a periodic density fluctuation. In a one-dimensional model, self-consistent solutions

are calculated. A band structure of the single-particle spectrum and several minima of the total

energy appear as novel features.

NUCLEAR MATTER Static density fluctuations, generalized Hartree-Fock
method.

lck = [Hick ]—= &hack + Vqck qc ic
k q

which is linearized in the usual fashion by the ap-
proximation

J ~ % ~ i
ck &c ic i =ck —&(c ic I ) c I(ck qc I ) (2)

where the brackets denote the expectation value with

respect to a ground state yet to be determined.
Note that the assumption of a uniform density dis-

tribution of the ground state yields the traditional
Hartree-Fock (HF) equation when Eq. (2) is inserted
into Eq. (1). In the following we assume that such a
HF calculation has been carried out and that it leads
to a stable ground state. Hence the ck in Eq. (1)
refer to HF quasiparticle creation operators with cor-

Static density fluctuations of the ground state of
Fermi systems have been known for some time. The
Wigner lattice' of the electron system is one example.
Overhauser' considered an oscillatory density con-
structed from the eigenfunctions of a translationally
invariant Hartree-Fock Hamiltonian for an infinite
Fermi system and showed that the total energy of the
state so obtained is lower than the total energy of the
traditional plane wave solution which leads to a uni-
form density. More recent extensions' of this idea
were applied to the problem of n clusters in the nu-
clear surface4 and density fluctuations in nuclear
matter' using realistic forces.

The method applied in the quoted papers proceeds
from a given form of the wave function which is
determined by a variational principle. Our point of
departure is the equation of motion of the single par-
ticle operator in an infinite system (S = 1)

responding HF single particle energies ek. Conse-
quently V~ in Eq. (1) represents the Fourier
transform of the residual two-particle interaction.

Physically, nonvanishing expectation values such as
those appearing in Eq. (2) would arise in the pres-
ence of an external perturbation UQ gkck ck Q, for
fixed Q. In particular

p, (Q) = $(c„',c,, Q), s =0, +1, +2, . . . (3)
k

would then not vanish. As a consequence, the densi-
ty distribution would be a periodic function in space,

p(x) = (y (x)y(x)) = Xp, (Q)cos(sQx) . (4)
s-0

By calculating the total energy E = (H) we now in-

vestigate the question as to whether the system
favors the state of nonuniform density distribution
even when the external potential is switched off and,
if this happens, as to what values of Q give rise to
the lowest total energy.

To simplify the discussion we consider a short
range interaction V, i.e., we ignore the q dependence
of Vq. Taking the sums over spins into account the
direct and exchange term in (2) can be combined and
we finally obtain

—IC k=tkc k+2V X p, (Q)c k gQ

~ l

In the following we consider a one dimensional
model. Then it is obvious from Eq. (5) that only the
Brillouin range —Q/2 (k ~ Q/2 needs to be con-
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sidered; we denote values from this reduced zone by
k. The "ansatz" ck (t) = ck exp(i cokt) yields the

eigenvalue equation

system (6), viz. ,

ui (k) = kk+~ui (k) +2V X p, (Q)u,t"~(k)
g~ oo

Mkck =ckck +2V X p, (Q)ck ~q (6)

We now introduce the quasiparticle operators

~kn X ~ ( ) k+rg
f~ oo

(7)

with u,'"'(k) being the eigenvectors of the coupled

The transformation (7) is canonical as the u„'" (k)
are complete and orthogonal for each value of k.
Thus we retrieve the usual anticommutation relations

[pk„, p-, ,]+=5,5(k —k ), and zero for the other
k

anticommutators. Therefore the ground state can be
constructed in the usual way from the vacuum by ap-
plication of the pk-, to fill up all states in the range

Ik I
~ Q/2, then by pk-2 and so forth until a given to-

tal number density is reached. From this we obtain

p, (Q) = J dk X Xu,'" (k)u,'",'(k)+ J dk $ u, (k)u, , (k)
-Q/ r s -~g/ f~ oo

with 0 & n & 1. The second term occurs if the last zone is only partially filled; if the first zone is only partially

filled, NF = 0. Denoting the given density by 2k+, we have 2kF =po= (NF+ u) Q.
Equations (8) and (9) constitute a self-consistent nonlinear eigenvalue problem which is solved numerically by

iteration. We used parameter values 0 ( 2kF ~ 3 and
~ V~ ~ 2.5(il /2m = 1). We now record the main qualitative

features of the one-dimensional model calculation:
(i) A consistent solution is only obtainable for attractive ( V ( 0) interactions.
(ii) If Q & 2kF(NF =0) there is a critical interaction strength below which a consistent solution cannot be at-

tained. Its value depends on the total density. The lower the density, the stronger the critical interaction must
be. For Q ~ 2kF there is always a consistent solution ( V (0).

(iii) The total energy per particle

E 1

4kF

r N
~g/2 F r ag/2

dk $ ~k-" + $ ek +~[u, " (-k)]' + dk(n ~NF+I)
n 1 r -oo

(10)

is illustrated as a function of 2k'/Q for fixed kF in
Fig. 1. Not only does a minimum occur at Q = 2kF
that is in fact lower than the corresponding value of
the plane wave solution, if the interacting is strong
enough, but a remarkable second local minimum also
occurs at Q =2k~/2. We conjecture that further local
minima are present at Q = 2kF/m, m = 3, 4, . . . . Re-
mark that the total energy has changed due to effects
of the residual interaction that go beyond traditional
HF theory. It is doubtful whether the HF ground
state itself would support a permanent density fluc-
tuation in nuclear matter. 6

(iv) The single particle spectrum cok-" shows the

same pattern as the one obtained from the band
model in solid state physics' with k being a wave
number in a Brillouin zone. There is a gap between
&ok', ao„-", . . . which decreases with increasing n while

for large n the unperturbed energies ok+„& are ap-

proached. Note, however, that this is brought about
by a self-consistent density distribution in the present
case.

(v) Typical self-consistent density deistributions
[Eq. (4)] are plotted in Fig. 2 for the Q =2kF and

Q = k~ states. While the former resembles the pat-
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FIG. 1. The total energy per particle vs 2kF/Q for V =—1

(solid curve) and V =—2.5 (dashed curve) for 2kF =3. The
horizontal lines indicate the corresponding energies of the
respective plane wave solutions. If the interaction is weaker
than a certain critical value, all points of the curves lie above
the corresponding energy of the plane wave solution.
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FIG. 2. Periodic density fluctuations around the average
value po 2kF=3 for V —2.5. Two periods are shown for
the state with Q -2kF {I) to allow the display of one full

period of the state with Q = kF (II).

tern obtained previously by other authors, ' the latter
shows a remarkably different structure.

(vi) There is no sharp Fermi momentum in the
single particle density

NF

n(k) = (cqcq) = X [a„'" (k)]
n 1

This function looks rather like the distribution of a
superconducting state, i.e., there is a drop at k = kF
but the function is smooth and extends to infinity.
Obviously, f n (k) dk = 2kF.

While we could reproduce known facts on general-
ized Hartree-Fock solutions with periodic density dis-
tributions, we have gained considerable additional in-
sight by our procedure. The band structure of the
single particle spectrum and the "higher" states at
inQ = 2kF are the most interesting features. In view
of the simplicity of our model, a definite physical as-
sessment of these findings is premature. However,
we mention the possible analogy with the various
possible antiferromagnetic orderings of spins on a
common basic lattice. ' Also, at this stage, our model
does not contain a driving mechanism which "ar-
ranges" the appropriate Q value for a given total den-
sity. We expect more insight when extending the
random phase approximation along the same lines.
Work towards this aim is in progress.

The authors gratefully acknowledge the assistance
of h4rs. H. C. Marais who ~rote the computer pro-
gram.
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