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The long-mean-free path nuclear fluid dynamics is extended to include damping. First
the damping stress is derived from the solution of the Boltzmann equation for a breathing

spherical container filled with a Fermi gas. Then the corresponding damping force is in-

corporated into Euler equations of motion and energies and widths of low lying collective

resonances are computed as eigenfrequencies of a vibrating nucleus under surface tension

and Coulomb potential as well as the high lying isoscalar giant resonances as eigenfrequen-

cies of an elastic nucleus. Maximum damping is obtained if the particle frequency approxi-
mately resonates with the wall frequency. Theoretical results are compared with experi-

mental data and future improvements are indicated.

NUCLEAR STRUCTURE Nuclear giant resonances; calculated
widths of isoscalar giant resonances. Elastic vibrations, Boltzmann

equation, collision term, long-mean-free path dissipation.

I. INTRODUCTION

Recently, the long outstanding problem of a mac-
roscopic description of isoscalar giant resonance en-

ergies was solved. By performing a moment expan-
sion of the Vlasov equation, Bertsch' derived
elastic restoring forces against multipole deforma-
tions of a nucleus arising from a dynamic distortion
of the Fermi sphere in the long-mean-free-path lim-

it. The same result was obtained later on by
Holzwarth using the dynamical Thomas-Fermi
approximation and by Wong' '" in evaluating the
Bohm-Madelung quantum potential. The moment
expansion of the Vlasov equation was then extended
to higher moments by %inter. ' ' Actual calcula-
tions of isoscalar giant resonance energies were per-
formed with' an approximate fiuid velocity field, '

also with inclusion of rotation, ' or with exact solu-
tions of the fluid dynainical equations. ' ' It has
been shown by the present authors' that due to the
long-mean-free-path nature of nuclear dynamics, in-
clusion of higher than second moments of the
Vlasov equation is essential in a realistic model,
whereas in Ref. 19, these effects were simulated by
introducing an effective mass. At present, even the

most sophisticated macroscopic theory yields only
reasonable agreement with experiment of 0+, 1

2+, 3 isoscalar giant resonance energies.
Concerning the widths of the giant resonances, a

macroscopic description is far from being establish-
ed. Although attempts to explain the widths as
arising from ordinary two-body viscosity were quite
successful, ' ' they lack a physical basis. In
particular, the elastic behavior mentioned above and
viscosity have the same origin but emerge from op-
posite assumptions. As is well known in the theory
of elasticity, the stress tensor in the Euler equa-
tions of motion for vibrations of incompressible
media has the form

p
$J

Here u is the fluid dynamical velocity, p is the
Lame coefficient to the discussed below, co is the
frequency of oscillation, and r is a mean free col-
lision time which is proportional to the mean free
path. In the limit of large r, i.e., tor »1, Eq. (1.1),
hence, is the elastic stress tensor, whereas for small

w it represents the Navier-Stokes viscous stress ten-
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sor with viscosity caefficient rl =pr. A correspond-
ing relation (1.1) holds in connection with nuclear
vibrations. '

The one-body dissipation wall formula/~ on the
other hand, by its inherent assumption of a long

mean free path, ' provides a better basis for the
damping mechanism of nuclear vibrations. Calcu-
lated giant resonance widths, however, are too large
as compared with experimental data. ' ' This is
similar to results obtained in fission calculations in-

cluding one-body dissipation, where the motion
turned out to be overdamped. It seems to be due to
the assumption of a solid wall in the derivation of
the one-body dissipation formula2 which allows for
large irreversible density fluctuations in the vicinity
of the surface.

This problem has been attacked in the theory of
Winter, ' where the Boltzmann equation is solved
with a space dependent mean free collision time.
As a result, r ' is peaked in the surface, and two-

body collisions are concentrated in the nuclear sur-
face. This explains nicely the arigin of one-body
dissipation on the basis of twa-body collisions. A
self-consistent solution of the corresponding Euler
equations, however, is not available at present. As a
first application, giant resonance widths were calcu-
lated in the harmonic oscillator basis. 2s

In this paper, we choose an intermediate way.
We solve the Boltzmann equation with a collision
term for monopole vibration with the approxima-
tion of r~ ao in the interior. In this way, particles
are randomized in the interior and only collide with
the wall which manifests itself in the boundary con-
dition of specular reflection. This model is in the
spirit of the theory of damping of Fermi liquids
simplified to a Fermi gas. Having solved for
the distribution function, we calculate the damping
stress tensor which, then, is assumed to hold for all
multipolarities of vibration.

Incorporating this damping stress into the Euler
equations of motion, we solve them for the low-

lying hydrodynamic modes and the high-lying elas-
tic giant resonance modes. By virtue of the as-
sumption of a nuclear Fermi gas, the model has no
inherent adjustable parameters. However, in order
to study the influence of this type of damping on
nuclear vibrations, we vary the strength of the
damping but compare with experimental data only
those results obtained with the Fermi gas parame-
ters. As a result, we find that damping is strongest,
if the particle frequency is approximately in reso-
nance with the boundary frequency. Computed
widths of the giant monopole resonance are too
large as compared with experiments.

II. PISTON MODEL IN SPHERICAL GEOMETRY

A. Boltzrnann equation

In this section we extend the one dimensional pis-
ton model of Ref. 27 to the spherical geometry. Let
the solid wall of a spherical container with radius
R (t), filled with a (rarefied) Fermi gas, vibrate with
normal velocity R =u„a:e'"' and we solve the force-
less Boltzmann equation

V f=I[f]B

t m
(2.1)

for the distribution function f(r, p, t). Here, p is
the particle velocity and I[f] is the collision in-
tegral. Far a small departure from the zero tem-
perature Fermi distribution we write

f=fo+5f (2.2}

p 5f =0.B 1 n B

Bt r m Br
(2.4)

Here p =cosg, where t/r is the angle between
momentum and radius vectors defined in such a
way that p &0 (p &0) denotes particles heading to-
wards the wall (the interior). The Pauli principle is
implemented automatically if we only allow for
scattering of particles at the Fermi energy,

5f= 5e,
BE

(2.5)

2
5(pr —p)8(R r) . —

UF

(2.6)

This turns the Boltzmann equation into

8 1+ +UFP 5E'= 0 ~

Bt z Br
(2.7)

Equation (2.7) is only valid in the interior, r &R,
where the mean free collision time is large. At the
surface, Eq. (2.7) has to be solved with the boun-
dary condition of specular reflection. The tangen-
tial component of the momentum is continuous
whereas the radial component changes by 2mu„p

fo 8(er —e——}8(R r), — (2.3)
h

where eF ——pz /2m =muz /2 is the Fermi energy.
With this linearization. the first order approxima-

tion to the collision integral reads I[f]= 5f/r, —
where r is the mean free collision time. Further-
more, in the radial geometry the Boltzmann equa-
tion reduces to
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and the part of the change of energy linear in u„ is filled for nuclear giant oscillations and the argu-
ments given above hold only approximately.

5e(r =R)= —2mu„ups . (2.8)

The solution of Eq. (2.7) consistent with the boun-

dary condition (2.8) is given by

5e = —2muFu, jMe( —p)

(R —r)(iso+~ ')
+exp

PVF

Note that the step function e( —tu) allows only for
reflected particles being disturbed. Furthermore,
the disturbance decays exponentially with 1/A, ,
where X=uFr is the mean free path. Since R/A, & 1

this decay is small and we can safely put r, A,~ ao

in t'he interior. On the other hand, the disturbance
oscillates rapidly in the interior provided that

coR

VF
(2.10)

For a realistic soft wall, hence, the disturbance
will be a superposition of many slightly phase shift-

ed rapid oscillations, which approximately average

out in the interior. As a consequence, the distur-

bance is peaked in the surface which is in the spirit
of the one-body damping mechanism. As we shall

see below, however, relation .(2.10) is not well ful-~

B. Energy loss and damping stress

We now proceed to calculate the rate of energy
loss and the damping stress tensor associated with
the disturbance (2.9). The change in energy due to a
change in radius 5R under the assumption (2.10) is

8 +58
S~Po~~r d«dP P (2.11)

Here we used the abbreviation

(R r)(i(u—+r ')
VF

(2.12)

the Fermi gas density po, and average particle velo-

city u=(p/m),

87TNlPF
Po= (2.13)

3V= 4VF ~ (2.14)

The latter integral is evaluated in terms of the ex-

ponential integrals

E„(x)=J dye" 2e

e "/x, ~x (
)&1

(2.15)

which obey the differential relation E„' = E„—
This yields the rate of energy dissipation

I

damping stress tensor34

~ij 5 POVF~ij ~ij ~ (2.20)
—E=8mpouR u„E3(0)

2
pOVQr ~ ~

(2.16)

(2.17) d ppp, 5f

where S =4nR is the surface area. Equation (2.17)
is the one-body dissipation formula for constant
surface velocity which is obtained here for a solid
vibrating container in approximation (2.10).

Evaluation of the damping stress tensor proceeds
in a similar way. Let

, I dpp'5(p~ p)—
PlPF

& J,dip pjj e( u)e' "—0 /

(2.21)
u;=(p;/m)

be the component of the fiuid velocity and

Plj (plpj /m ) mujul

(2.18)

(2.19)

The last integral is confined to the half space with

3K.
2 2

be the total pressure tensor, where averages are per-
formed with the total distribution function f. It
splits up into the static Fermi gas pressure and the

see Fig. 1. We therefore express the momentum
components with polar angles 8, q in terms of the
angle g by two successive rotations. First rotate r
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motion,

F= —,poiT( V'u, + e„V.(u„e„)) . (2.26)

FIG. 1. Vectors and angles employed in the piston
model.

and p about the z axis by an angle —[(n/2)+q&].
The vector r lies now in the y-z plane. Then rotate
r by an angle 0 about the x axis. The vector r is
now along the z axis and the vector p goes over to
p' with

px 1 0 0—sing —cosy 0
—sing 0

0 1

0 cos8 —sin0 p„'

0 sin8 cosi9
py = cos+

p 0

X~l =2pouu„( —,E3(g)—3E,(g))5~

(2.22)

The polar angle of p
' is now g and the integral be-

comes

(2.28)

Here, the first part is due to compression caused by
the isotropic damping pressure and the second part
arises from the additional radial-radial stress.

C. Rough estimate

As a first simple application we compare the rate
of energy dissipation in our theory during a mul-

tipole vibration,

R (0 q&) =Ro(1+aI Yio(0)) ~ (2.29)

with the one obtained by using the one-body dissi-
pation formula, thereby employing potential flow,
V-u=0

Although (2.25) has been derived in the vicinity of
the surface only, we employ (2.25) and (2.26) all
over the nuclear volume. This is a safe approxima-
tion since, as will be shown below, u, is small in the
interior. For a freely vibrating surface, the rate of
energy dissipation induced by an arbitrary stress
tensor X is given by

E=—f d rXV.u. (2.27)

With the damping stress (2.24) or (2.25) it attains
the form

2Bu„—E=—pv dr u V.u+-2a,

+ (3Eq(g )—E3(g ) ) u„=Ro 'air' 'Y(o(8), (2.30)

(2.23)

Close to the surface, by use of (2.15), Eq. (2.23) sim-
plifies to 4. 2l —1—E=

& ppURp cx( (2.31)

as a first estimate for the fiuid velocity. From
(2.28) we get

Xr'Xi
Xg~ —

2 poUuq 5(y +
r 2

(2.24)

In spherical coordinates, there are only diagonal
components of the stress tensor,

X~=2K~——2X++——ppvu, ,

X,e——X,q
——Xg~

——0,
(2.25)

As a result, the damping mechanism produces an
isotropic pressure ——,ppvu„and an additional
radial-radial stress —,ppvu, and, hence, a damping
force F= V X on the rhs of the Euler equation of

whereas the one-body dissipation formula yields

4 2Eo cbody PovRo aI (2.32)

Thus damping of vibrations of large multipole
numbers with the present mechanism is about one
fourth as weak as compared to the one-body
mechanism. This is due to the fact that solenoidal
flow actually is not compatible with the assumption
of a solid surface. Furthermore, for low multipole
numbers, our damping is even smaller by another
factor of (l —1)/l. It also has the desired feature
that pure translational motion is not damped, the
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lack of thi's being an inherent deficiency of the ori-

ginal one-body dissipation formula.

III. DISSIPATIVE HYDRODYNAMICS

where 5p and 5$c are the deviations of the pressure

and Coulomb potential from their respective spheri-

cal values. For damped harmonic motion, u ~e' ",
the ansatzes

u, = V(r)Y!o, (3.2a)

I.ow-lying hydrodynamic vibrations result from
an interplay between Coulomb and surface energy
restoring forces. Apart from shell and deforma-
tion effects, they should approximately obey an

dependence. Experimental identification of
these states, however, is still speculative. In this
section we solve the Euler equations of motion with

surface and Coulomb energies and damping stress

exactly. Although the mean particle velocity
u=0.205c, which is the analog to the viscosity con-
stant in our theory for a Fermi gas is a natural con-
stant, we will treat it as a free parameter and study
the infiuence of its strength on the results.

In this terminology, the linearized Euler equa-

tions of motion read

ppu+ V(5p+pp5$c)= zppu( Vu„+e, V (u, e, )),
(3.1)

geometric function which can be written explicitly,

1 —) —rL ( —2l —1)( (3.6)

Here I.) 1' "(y) is the associated Laguerre polyno-
mial of negative degree,

Lo ' ——1,
L ( —s) (y+4)

1.(2
' ———,(y +10y+30) .

(3.7)

The normalization constant CI is determined by
Neumann's boundary condition which states that
the fluid velocity at the boundary is equal to the
boundary velocity,

~r =RoaI ~(o (3.8)

and the complex eigenfrequency follows from
Laplace's boundary condition

X~—p+0.~=0, r =Rp . (3.9)

Here, cr is the surface tension and )( the Gaussian
curvature. In principle, the tangential boundary
condition

(3.10)

must also be fulfilled. However, by the very nature
of the damping [see Eq. (2.25)] this condition is a
trivial one. Equation (3.9) is evaluated with help of
the surface quantities '

u()
——W(r) (3.2b)

l
upoR pal(&) Y—(oPP

5p +5fc—
2 lTu „=% (r ) Y)p (3.2c)

Po

and the incompressibility assumption V u =0 satis-

fy (3.1) and yield

4nRo p,
wc (21 1)

(xI IP ~aF

(1—1)(1+2)+ al Ylo
Rp Rp

(3.11)

iQI
iQ(rW= — — (r V)

1 1+1 dr

and the second order differential equation

(3.3)

20 4

p + 3 +Rp p, aI Yjp
Rp

and with the pure liquid drop eigenfrequency

d'V 4 1 (1 + 1)u d V
2+ +

dr y 2jQIy dy

1 (1 —1)(1 +2)o.
I =

poRo

Sn 1 (1 —1)p,

3(21+1)po

2 —1(1+1) 1 (1 + 1)u V=O.
r iQIr

In terms of the variable

il (1+1)u3'=

(3.4)

(3.5)

(3.12)

In (3.11) and (3.12), p, is the nuclear charge density.
This yields the characteristic equation

y)
1

y) d 1~( 2) 1)( ) ()
1(1+1)rl) 1+1 dy)

the solution regular at the origin is a hyper- (3.13)
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where

il (l +1)u
2QR

1.6

G)g

1.4 — (Qg

is related to the eigenfrequency, and

U

2R pQ)I

average particle frequency

liquid drop wall frequency
(3.14)

1.2—

1.0

02—

is a dimensionless parameter.
Equation (3.13) is an algebraic equation in y~ of

degree (l+ 1). For dipole motion, it has only the
trival solution 01——co1 ——0. For arbitrary multipole
moments but small damping, g~ &&1, we get

. l —1=1+i (3.15}
NI

and for large damping, ril »1,
' 1/2

I+1
col 2

. (l —1)(l +2) (3.16}

The latter limit exhibits the interesting feature that
there are no overdamped solutions and that damp-

ing becomes smaller again with a large damping
constant. Numerical results of the complex eigen-

frequency

OI =~i+iyI (3.17)

are displayed in Fig. 2. The damping width shows
a strong resonance behavior about gI-1. Accord-
ing to Eq. (3.14), at this point the average particle
frequency u/2Rp resonates with the liquid drop
wall frequency co~, the latter being approximately
equal to the actual wall frequency co~. This feature
persists up to high multipole moments. For I &&1,
evaluation of the characteristic equation (3.13) re-

veals that the maximum of yI lies at
' 1/2

u 1 Il 3l I ~

2 2
(3.18)

Rp

which states that maximum damping is achieved if
I

0 1 I

0.003001 0.03 0.1 0 1 3 10 30 100 300

FIG. 2. Real (upper part) and imaginary (lower part)
parts of the complex hydrodynamica1 eigenfrequency of
multipolarity I in units of the pure liquid drop frequency.
The variable gI is the ratio of particle frequency to liquid

drop wall frequency.

the average particle frequency resonates with the
actual wall frequency.

At this stage it is worth looking at the radial
velocity component. Rewriting (3.6) yields

I —1 2QI
aI

iul (l + 1)
~r =Rod) YIp

20(Rp
a~, p iul(1+1)

)& exp
u l(1 +1) 1 1

2iQI r Rp
(3.19)

where a„are the coefficients of the Laguerre poly-
nomial. For small damping, only the terms with
v=1 —1 are relevant and the exponential is approxi-
mately unity except for the point r=O, where it
vanishes. This is the limit of potential flow, Eq.
(2.30). For large damping, on the other hand, only
the terms with v=O are relevant. From (3.16) we
then obtain

u, =Ro+I ~Ioexp
(l —1)(l +2) p

1 — /[2(l +1)] n —1
4 r r

(3.20)

It decays and strongly oscillates in the interior of the nucleus, the higher the multipolarity is, the stronger,
which are exactly those features which we concluded above from the solution of the Boltzmann equation.
Furthermore, this implicitly justifies the assumption (2.24) of extending the surface stress tensor into the inte-
rior region.

For the computation of ri& values from (3.12) and (3.14) we employ the Fermi gas value for u and the ap-
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proximation of N =Z =A /2. This yields

1/2

3 35
2l+1

1(l —I)[(1+2)(21 + 1)—20xF]
(3.21)

where

(3.22)

is the fissility. This quantity is plotted in Fig. 3. One sees that for quadrupole vibration, heavy nuclei lie
beyond maximum damping in Fig. 1, whereas for higher multipole moments, they lie slightly in front of the
maximum. In Fig. 4, energies EI =fico~ and widths I i =2fiyl of the low hydrodynamic isoscalar vibrations are
plotted. Although the interpretation of the experimental data of Refs. 36 and 37 in these terms is speculative,
we observe rather good agreement for the octupole data. Unfortunately, there were no widths extracted from
the data. The theoretical order of magnitude, I &=2 MeV for medium heavy nuclei, however, is compatible
with the experiments.

IV. DISSIPATIVE FLUID DYNAMICS

As outlined in the Introduction, the high lying isoscalar giant resonances in the long-mean-free-path ap-
proximation with neglection of higher moments of the Boltzmann equation are governed by the elastic equa-

tions of harmonic motion. ' ' Including the long-mean-free-path damping force, they read
0

ppu+ ((1%+2@)VV X u —pV X V X u)= —,ppv( Vu„+e„V.(u, e„)),
QI

(4 1)

p/pp ———,v~ =(0.122c) (4.2a)

(4.2b)
gm

are the Lame coefficients and E is the nuclear compressibility. In dealing with the 0+ breathing mode, we

shall employ the surface dependent compressibility

E=(300—6003 '~
) MeV . (4.3)

whereas for the vibrational modes 2+, 3, 4+, and for the squeezing mode 1, it suffices to use the Poisson

condition E= 15mp, i.e.,

(4.4)

By making the same ansatzes (3.2a) and (3.2b) for the velocity components as above, the radial and tangential
differential equations become

Q~ V+~ a — r V l(1+1) —+a—rW — rW +i—QI —
2

—r V+ =0, (4.5a)d 1 d q V d 1 d . v 1 d 2 dV

pp dr r dr r dr r2 dr 2 r dr dr

QI W+ — rW al(1+1) ——— +—— r V +i Q~ =—0.1 d 1 dV a d 2 . p dV

pp r dr2 r2 r dr r3 dr 2 df'
(4.5b)

Here,

$2 p3 p4 p ~ ~ ~ p

3 727 —4 7873 ' 0+ (4.6)
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50 100 150
by the Neumann boundary condition at r =Ro,

V=Roa, (4.8)

(4.9)

but vary its strength as we did above.

and by the condition that V and W must vanish at
the origin. In what follows, we shall employ the di-
mensionless damping constant

1/2
u Vp 3m 5

71 =0.8385,
2 p 8

A. The monopole

0.2 QA 0.6 0.8 1.0

X~
FIG. 3. The variable gI plotted vs the nuclear fissility

x~ or mass number A.

Equations (4.5) can be solved for monopole vibra-
tions, l=O. The tangential velocity component van-

ishes, W=O, and the radial velocity in terms of the
dimensionless coordinate and frequency

follows from (4.3) or (4.4}, respectively. Equation. s
(4.5} are augmented by the boundary conditions
X =X,s——0 at the surface r =Rp,

W .~Pool

dr r dp r p

(4.7a)

x = rQp(pp/Jp)'~,

xp =RpQp(pp/lu)

reads

apRp
V(x)= . e '""~'j,(»),

A(»p)

where

(4.10a}

(4.10b)

(4.11)

V+r —W=O,dW
(4.7b) 1V= +a a

' 2 1/2

(4.12)

25 From the boundary condition (4.7a) we get the

20—

'l0—
xo)

o)

I

50
I

100
l

150 200 10
A

FIG. 4. Theoretical energies and widths of the low-

lying hydrodynamical modes and experimental data
(Refs. 36 and 37) of the energies of low-lying collective
octupole resonances.

FIG. 5. Real and imaginary parts of the dimensionless
complex monopole eigenfrequency vs the parameter a.
Heavy portions indicate the location of nuclei.
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characteristic equation for the complex eigenfre-

quency,

avj 0(vxo)+(ig 4—j)~(vxo) =0 . (4.13)

Here and in the following, energy and width of a gi-
ant resonance of multipolarity / with the Fermi gas
parameters are given in terms of the complex solu-

tion x, by

E(=&Re(&1)

=20.4522 '~ MeVRe(xI)

85
EOA ~

(MeV)

75—

I

(MeV

I

50 100 150

~, A

200 250

I', =2A'Im(n, )

=40.9043 ' MeV Im(xr ) .

(4.14)
A

FIG. 7. Energies in units of A ' MeV and widths in
units of MeV of the breathing mode compared with ex-
perimental data (Refs. 38 and 39).

Re (Xg)

1 I 1

0.003 0.01 0.03 0.1 0.3
1 I 1

1 3 10 30 100 300

FIG. 6. Real and imaginary parts of the dimensionless

monopole (breathing) and isoscalar dipole (squeezing)

complex eigenfrequencies vs the damping parameter g.
Arrows point to the Fermi gas values.

The monopole solution is plotted in Fig. 5 against
the parameter a. For the range of nuclei indicated,
one observes a rather constant behavior of the ima-

ginary part, thus giving rise to a well pronounced

dependence of the damping width. The real

part, however, is increasing with increasing mass
number which translates into a strong departure of
the energy from the A '~ law. For fixed a=3, the
dependence of the complex solution on the damping
parameter is shown in the 1=0 part of Fig. 6.
Apart from the fact that for overdamped motion

(g & 7.76) there does not exist a creeping mode; the
behavior is similar to the one resulting from ordi-

nary two-body viscosity. Energies and widths are
shown in Fig. 7 in units of A '~ MeV or MeV,

respectively, together with experimental data taken
from reviews. ' Theoretical widths are roughly
twice as large as the experiments. Note, however,
that identification of the breathing modes for light
nuclei 2 (80 is still difficult by virtue of the fact
that only approximately 50%%uo of the sum rule is ex-
hausted.

8. Squeezing and vibrational modes

Owing to the fact that the monopole solution of
the damped fluid dynamical equations (4.5) is a
function which is nonanalytic at the origin, we do
not expect solutions for higher electric multipoles in
closed form. The set of two complex differential
equations of second order therefore was
transformed into a set of eight real differential
equations of first order which was solved numeri-
cally by Hamming's modified predictor-corrector
method. Equations (4.7) and (4.8) provide six boun-

dary values at the nuclear surface and the four un-

known quantities xI, 8', i.e., real and imaginary
parts of the eigenfrequency and tangential com-
ponent of the fluid velocity at the surface, were
computed with a four-parameter search under the
constraint that radial and tangential fluid velocity
components vanish at the origin.

The complex solution for the 1 squeezing mode
is also included in Fig. 6. This mode, being a super-
position of translational and compressional motion,
is not spurious. Its width comes out to be very
small and even negative. This is quite understand-
able on grounds that the damping force (2.26) de-
rived from the long-mean-free-path damping
mechanism essentially is a radial force, whereas
squeezing motion is mainly tangential. Similarly,
the widths of the 3 and 4+ vibrational modes turn
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out to become negative for large values of rl. They
are therefore not shown. The width of the 2+ octu-
pole vibration, however, is of the correct order of
magnitude. The occurrence of negative widths
shows that the assumption of specular reflections
wherein the tangential component of momentum is

always conserved ' no longer gives a valid picture
of the damping mechanism and, hence, the simple
piston model with no tangential damping stresses
becomes inadequate.

C. Magnetic modes

Vibrational modes of abnormal parity, 1+,
2, . . . , also called magnetic or twist modes, were

put forward by Holzwarth and Eckart as solutions
of the long-mean-free-path fluid dynamical equa-
tions. They let the nuclear surface stay spherical
and the radial velocity vanish everywhere. Accord-
ing to Eq. (2.26), the damping force vanishes identi-
cally and, hence, these modes are not damped by
our damping mechanism. For the solution of the
Euler equations of motion we therefore refer to pre-
vious work. '

mean-free-path limit.
The model itself has no adjustable parameters.

However, in order to study the influence of damp-

ing on the motion we varied the strength of the
damping force and found maximum damping of the
hydrodynamic vibrations if the particle frequency is

approximately in resonance with the wall frequency.
A comparison of the theoretical results obtained
with the Fermi gas values with the experimetal
widths showed reasonable agreement, thereby im-

plying that the total width is to be identified with
the spreading width only.

Many an assumption entering the model can be
relaxed in future work: the derivation of the stress
tensor from radial motion only, i.e., neglection of
any tangential dissipation mechanism; the assump-

tion of a sharp surface; the assumption of very long
mean-free-path in the interior; the neglection of
higher than second moment of the Vlasov equation
in the pressure tensor; the Fermi gas assumption;
and the linearization of the fluid dynamical equa-

tions.
All models considered above have dimensionless

frequencies xI =2 ~ 4.5. Phases of the disturbed
distribution function (2.10) hence are of the order of

V. SUMMARY AND OUTLOOK
RpRe(Q() =1 ~ 2.

v'5
(5.1)

The first part of this paper was concerned with
the derivation of a damping stress tensor from the
Boltzmann equation. We employed the model of a
spherical Fermi gas nucleus whose solid wall
breathes harmonically. The collision term is treated
in first order in the perturbation of the distribution
function arising from specular reflection of the par-
ticles from the wall. This is equivalent to the as-
sumption of a very large mean free collision time
(or mean free path) in the interior.

This damping stress results in a damping force
which was then assumed to hold for variations of
arbitrary multipolarity of the free nuclear surface.
Energies and widths of low lying collective reso-
nances were then calculated as eigenfrequencies of a
vibrating nucleus under the influence of surface ten-
sion, the Coulomb potential, and the damping force.
Energies and widths of the high-lying isoscalar gi-
ant resonances, on the other hand, were calculated
as eigenfrequencies of an elastic nucleus with damp-
ing force, the elastic behavior resulting from the
conservative part of the pressure tensor in the long-

The argument of a rapid oscillation is therefore
only applicable for large multipole numbers. This,
however, is consistent with here neglecting terms in
the conservative part of the pressure tensor which
are proportional to x~, cf. Ref. 18.
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